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ABSTRACT 
1D sequence homologous alignment tool, like FastA (FAST- 

ALL) [8] or BLAST (Basic Local Alignment Search Tool) [1], 
has been widely used in bioinformatics field and perform 
elegant and fast searching for the sequences developed from 
the same kinds of species. In other word, it can classify 
through determining the homologous similarity which is not 
totally similar in sequences of protein sequences, structure or 
nucleotide sequences. An approach is proposed in this paper 
called AA-FAST (abbreviation for Acoustics Alphabet-FAST) 
which takes advantage of alignment tool and significant se-
quence encoding method. In this experiment, it could not only 
determine 4 fish species with similar size and shape but also 
the motion of them with identical alignment matrix.  Besides, 
it shows that the position containing higher similarity encod-
ing sequence fragment is related to the position of specific fish 
species and the acoustic features of specific fish species.  
Other purpose of this paper is to demonstrate how a bioin-
formatics tool could be applied to the acoustic field. 

I. INTRODUCTION 
Acoustical identification of fish species is a crucial problem 

when using quantitative echo sounders to estimate fish abun-
dance and distribution, especially in the tropical and sub-tropi- 
cal waters where multispecies often co-exist.  To resolve the 

problem, many features from the echoes obtained during sur- 
veys were used for target identification such as target strength, 
school descriptors and multi-frequency echoes [10]. 

Target strength (TS), a logarithm measure of the proportion 
of the incident energy backscattered by the target, is the scal-
ing factor for transferring energy of echo integration into 
abundance of marine organism during acoustic surveys [11].  
Echo trace descriptors is generally based on TS information 
collected by the echo sounder because TS differs between 
species of different body size [9].  However, TS provides in- 
sufficient information on species identification, for example 
TS of 16 cm capelin and 40 cm Atlantic mackerel (no swim 
bladder) were similar [14], and the TS of an individual fish 
differed more than 30 dB when it swam in a different orienta-
tion [12].  Therefore, only using the value of TS from a single 
target is not enough for species identification.  Other features 
from the echo of single target are necessary for further inter-
pretation of TS information. 

There should be some inherent features from the echo of 
different fish; however, to catch the fish’s profile from the 
echo is not an easy work.  Many studies on recognizing fishes 
focused on the relationship between the TS and the features of 
fishes.  For example, Knudsen et al. [4] monitored TS of At-
lantic salmon in a cage to demonstrate that fish shape is an 
important factor for TS.  Thor et al. [15] and Didrikas et al. [2] 
also derived the formula between in situ TS and fish lengths 
for krill, herring and sprat.  They hope to find the general 
equations between body length and TS, with final purpose of 
determining the general rules between the body length and the 
TS.  However, the equations or correlations they developed 
were only for some specific type of fishes.  It gives us the hint 
that the TS detected in situ or at sea might be noisy and makes 
determining the fish species very complicated. 

In biological studies, the protein sequences and structures 
are also noisy and not easy to determine.  However, there is an 
efficient and fast alignment tool developed, which could help 
us to determine the sequences homology in very short time.  
Besides, the protein sequences alignment tools could also use 
in structural alignment, there’re so many fast alignment tools 
developed.  Yang et al. [16] developed the 3D-BLAST (3D- 
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Fig. 1. Construction for TS measurement.  (a) system set up for meas-

uring the echoes from single target.  (b) the suspension used to 
support the target. 

 
 

Basic Local Alignment Searching Tool) to determine the 
structural similarity from target protein to all proteins in all 
databases.  Lo et al. [8] also developed a tool SARST (Se-
quence Alignment on Ramachandron plot Searching Tool) to 
determine the similarity of proteins.  Ku et al. [5] develop 
faster and easy-to-train pipeline to determine the similarity of 
proteins and the homology of proteins. 

Like protein structural and homology analysis, there are so 
many uncertain factors that affect feature of the fish echo from 
single target, such as length, shape, orientation and etc.  In this 
study, we will provide a combinatorial pipeline to determine 
some basic fish profiles from the acoustic datasets.  We will 
apply Ku’s work with a little modification to solve the problem. 

II. PREPARING THE DATASETS 

1. The Environment 
In order to set up the environment and get the acoustic 

datasets from the sonar detector, we use a tank with sea water 
to get the datasets (Fig. 1).  The diameter of the tank is 3.2 
meters and the depth of it is about 5 meters.  The transducer is 
set on a side of the tank.  We put the fish at the middle of tank 
and control its motion with three cotton threads. 

2. Preparing the Objects 
Fig. 2 shows the pictures of the four fishes aggregated by 

anchored fishing aggregation device (FAD) in southwestern 
Taiwan, namely yellowfin tuna (Thunnus albacore), skipjack 
tuna (Katsuwonus pelamis), bullet tuna (Auxis rochei rochei) 
and rainbow runner (Elagatis bipinnulate).  Parameters of 
body shape were provided in Table 1, including body weight, 
fork length, and circumference defined as the length sur-
rounding the maximum cross-section.  The reason why we 
choose these fishes is that their shapes are very similar and 
coexist around FAD. 

Table 1.  The information of fishes for the experiment. 

Common
name 

Scientific 
name 

Weight 
(g) 

Fork 
length 
(cm) 

Circumference
(cm) 

Bullet 
tuna 

Auxis thazard 654 34.1 20.6 

Skipjack 
tuna 

Katsuwonus
pelamis 

1118 38.4 25.2 

Rainbow
runner 

Coryphaena
hippurus 

1126 49.6 24.8 

Yellowfin
tuna 

Thunnus 
albacares 

1104 38.5 25.6 

 
 

(a)

(b)

(c)

(d)

10 cm

10 cm

10 cm

10 cm

 
Fig. 2. Fishes used for target strength measurement experiment.  (a) Yel- 

lowfin tuna (Thunnus albacore); (b) Skipjack tuna (Katsuwonus 
pelamis); (c) Bullet tuna (Auxis rochei rochei); (d) Rainbow run-
ner (Elagatis bipinnulate). 
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Fig. 3. Three-planes polar diagram of TS measurement of suspended fish 

versus direction of propagation of sound wave. 
 

3. Setting the Motion of Objects and Training Datasets 
To make the experiment more challenging, the aspects of 

fishes are considered in our experiments.  The conceptual 
viewing of the simulated motion of the fish is demonstrated  
in Fig. 3.  The fish are rotated in three different planes: XY 
yawing plane, YZ pitching plane, XZ rolling plane.  There are 
24 rotation angles with 15 degree between two rotation angles.  
The lasting time to collect the acoustic datasets is 30 seconds.   
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Transform the datasets into ΔTSi, where ΔTSi = TSi-TSi+1 

Randomly collect 40% of datasets and use the SUM-K approach 
to determine the number of size and establish the database for
alignment.  

Transform the original datasets into marine alphabet sequences 

Using the 1D sequence alignment tool and IDENTITY matrix to
find the similarity of TS sequences.  

Determine the portion of fish types, rotation type, and rotation 
angles from the reporting list under the certain threshold.   

Giving the assignment of fish type, rotation type, and rotation
number.  

 
Fig. 4-1.  The system flow of determining the fish’s profile. 
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Fig. 4-2. The conceptual viewing of data extraction and SUM-K process.  

The datasets are from echoes of fish (a) with which the values 
are obtained (b) and the differences (c) are calculated.  The 
vectors of each dataset (d) are put into the SOM process (e).  
With U-matrix quantization, the distribution of clusters is 
shown by SOM map (f) and then with BIC and Minimal Span-
ning Tree algorithm to determine the number of clusters.  After 
several times of SUM-K process, the final number of clusters is 
obtained.  

 
 

By this way, there are significant large datasets generated from 
the experiments.  Totally 34560 acoustic sequences generated  
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Fig. 4-3. The conceptual viewing of preparing datasets for sequence 

alignment is demonstrated.  Once the transformed centers ob-
tained from SUM-K process, the all original datasets (a) will be 
transformed to the 99 vectors (b).  According to the centers 
obtained from SUM-K and nearest neighbor assignment, the 
datasets are transformed to several sequences (c).  60 percent of 
transformed sequences are trimmed with respect to the position 
of fish and saved in database for alignment (e) while 40 percent 
of transformed sequences are taken as the testing data (d).  The 
red rectangle means the position of fish. 

 
 
from 3 rotation planes × 24 different angles × 2 pings/s × 30 
seconds × 2 fishes × 4 species.  In our experiments, 40% of 
these dataset will be used as training datasets and it will be a 
significant large number for training. 

III. PROCESSING APPROACH 

1. Overview of Approach 
Fig. 4-1 shows the the overview of system flow and Figs. 

4-2 and 4-3 show the conceptual view of extracting the vectors 
from original datasets and determines the number of cluster  
by SUM-K approach, which is composed by Self-organizing 
map, U-matrix quantization, Minimal spanning tree, and 
K-means clustering.  Firstly, we randomly picked up 40% of 
samples from the datasets.  For example, if there’re 100 sam-
pled echoes under certain condition such like the skipjack and 
at 30 degrees of pitching angle, we will randomly take 40 
samples as training datasets.  For each sample in the training 
dataset, we calculate the difference (ΔTSi) of echo level from 
TSi and TSi+1 in ith position and take ΔTSi as the new value  
for the ith position which is TS’.  The next step is taking the 
VTS = [TS’i-2  TS’i-1  TS’i  TS’i+1  TS’i+2]T as one vector for 
SUM-K process (See Fig. 4-2).  There are N-4 vectors gener  
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Fig. 5. A resulting SOM map and its related alphabet of echo datasets 

from SUM-K approach. 
 
 

ated with sliding window scanning where the length of trans- 
formed datasets is N.  Then, the SUM-K (Self-organizing map, 
U-matrix quantization, Minimal spanning tree, and K-means 
clustering) approach [5, 6] is applied to determine the number 
of clusters.  The SUM-K approach is crucial in our pipeline, 
since it determines the significant number of clusters.  For the 
first step of SUM-K is using self-organizing map to capture 
the distribution of vector.  During the process of self-organiz- 
ing map, the vectors tend to find the nearest position and or-
ganize a group on the map.  In Fig. 5, the white region means 
the vectors are very close each other and the black region 
means the vectors are very different from the white vectors.  
Those vectors placed in the black regions are known as out-
liers to any white regions.  There are five or more clusters to be 
recognized by eye in Fig. 5.  However, it is not convinced to 
get the number of clusters from observing.  Instead, the robust 
computational method should be taken. 

In the second step, U-matrix quantization defines the dis-
tance and topology of each position on the map and describes 
how distant the two groups of vectors on the map is.  After 
defining the distance, the minimal spanning tree algorithm is 
applied, which is trying to find the nearest distance from one 
point to all points in one topology and to assign the group of 
points in the topology to one tree with given criteria.  The 
number of cluster is then determined based on minimal span-
ning tree algorithm.  To carefully find the number of cluster, the 
process which contains Self Organizing Map, U-matrix, and 
Minimal Spanning Tree is repeated 200 times with various size 
of self organizing map and various thresholds for minimal 
spanning tree, and the BIC (Bayesian Inference Criterion) 
approach that described in Ku et al. [7] is also applied.  Fig. 4-2 
provides the conceptual viewing of SUM-K approach and the 
work flow of SUM-K.  The purpose of BIC approach is finding 
the statistically significant number of clusters.  Once the 
number of clusters is determined, the final central vectors of 
the training datasets were obtained by K-means clustering.  The 
role of K-means clustering is to find the centers and convert  
the VTSi to center which is close to VTSi.  For each center, an 
alphabet is assigned to represent the center.  Besides, in order to 
do the 1D sequence alignment, all datasets will be transformed 
from the quantity value to the transformed alphabet sequences.  
For each sample, we will get a transformed sequence. 

A R D N C

A 4 -10 -10 -10 -10

R -10 4 -10 -10 -10

D -10 -10 4 -10 -10

N -10 -10 -10 4 -10

C -10 -10 -10 -10 4
 

Fig. 6.  The IDENTITY matrix defined by the alignment tools. 
 

2. Preparing the Sequences for Alignment 
The key step for our tool is determining the number of 

clusters that can transform the value of echo levels to the 
sequences that could be used by the alignment tool.  This step 
is quite like smoothing step that smooths the target strength to 
the center.  Besides, the alphabet could be more flexibile to 
represent the patterns.  Based on the procedure described in 
previous section, the number of clusters determined by the 
frequent number of clusters from SUM-K is 5.  Since the 
SUM-K required threshold in the minimal spanning tree to 
determine the real number of clusters on SOM (Self-Organiz- 
ing Map) featuring map, the threshold determined showed us 
there should be 5 clusters on the map with the BIC formula 
described in Ku el al. [7].  Fig. 5 shows how five clusters 
distributed on one SOM featuring map has been tested in our 
training process.  Based on the centers of encoding alphabets, 
the original datasets are transformed to sequence.  However, 
the transformed sequences are divided into two groups, 40% 
of the sequences are taken as testing datasets and 60% of the 
sequences are trimmed and keep the fragment that contained 
exactly the fish body.  The overview of preparing process is 
shown as Fig. 4-3. 

3. Parameters Used by Alignment 
In this study, we only used the IDENTITY matrix (shown  

as Fig. 6) while we do the 1D sequences alignment.  The 
IDENTITY matrix is not similar to the definition of identical 
matrix in linear algebra.  The elements of IDENTITY matrix 
will give a positive score while the alphabets of column and 
row are matching and negative score while the alphabets of 
column and row are similar.  Therefore, it determines the 
similar sequences to the target sequences, since the similar 
sequence will lead higher score. 

The alignment tool also has its own statistical method 
measured by p-value.  When the p-value is lower, it means the 
alignment tool will report sequences to the target sequences 
with higher statistical significance.  We examined the lists of 
significant sequences for each target sequence under the 
p-value and compared with the target sequences.  The statis-
tical measure of the statistical approach is: 
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( )

( ) 1 1
x xe kmneP s x e e

λ μ λ− − −− −> = − = −  

where μ = ln(Kmn)/λ 
K: the parameter fitting in the ungapped alignment 
m: the length of the query sequence 
n: the length of the library sequence 
λ: frequency of aligned words 

 
K is the parameter fitting in the ungapped alignment could 

be estimated from the alignment matrix and alignment scores, 
λ is the rate for exponential distribution and represents the 
frequency of aligned words.  From the above formula, the 
p-value represents the probability of two similar words aligned 
for a given library and query sequence.  Thus, the adjusted 
alignment score could be defined based on the above formula 
and in FastA the average score for an unrelated library se-
quence increases with the logarithm of the length of the library 
sequence [13].  With this statistics, the alignment score could 
be adjusted and more related library sequences will be found. 

After using the target sequences searching, we will assign 
the feature according to the most frequent conditions.  In addi-
tion to the assignment process, we reveal the portion of condi-
tion of the selected sequences and the alignment information 
between two sequences.  By these information, we could de-
termine the key feature of a certain condition.  Also, we estab-
lished the sample database for our alignment tool.  The sample 
database was generated from the transformed sequences.  Ac-
cording to the alignment results, we could assign the fish spe-
cies, motion type and the degree of the rotation. 

IV. IMPLEMENTATION 
The approach is implemented by PERL and PHP program.  

PHP program provided the website interface and PERL pro-
gram deal with the transforming the values of echo level for a 
single target to encode alphabet sequences.  All encoded se-
quences are stored in the database which is supported by 
MYSQL.  FASTA with IDENTITY matrix and k-mean algo-
rithm could be obtained from the internet.  Self Organizing 
Map toolkit could also be obtained from the Kohonan’s web-
site [15].  Therefore, our tool can be easily implemented. 

V. EXPERIMENTS 

1. Evaluate Quality with Existing Datasets 
To evaluate the utility of AA-FAST for recognizing the 

similarity of a query acoustic sequence, we used 60% of  
previous datasets excluding the training datasets and tried to 
run the experiment of assignment and picked one acoustic 
sequence as a query sequence.  Then, we do the similar search 
with AA-FAST alignment tool.  There are three types of as-
signment experiment we did here.  For the level I match, the 
fish species of hit is similar to the type of query one.  For the 
level II match, the fish species and the rotation type of hit  
is similar to those of query sequences.  Finally, we use  

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

1 2 3 4 5 6

pr
ec

is
io

n/
re

ca
ll

log (p-value)

level I precision
level II precision
level III precision
level I recall
level II recall
level III recall

 
Fig. 7. Precision and recall chart demonstrates the performance of the 

tool AA-FAST applied in three different matching levels. 
 
 
these three matching level to demonstrate the power of our 
pipeline.  Besides, we changed our threshold from 105 to 101 
and see the precision of precision and recall rate.  The quality 
of similarity searching is based on some common measure-
ment, including the precision, recall, and F-score.  In the ith 
experiment, the precision is defined as /i

hA A  and recall is 

given as /i i
h hA T , where i

hA is the number of true hit acoustic 

datasets in the hit list, i
hT is the total number of acoustic data-

sets in the databases, and A means the total number of acoustic 
dataset.  Since the experiments performed N times for one 
classification, for example the skipjack and at 45 degree of 
pitching angle, the average precision and recall are defined  

as 
1

( / ) /
N

i i
h h

i

A T N
=
∑  and 

1

( / ) /
N

i
h

i

A A N
=
∑ . 

Then, the F-score is calculated with the formula: F – score = 
(2 × precision × recall)/(precision + recall). 

For acoustic similarity searching, our tool provides the 
cutoff value to identify the similarity of acoustic dataset with 
the query dataset.  When a lower e-value is used, the portion of 
true positive is increasing for similarity searching (Fig. 7). 

Table 2 shows the relationship among the e-value, precision, 
recall and F-score under three different matching levels.  For 
the acoustic database searching in level I matching, the preci-
sion is 0.87 and the recall is 0.2 when the cutoff value is 103.  If 
the cutoff value is 101, the precision is 0.99 and the recall is 
0.05.  Even we loose the cutoff value, the precision is 0.5 and 
the recall is 0.84.  It means that we could find all the similar 
acoustic datasets and keep a certain precision.  For the level II 
searching, the precision is decreased from 0.99 to 0.65 but the 
recall is 0.025 when the cutoff value is 101.  However, for the 
level III matching, the precision is 0.3 and the recall is 0.015.  
These results show that we could distinguish the fish species 
from the acoustic datasets and our tool still works to distinguish 
the fish species and motion types from the acoustic under the 
IDENTITY matrix.  However, when determining the degree of 
rotation under certain motion and certain fish species, our tool 
performed not as well as determined the fish species. 

Moreover, our tool could fast distinguish the motion and 
fish species without deriving any formula like previous work.  
Besides, it might give us some hint of the pattern that distin-
guishes from one fish to others. 
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Table 2. The precision and recall of matches under three 
different matching levels. 

Level I matches 
P-value Precision Recall F-score 

105 0.50 0.84 0.626 
103 0.65 0.40 0.493 
102 0.87 0.20 0.325 
101 0.99 0.05 0.095 

Level II matches 
105 0.35 0.75 0.477 
103 0.42 0.35 0.382 
102 0.54 0.15 0.235 
101 0.65 0.035 0.066 

Level III matches 
105 0.15 0.78 0.251 
103 0.21 0.45 0.290 
102 0.27 0.20 0.229 
101 0.30 0.025 0.046 

 

2. Evaluate with New Datasets 
Because in previous evaluation, we use the 60% of datasets 

to verify our precision, repeat the experiment and collect the 
acoustic data from our training datasets.  It’s reasonable that 
our result is pleasing due to the training datasets and test data- 
sets based on the same resources.  In order to verify our tools 
still working and solving even more challenging problems,  
we start to apply our method to new datasets with new condi-
tions. 

For the new datasets, we obtained new datasets for yel-
lowfin tuna (Thunnus albacares) of which average weight is 
561 grams.  The average size of yellowfin tuna is almost half 
of previous yellowfin tuna we used to train our tools.  For the 
temperature of environment is also quite different.  We ob-
tained the datasets in the winter and the average temperature is 
18.7 degree Celsius.  However, the average temperature of 
new datasets is 29.2 degree Celsius .  We used these datasets to 
prove that our tools could determine the fish species and mo-
tion when the size of fishes and the temperature is changed. 

To know the standard of evaluating results, we use the most 
frequently appearing fish species in the hit list as our answer 
when we do the assignment experiments.  Like previous ex-
periments, we also give the assignment of three different lev-
els described before.  The number of new datasets is 3518.  
The assignment rates is Tc/T and precision is At/Ah which is 
defined as same as the previous measurement where T is the 
total number of testing datasets, Tc is the number of correct 
assignment, At is the true hit acoustic datasets on the hit list, 
and Ah is the total number of hit list.  We add the running time 
to demonstrate the speed of our searching tool.  The envi-
ronment is Pentium IV 3.2 G personal computer.  Besides, we 
search about 92,160 sequences at one time. 

Table 3.  The result of new testing datasets. 
Match type Assignment rates Precision Running time (s)

Level I 0.90 0.75 1.23 
Level II 0.72 0.59 1.21 
Level III 0.31 0.22 1.24 
 
 
To test our datasets, we use different cutoff value in our 

experiment.  For the level I match, we use 104; for the level II 
match, we use 105.  We use the 103 for level III matching.  
Beside, we also calculate the average running time to measure 
the speed of our searching tools.  The average running time 

defined as (

1

) /
T

i
i

t T
=
∑ , where ti is the running time in ith run, T 

is the number of total datasets. 
The result of new testing datasets is shown in Table 3.  It 

required 1.225 seconds to scan the entire database and do the 
assignment of fish species.  For fish species matching, the tool 
could perform well since the assignment rate is 0.9 and the 
precision is 0.75 which means there’s only 25 percent incor-
rect results in the hit list.  For the new datasets detected by 
different environment, the tool still works well in matching the 
fish species and motion type of fish with a correct assignment 
rate 0.72.  For matching the fish species, motion, and degree of 
rotation angle, the precision and assignment rate is 0.31 and 
0.22.  In conclusion, the experiment shows that we could 
classify the fish species and motion type well within a running 
time around 1 second. 

3. Finding Sharing Patterns 
Besides verifying the novel and original datasets, we also 

apply a simple multiple alignment of the assignment results.  
We use the members of hit list which match the fish species, 
defined as the level I matching.  We select the five members of 
the hit list ranging from the first to 2000th of hit lists.  Each 
member is different in rank 200.  Here we pick the five 
members to do the alignment and find the similar parts of se- 
quences. 

From the Figs. 8(a), (b), (c), and (d), we could find the 
sequence pattern of each type of fishes.  These patterns mean 
the target strength pattern of acoustic datasets and also repre-
sent the basic acoustic feature of different fishes.  For the 
yellowfin tuna is ANNDDD-DD-D-RRRAADDDA-DDDDD; 
for the rainbow runner, the pattern of sequence is DND- 
ANNDDD-DD-DD-DNANAA-D-D-ADDDDD; for the bul-
let tuna’s multiple alignment result, the pattern we observed is 
DDNCA NDRDDNND-D-RA-D-ADDDDD; for the skipjack 
tuna, the pattern is AND-DD-D-A-DDD-AD-A-DD-DDDD-D.  
From the above pattern, we could find the common pattern of 
rainbow runner and bullet tuna is ADDDDD and the common 
pattern of rainbow runner and yellowfin tuna is ANNDDD.  
The most representative pattern from the simple alignment for 
bullet tuna is DDNCANDRDDNND.  For the rainbow runner, 
there’s the representative pattern, which is DNANAAD.  For  
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(a)

|--------|--------|---------|---------|---------|
NNRDNANNDDDDRDDRADDNDDNNRRRAADDDARDDDDDNNNNNNNNNN

Rank
NRNDNANNDDDDRDDNNRDDRDNNRRRAADDDAADDDDDN 2000
DNNNDANNDDDDADDNADDNRDNDRRRAADDDAADDDDDD 1500
NNNNNANNDDDNNDDARDDDNNNNRRRAADDDARDDDDDN 1000
DNRDNANNDDDNNDDRADDNDDDNRRRAADDDARDDDDDN 500
NRRDNANNDDDNNDDRADDNDDDNRRRAADDDARDDDDDN 3
|---------|---------|--------|---------| 

(b)

|--------|--------|---------|---------|---------|
NDNNNANNDDDNRDDNRDDRDDRDNANAADDDAADDDDDNNNNNNNNNNN
                                                    Rank
RDNDRANNDDDDRDDDANDDDDRDNANAADDDDADDDDDN 2000
NDNDAANNDDDNRDDDNNNRDDNDNANAADDDAADDDDDD 1750
ADNDAANNDDDDADDNNCDRDDRDNANAADNDAADDDDDN 1500
RDNDAANNDDDNRDDDNRDCDDNDNANAADDDAADDDDDN 1000
RDNDAANNDDDNRDDDRDDADDNDNANAADDDNADDDDDN 500
RDNDRANNDDDDRDDNRDDCDDNDNANAADDDAADDDDDN 3
|---------|---------|--------|---------| 

(c)

|--------|--------|---------|---------|---------| 
DDDNCANDRDDNNDDRNNADDNDDNADRANDDRADDDDDNNNNNNNNNN 

Rank
NDDNCANDRDDNNDDDAADDDDNNDNNRADDDRADDDDDD 2000
DDDNCANDRDDNNDNNDNADNNDNDADRADDDRADDDDDD 1750
DDDNCANDRDDNNDDDCCADDDDNDADRAADDAADDDDDD 1500
DDDNCANDRDDNNDDNDNADDNDNNNRRADNDRADDDDDD 1000
DDDNCANDRDDNNDDNDNADDNDNNNRRADDDRADDDDDD 500
NDDNCANDRDDNNDDNNNADDNDDNADRANDDNADDDDDN 3
|---------|---------|--------|---------| 

(d)

|--------|--------|---------|---------|---------|
RDDNAANDDDDCDDNAADDDDNDCDADRAADDRADDDDDDNNNNNNNNNN

Rank
NNDDAANDDDDCDDNNAADDDNDRDADRADDDARDDDDDD 2000
DDDNCANDRDDNNDDNAADDDDNNDADRANDDRADDDDDD 1750
RDDRRANDDDDCDDNRARDDDNNCDADRADDDAADDDDDD 1500
DDRDDANDDDDCNDDAADDDDNDNDADCAADDRADDDDND 1000
NDNRAANDDDDCDDNNANDDDDDNDADRAADDRADDDDDD 500
NNDDAANDDDDCDDNAADDDDDDRDADRAADDRADDDDDD 3
|---------|---------|--------|---------| 
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Fig. 8. Multiple sequence alignment results for (a) yellowfin tuna, (b) 

rainbow runner, (c) bullet tuna and (d) skipjack tuna.  The un-
derlined alphabets mean the similar patterns that different se-
quences are shared and  The position 10 to 40 units is where the 
fish is located.  From the figures, the associated pattern could be 
recognized and these common patterns are shared, even though 
the ranking number of similarity is high.  It means same type of 
fishes with different postures may share the common associative 
alphabet patterns. 

 
 

the yellowfin rainbow runner and yellowfin tuna is ANNDDD.  
The most representative pattern from the simple alignment for 
bullet tuna is DDNCANDRDDNND.  For the rainbow runner, 
there’s the representative pattern, which is DNANAAD.  For 
the yellowfin tuna, the representative pattern is RRRAADDDA.  
For the skipjack tuna, the pattern should be associated with 
little fragment, which is DD-D-A-DDD-AD.  For these pat-
terns, we could establish the classification rule to determine 
the fish species. 

For the new datasets, we could see the general pattern  

Query (species: Thunnus albacares;  
motion: yawing) 

        40        50               
     -----|---------|--------- 
Query  NNNNARDDANDDDDND 

             Rank 
Hit 1  DDNRAADDDDDDADDD  10 
Hit 2  DDNRAADDDDDDADDN  20 
Hit 3  DNDCANNDDDRNDDDD  50 
Hit 4  DDNRAADDDDDDADDA  80 
Hit 5  DDNRAANDDDDDADDD  100 
    -----|---------|------ 

      10         20  
Fig. 9. Multiple alignments of acoustic sequences with using new testing 

dataset as a query. 
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Fig. 10. The conceptual viewing of developing new tools for scanning. 

 
 

aligned by our current databases and determined the yellowfin 
tuna’s representative pattern that we described before.  The 
underlined alphabets in Fig. 9 indicate the representative re-
gion in the query and subject sequences.  There are similar 
alphabets in the same region.  The other fragment in the region 
is variable, but in the same position, it still keeps in the similar 
alphabet.  It means that even if the fish size and water tem-
perature changed, the characteristic of fish would not change.  
Therefore, the alignment tool developed could determine the 
fish species even if the variable region may be caused by the 
temperature and size.  However, in order to make our approach 
more significant we hope to gather more different fish species 
to enrich our databases and let our alignment tool to recognize 
various species of fish. 

4. Developing Even Fast Approach for Assignment 
Fig. 10 demonstrates the conceptual view of developing 

faster approach.  In this figure, we named conditions as a.1, b.2, 
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a.2 which is not actually appeared in our real datasets.  One 
interesting thing happened in this experiment is that after 
using the transformed alignment searching from the fish echo 
datasets, we will assign the query sequence of condition a.1 
according to the most frequent conditions happened in aligned 
sequences a.1 in the figure.  For the part of the multiple align- 
ments in these conditions, the basic patterns in certain size of 
fish could be caught and shown as black boxes (Pattern A) and 
gray boxes (Pattern B) in the figure.  Moreover, this informa-
tion could also characterize the fragment as knowledge base of 
sequence which has the similar condition.  Besides, we will 
make the link between these patterns and conditions, for ex-
ample Pattern A plus Pattern B means a.1 condition.  This link 
will provide us to develop faster approach to distinguish the 
profile of fishes. 

VI. CONCLUSION 
The alignment tool developed in this study could correctly 

identify fish species up to 90% in four species coexistence 
circumstance in a very short time.  However, the datasets used 
in the study were from dead fish under control, which may be 
different from live fish swimming in open sea.  Before the 
method can be more practically used in fishery survey, live 
fish experiment is necessary. 
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