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ABSTRACT 
A truly meshless Galerkin method is formulated in the 

present study, as a special case of the general Meshless Local 
Petrov-Galerkin (MLPG) “Mixed” approach.  The Galerkin 
method is implemented as a truly meshless method, for solv-
ing elasto-static problems.  In the present Galerkin method, the 
test function is chosen to be the same as the trial function, as a 
special case of the MLPG approach.  However, the MLPG 
local weak form is written over a local sub-domain which is 
completely independent from the trial or test functions.  Even 
though in the present Galerkin approach, the trial and test 
functions are the same, the present MLPG approach (wherein 
the support sizes of the nodal trial and test function domains, 
as well as the size of the local subdomain over which the local 
weak-form is considered, can be arbitrary) may lead to either 
symmetric or unsymmetric “stiffness” matrices.  These ma-
trices are sparse and are well-conditioned.  The present MLPG 
Galerkin Mixed Method does not require any background 
meshes (or cells) for performing the numerical integration of 
the local weak-forms, and makes the present method to be 
truly meshless.  In addition, the mixed approach is also used to 
interpolate the nodal values of strains independently from the 
nodal values of displacements.  The present mixed approach 
eliminates the expensive process of directly differentiating the 
interpolations for displacements in the entire domain, to find 
the derivatives, such as strains and stresses.  The present 
MLPG Galerkin Mixed Method is not plagued by the so-called 
LBB conditions, which are common in the Galerkin Mixed 
Finite Element Method.  Numerical examples are included to 
demonstrate the advantages of the present method: i) the truly 
meshless implementation; ii) the simplicity of the mixed ap-
proach wherein lower-order polynomial basis and smaller 
support sizes can be used; and iii) higher accuracies and com- 
putational efficiencies, and iv) no LBB conditions. 

I. INTRODUCTION 
It is well known that the meshless methods have advantages 

over the traditional mesh-based methods, in overcoming the 
drawbacks of mesh-based methods, such as the labor-intensive 
process of mesh-generation, locking, poor derivative solutions, 
etc.  The meshless methods may also eliminate the mesh dis-
tortion problems once the solid/structure undergoes large de- 
formations, in which case, adaptive refinement and adaptive 
remeshing are required.  Several meshless methods have been 
developed based on the global weak forms, in which simply 
the element-based trial and test functions are replaced by cer- 
tain meshless interpolations.  They still require certain meshes 
or background cells for performing the global integrals of the 
global weak forms.  These requirements limit such global- 
weak-form based meshless methods from being truly meshless 
for eliminating the mesh distortion problems coupled with the 
large deformations. 

In contrast, the meshless local Petrov-Galerkin (MLPG) 
approach pioneered by Atluri and his colleagues [1, 7, 8] is 
based on several different local weak forms of PDEs over 
overlapping local sub-domains.  It uses meshless interpola-
tions for the trial and test functions, and performs the integra-
tions of the local-weak-forms within the local sub-domains.  
Thus the MLPG approach becomes a general frame work for 
developing truly meshless methods for solving various prob-
lems, especially for those with severe distortion, discontinui-
ties, and moving boundaries.  Because of the lack of nodal 
connectivity, and its truly meshless nature, the MLPG method 
is a natural candidate for parallelization and high-performance 
computing based algorithms.  Various methods have been de- 
veloped based on the MLPG approach, including the primal 
MLPG method [8], the finite volume method [7], Local BIE 
[4], the Mixed finite volume method [2], the mixed collocation 
method [5], the mixed finite difference method [6], the primal 
MLPG method for 3-D problems [9, 10], the MLPG BIE [3, 
11-13],  the MLPG for fluid mechanics [16], and many others  
as summarized in Atluri [1]. 

After the pioneering work on the MLPG approach by Alturi 
and Han [8], the mixed approach has been pioneered by Atluri 
et al. [2], in which the derivatives of the variables are inde-
pendently interpolated, rather than obtaining the derivatives 
by directly differentiating the primal variables themselves.  As 
an example, in solid mechanics problems, the independent 
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meshless approximations are used for both the strains, as well 
as the displacements.  The strain-displacement compatibility is 
enforced only at the nodal points in the local approximation, 
by using the collocation method; thus expressing the inde-
pendent nodal strains in terms of nodal displacements.  
Theoretically, the MLPG mixed approach requires that the 
trial functions possess only C0 continuity, if the symmetrical 
weak forms are used for the elasto-elastic problems.  In con-
trast, C1 continuities are required for the trial functions if the 
primal approach is used, and the strains everywhere are de-
rived by differentiating the primary variables (displacements, 
if using the symmetric weak form in solid mechanics).  In the 
numerical implementation of the mixed methods, the strains 
are interpolated directly via the meshless approximations, 
without the calculation of the derivatives of the shape func-
tions.  The mixed approach is thus computationally more 
efficient, because the calculation of the derivatives of the inter- 
polation functions in the meshless approximations is compu-
tationally costly.  In addition, in the primal approach the sec-
ond-order polynomial bases are required for the better ap-
proximation of displacement, in order to avoid shear-locking if 
the MLS is used [9].  Also in the MLPG primal methods, a 
larger support size should be chosen, in order to make the MLS 
approximation non-singular, which leads to over-smoothed 
results.  However, the mixed approach requires only a first- 
order polynomial basis in the MLS approximations of both 
strains as well as displacements.  A smaller support size can be 
used in the mixed approach, and the number of nodes is re-
duced dramatically, especially for 3D cases.  Furthermore, in 
the MLPG mixed approach in solid mechanics, as presented 
for the Galerkin method in the present paper, and as presented 
for the Finite Volume Method in [2], there are no LBB stability 
conditions to be satisfied, as in the case of mixed Finite Ele-
ment Methods based on Global variational principles of the 
saddle-point type.  The MLPG meshless mixed approach has 
been widely applied in various problems for solid mechanics 
[1, 2, 5, 6], thick plates & shells [14, 15], breaking waves [18, 
24], ill-posed linear problems [17], elastic transient problems 
[19], anisotropic solids [20-22]. 

In the present study, the truly meshless Galerkin method is 
developed as a special case of the MLPG approach.  The trial 
and test functions are chosen to be the same, which leads to a 
symmetric, semi-definite system of equations, if the support 
sizes of the trial and test functions are the same, and equal to 
the size of the local subdomain wherein the local weak-form is 
evaluated.  However, the local sub-domain is completely de-
coupled from the nodal support domain, which is the major 
difference between the present method and the other Galerkin 
methods.  The advantage here is the local sub-domain can be 
chosen to be of an arbitrary shape and size, to simplify the 
implementation and/or speed up the performance.  All inte-
grations are also performed within the local subdomain with- 
out any global mesh or background cells.  It becomes very 
flexible and truly meshless.  However, it introduces an extra 
integral term along the boundary of the subdomain, which  

x
Ωs

 
Fig. 1.  A local sub-domain around point x. 

 
 

normally vanishes if the local subdomain is chosen to be the 
same as the support domain.  In the present study, the mixed 
approach is also used to reduce the size of the support domain.  
Due to the possible symmetric system of equations, the present 
Galerkin method can be connected with any element-based 
methods, especially when elements become distorted severely. 

The main body of the paper begins with a brief introduction 
of the meshless MLS approximations in Section 2.  The truly 
meshless Galerkin method is formulated through the MLPG 
approach in Section 3.  The mixed approach and numerical 
discretization are presented in Section 4, and that symmetric 
and un-symmetric system matrices may arise out of the pre-
sent truly meshless Gaerkin approach is illustrated in Section  
5.  Some numerical implementation techniques with the pseudo 
codes are given in Section 6.  Numerical examples are given in 
Section 7, and the conclusions and discussions are given in 
Section 8. 

II. MESHLESS APPROXIMATIONS 
For illustration purposes, one type of a general meshless 

interpolation, the moving least squares (MLS), is used in the 
present study, while a variety of alternate meshless interpola-
tions such as Local/Global RBF, PU, RKPM, etc. may also be 
chosen.  The MLS method of interpolation is generally consid- 
ered to be one of the simplest schemes to interpolate random 
data with a reasonable accuracy, because of its completeness, 
robustness and continuity.  More details can be found in Alturi 
[1]. 

With the MLS, the distribution of a function u in Ωs can be 
approximated, over a number of scattered local points {xi},  
(i = 1, 2, …, n), as, 

 ( ) ( ) ( )T
su = ∀ ∈Ωx p x a x x  (1) 

where pT(x) = [p1(x), p2(x), …, pm(x)] is a monomial basis of 
order m; and a(x) is a vector containing coefficients, which are 
functions of the global Cartesian coordinates [x1, x2, x3], de-
pending on the monomial basis.  They are determined by mini- 
mizing a weighted discrete L2 norm, defined, as: 
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where wi(x) are the weight functions and ˆiu are the fictitious 
nodal values. 

One may obtain the shape function as, 

 1 ˆ ˆ( ) ( ) ( ) ( ) ( )T T
xu −= ≡ ∀ ∈∂Ωx p x A x B x u Φ x u x  (3) 

where matrices A(x) and B(x) are defined by 

 ( ) ( )T T
x= = ∀ ∈∂ΩA x P WP B x P W x  (4) 

III. THE TRULY MESHLESS GALERKIN 
METHOD THROUGH THE MLPG APPROACH 

Consider a linear elastic body in a 3D domain Ω, with a 
boundary ∂Ω.  The solid is assumed to undergo infinitesimal 
deformations.  The equations of the balances of linear and an- 
gular momentum can be written as: 

 , ,0; ; ()ij j i ij ji i
i

fσ σ σ
ξ
∂

+ = = ≡
∂

 (5) 

where σij is the stress tensor, which corresponds to the dis-
placement field ui; fi is the body force.  The corresponding 
boundary conditions are given as follows, 

 oni i uu u= Γ  (6a) 

 oni ij j i tt n tσ≡ = Γ  (6b) 

where iu  and it  are the prescribed displacements and trac-
tions, respectively, on the displacement boundary Γu and on 
the traction boundary Γt, and ni is the unit outward normal to 
the boundary Γ. 

In the MLPG approaches, one may write a weak form over 
a local sub-domain Ωs, which may have an arbitrary shape, and 
contain the point x in question.  A generalized local weak form 
of the differential Eq. (5) over a local sub-domain Ωs, can be 
written as: 

 ,( { } ) 0
s

ij k j i iu f v dσ
Ω

+ Ω =∫  (7) 

where ui and vi are the trial and test functions, respectively, and 
σij{uk} implies that σij are derived from the trial functions uk. 

By applying the divergence theorem, Eq. (7) may be re-
written in a symmetric weak form as: 

 ,( ) 0
s s

ij j i ij i j i in v d v f v dσ σ
∂Ω Ω

Γ − − Ω =∫ ∫  (8) 

Imposing the traction boundary conditions in Eq. (6), one 
obtains 

 
,( ) 0

s su st

s

i i i i i iL

ij i j i i

t v d t v d t v d

v f v dσ

Γ Γ

Ω

Γ + Γ + Γ

− − Ω =

∫ ∫ ∫

∫
 (9) 

where Γsu is a part of the boundary ∂Ωs of Ωs, over which the 
essential boundary conditions are specified.  In general, ∂Ωs = 
Γs ∪ Ls with Γs being a part of the local boundary located on 
the global boundary, and Ls is the other part of the local 
boundary which is inside the solution domain.  Γsu = Γs ∩ Γu is 
the intersection between the local boundary ∂Ωs and the global 
displacement boundary Γu; Γst = Γs ∩ Γt is a part of the 
boundary over which the natural boundary conditions are 
specified. 

Therefore, a local symmetric weak form (LSWF) in linear 
elasticity can be written as: 

 
,

s s su

st s

ij i j i i i iL

i i i i

v d t v d t v d

t v d f v d

σ
Ω Γ

Γ Ω

Ω − Γ − Γ

= Γ + Ω

∫ ∫ ∫

∫ ∫
 (10) 

By choosing the test function vi to be identical to the trial 
function ui, the local symmetric weak form in Eq. (10), and 
may be written as, 

 
,

s s su

st s

ij i j i i i iL

i i i i

u d t u d t u d

t u d f u d

σ
Ω Γ

Γ Ω

Ω − Γ − Γ

= Γ + Ω

∫ ∫ ∫

∫ ∫
 (11) 

Eq. (11) has the physical meaning that it represents the 
variational statement only over the local subdomains, instead 
of over the global domain as it is for the finite element meth- 
ods.  It needs to be pointed out that: i) the local domains are 
completely independent from the trial and test functions; ii) 
they can be over-lapping or non-over-lapping; iii) they do not 
need any background mesh or cells for the numerical integra-
tion. 

In the primal approach, σij in Eq. (11) will be expressed 
directly in terms of ui, by differentiating ui analytically to find 

the strain εij = 1
2

(ui,j + uj,i) and by relating stress σij to εij 

through the material constitutive law.  However, in the Mixed 
Galerkin approach as developed in the present paper, both εij 
as well as ui are directly interpolated locally over a small set of 
nodes, using independent equal order meshless approxima-
tions.  This, however, does not involve any LBB conditions of 
stability, as in the case of the Global Finite Element Methods  
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Fig. 2.  Symmetric Galerkin Method. 

 
 

based on Reissner’s variational principle involving σij (or εij) 
and ui as independent variables. 

IV. THE POSSIBILITY OF EITHER 
SYMMETRIC OR UN-SYMMETRIC SYSTEM 

MATRICES IN THE TRULY MESHLESS 
GALERKIN METHOD 

In most truly meshless Galerkin methods, which is devel-
oped here as a special case of the most general MLPG method,  
the trial and test functions are chosen to be the same, and the 
size of the local sub-domain is also chosen to be the same as 
the size of the support domain.  As shown in Fig. 2, the sizes of 
the support domain I

uΩ  of the trial function uI(x), the test 

domain I
vΩ  of the test function vI(x), and the local sub-domain 

I
sΩ  of node I are exactly same.  It is also same for node J.  The 

local integral between nodes I and J of the Galerkin approach 
can be written as: 

 
[ ( ), ( )]

[ ( ), ( )]

I J
s u

J I
s u

I J
IJ

I J
JI

K f v x u x d

K f u x v x d

Ω ∩Ω

Ω ∩Ω

= Ω

= Ω

∫

∫
 (12) 

with the consideration of 

 
( ) ( )

( ) ( )

I I I I
s u

J J J J
s u

u x v x

u x v x

Ω = Ω =

Ω = Ω =
 

Thus 

 IJ JIK K=  (13) 

However, in the present truly meshless Galerkin method, 
the local sub-domain Ωs can be arbitrary, and may be smaller  

I
J

KIJ ≠ KJI Un-Symmetric

MLPG
Galerkin
Approach

Ωv
J :: vJ(x)

Ωu
J :: uJ(x)Ωv

I :: vI(x)

Ωu
I :: uI(x)

Ωs
J

Ωs
I

MLPG
Local subdomains

 
Fig. 3.  Un-Symmetric Galerkin Method. 

 
 

in size than the support domain Ωu and the trial domain Ωv, as 
shown in Fig. 3.  Therefore, the intersections between the local 
domains are different for KIJ and KJI, as 

 
[ ( ), ( )] ;

I J
s u

I J
IJK f v x u x d

Ω ∩Ω
= Ω∫  the integration is performed 

over I J
s uΩ ∩Ω  (the red zone in Fig. 3) 

[ ( ), ( )] ;
J I
s u

I J
JIK f u x v x d

Ω ∩Ω
= Ω∫  the integration is performed 

over J I
s uΩ ∩Ω  (the green zone in Fig. 3) 

 
It is very clear that they are not equal, which leads to 

un-symmetric system matrices.  In the present study, the local 
sub-domain is chosen to be smaller than the support domain, 
and the numerical examples are calculated based on the un- 
symmetric, sparse, and well-conditioned, system matrices. 

V. THE MIXED APPROACH AND NUMERICAL 
DISCRETIZATION 

Using the constitutive relations of an isotropic linear elastic 
homogeneous solid for example, the stresses and tractions in 
Eq. (11) can be written in term of the strains: 

 andij ijkl kl i ij j ijkl kl jE t n E nσ ε σ ε= = =  (14) 

where, 

 ( )ijkl ij kl ik jl il jkE λδ δ μ δ δ δ δ= + +  (15) 

with λ and μ being the Lame’s constants. 
Consider a local sub-domain Ωs, centered on each nodal 

point x(I); then the approximation of traction vectors on the 
boundary of Ωs can be expressed by considering the nodal 
strains as independent variables.  With the use of the shape 
function in Section 2, the strains are independently interpo-
lated, as, 
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 ( ) ( )

1

( ) ( )
N

K K
kl kl

K

ε ε
=

= Φ∑x x  (16) 

In the present truly meshless Mixed Galerkin MLPG 
method, when the displacements and strains are independently 
interpolated as in Eqs. (3) and (16), respectively, using Eq. 
(14), we may write the discretized form of Eq. (11), as 
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∑ ∫

∑ ∫

x x

x x

x x

x

x

 (17) 

It clearly shows that no derivatives of the shape functions 
are involved in the local integrals [2, 5, 6].  The mixed ap-
proach speeds up the performance by avoiding the time-costly 
algorithms in calculating derivatives of the meshless interpo-
lated trial functions.  It has been verified that the efficiency of 
the mixed approach is improved over the traditional MLPG 
[primal] displacement methods.  The mixed approach also 
reduces the requirement of the completeness and continuity of 
the shape functions by one-order, because the strains, which 
are the secondary field variables, are approximated independ- 
ently of the displacements.  Thus, lower-order polynomial 
terms are required in the meshless approximations, and a 
smaller nodal influence size can be chosen, to speed up the 
calculation of the shape functions.  On the other hand, the 
number of equations in Eq. (17) is less than the number of the 
independent strain variables, because the nodal strain vari-
ables are more than the displacement ones [in 3D, there are six 
nodal-strain variables, but only 3 displacement nodal-vari- 
ables].  One may follow the procedures in the original steps 
proposed by Atluri et al. [2] to reduce the number of the vari-
ables by transforming the strain variables back to the dis-
placement variables via the collocation methods, without any 
changes to Eq. (17).  First, the interpolation of displacements 
can also be accomplished by using the same shape function, 
from the nodal displacement variables, and written as, 

 ( ) ( )

1

( ) ( )
N

J J
i i

J

u u
=

= Φ∑x x  (18) 

For linear elasto-statics, the strain-displacement relations 
are: 

 , ,
1 ( )
2kl k l l ku uε = +  (19) 

The standard collocation method may be applied to enforce 
Eq. (19) only at each nodal point x(I), instead of the entire 
solution domain.  Thus, the nodal strain variables are ex-
pressed in terms of the nodal displacement variables, as 

 ( ) ( ) ( )
, ,

1( ) [ ( ) ( )]
2

I I I
kl k l l ku uε = +x x x  (20) 

With the displacement approximation in Eq. (18), the two 
sets of nodal variables can be transformed through a linear 
algebraic matrix: 

 ( ) ( )( ) ( )I I J J
kl klm mH uε =  (21) 

where the transformation matrix H is banded. 
The number of system equations is then reduced to the 

same number as the nodal-displacement variables, after the 
transformation.  In addition, such a transformation is per-
formed locally, and the system matrix retains its bandedness.  
For numerical implementation, it is not necessary to calculate 
and store the matrix H explicitly.  The integrals in Eq. (17) are 
only related to a few nodal points which are near to the point of 
interestion, x(I), which means only a very small portion of the 
transformation matrix H is used.  It is possible to calculate this 
portion from Eq. (21) dynamically, which is less computa-
tionally costly because only a few local nodal points are in-
volved.  

In the present study, the collocation method is used to im-
pose the essential displacement boundary conditions.  For a 
nodal point x(I), if its ith displacement DOF belongs to the 
displacement-prescribed boundary-segment, i.e., ( )I

iu ∈ Γsu, 
the corresponding system equation can be replaced by the one 
generated from the collocation for this particular DOF, as 

 ( ) ( )( ) ( )I I
i iu uα α=x x  (22a) 

or 

( ) ( ) ( ) ( ) ( ) ( ) ( )

1 1

[ ( ) ( )] ( )
s

N N
L L I K I K I

i i i
L K

u u uα α
Ω

= =

Φ Φ =∑ ∑ ∫ x x x  (22b) 

This standard collocation still keeps the system equations 
symmetric, sparse and banded. 

It should be pointed out that the present method is formu-
lated based on the nodal points fully within the local sub-do- 
mains, as shown in Eqs. (17), (21) and (22). 

VI. NUMERICAL IMPLEMENTATION 
In the present study, the numerical implementation also  
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Fig. 4.  A local sub-domain around point x. 

 
 

follows the same steps as in the truly meshless implementation 
of the MLPG mixed finite volume method, reported in [2].  
The only difference is that there is a domain integral in Eq. 
(11).  First, we use a simple subdivision algorithm to simplify 
the numerical quadrature and improve the accuracy. 

Consider a local circular sub-domain centered at node I, x(I), 
with a radius denoted by ( )

0
Ir .  By drawing a line from node I 

to its neighbor node J, {x(J)}, (J = 1, 2, …, m), a point can be 
obtained at the intersection between the line and the local 
circle, denoted by {y(J)}, (J = 1, 2, …, m).  A subset of these 
intersecting points is used to divide the integration domain, i.e. 
the local circle.  It should be pointed out that the intersection 
points between the local and global boundaries are automati-
cally included in y(J).  Then these special points are kept in the 
subset and used as the starting and ending angles.  A set of 
angles is obtained for performing the numerical integration, as 
{θ0, θ1, …, θt}.  The starting angle θ0 is not equal to the ending 
angle θt for the nodes on the global boundary.  In the present 
study, the radii of the local sub-domains for the nodes within 
the solution domain are so chosen that the local sub-domains 
do not intersect with the global boundary.  Hence, the subdi-
vided angles cover the entire local circle for these internal 
nodes.  The subdivision is illustrated in Fig. 4.  In addition, the 
subdivision can also be used to divide the local sub-domain in 
pie slices with node I as the center, if domain integrals are 
required, such as when body forces are present.  Then, all the 
integrals over the local sub-domain can be calculated by using 
the simple Gaussian quadrature. 

All boundary integrals are performed exactly in the same 
way used in the MLPG mixed finite volume method [2].  For 
the term of the domain integral in Eq. (11), ,

s
ij i ju dσ

Ω
Ω∫ , the 

integration domain is also subdivided by the same segments 
and two dimensional Gaussian quadrature scheme is used.  
The pseudo code in MatLab is implemented as, 

 
for n=1:numnode                 % start of node loop 
    nn=mlpgnode(n,1);                % the number of the neighbor nodes 

    sctr=mlpgnode(n,2:nn+1);       % IDs of all local scattered nodes, 
include node I 
    sctrN=[n+sxx_ip n+syy_ip n+sxy_ip]; % equation number of node n 
(stress) 
    sctrB=[ sctr+sxx_ip sctr+syy_ip sctr+sxy_ip ];      % vector that 
scatters a B matrix 
     
    nseg = mlpgintangle(n,1);    % the number of sub-divided angles 
    angle = mlpgintangle(n,2:nseg+1); % the angles 
    xn = node(n,:);                        % coordinates of the node of interesting 
    pts = node(sctr,:);                 % coordinates of all local nodes 
     
    for(seg = 1:nseg-1)                               % sub-division loop 
        angle0 = angle(seg); 
        dangle = angle(seg+1)-angle0; 
         
        for q=1:size(W,1)                     % quadrature loop 
            pt=Q(q,:);                             % quadrature point 
            wt=W(q);                          % quadrature weight 
            arclength = dangle*testSize*pt(2); 
            da = arclength*testSize; 
             
            [nx, ny] = pol2cart(angle0+dangle*pt(1), 1);     %normal direction 
            x0 = xn+ [nx ny]* testSize * t(2);       % X0 
            [N,dNdx]=mls_basis(mls_type,x0,pts,supportSize); 
 
            SN = zeros(3,3*nn); 
            SN(1,     1:nn) = N'; 
            SN(2,  nn+1:2*nn) = N'; 
            SN(3,2*nn+1:3*nn) = N'; 
             
            KN(sctrB,sctrB) = KN(sctrB,sctrB) + ... 
            SN' * (C * wt * da) * SN ; 
     
        end  % of quadrature loop 
    end 
end    % of node loop 

VII. NUMERICAL EXAMPLES 
2-D problems are studied in this section to illustrate the 

effectiveness of the present method.  The numerical results  
of the present method, as applied to carefully chosen problems 
in 2D elasto-statics, specifically (i) patch test, (ii) cantilever 
beam, are discussed.  

1. Cube Under Uniform Tension 
The first example is that of a standard patch test, shown in 

Fig. 5.  The material parameters are taken as E = 1.0, and ν = 
0.25.  The nodal configuration contains 9 nodes.  Two nodal 
configurations are used for the testing purpose: one is regular 
and another is irregular, as shown in Fig. 5.  In the patch tests, 
a uniform tensile stress is applied on the upper edge, and 
proper displacement constraints are applied to the lower edge. 
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Fig. 5.  A cube under uniform tension, and two nodal configurations. 
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Fig. 6.  A cantilever beam under an end load. 

 
 
The satisfaction of the patch test requires that the displace- 

ments are linear on the lateral faces, and are constant on the 
upper edge; and the stresses are constant in the solution  
domain.  It is found that the present method passes the patch 
tests.  The maximum numerical errors are limited by the com- 
puter for two nodal configurations. 

2. Cantilever Beam 
The performances of the present MLPG formulations are 

also evaluated, using the problem of a cantilever beam  under a 
transverse load, as shown in Fig. 6, for which the following 
exact solution is given in [23]: 

2 2

2 2 2

3 (2 ) (2 )( )
6

(3 ) 3 ( ) (4 5 )
6

x

y

Pyu x L x y c
EI

Pu x L x L x y c x
EI

υ

υ υ

⎡ ⎤= − − + + −⎣ ⎦

⎡ ⎤= − + − + +⎣ ⎦

 (23) 

where the moment of inertia I the beam is given as, 

 
3

3
cI =  (24) 

and 

2

for plane stress
/(1 ) /(1 ) for plane strain

E
E

E
υ

υ
υ υ υ

⎧ ⎧⎪= =⎨ ⎨− −⎪ ⎩⎩
 (25) 

The corresponding stresses are 

P

P

P

(c) 441 nodes (d = 0.5)

(b) 125 nodes (d = 1.0)

(a) 39 nodes (d = 2.0)

 
Fig. 7.  Three nodal configurations for a cantilever beam. 
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 (26) 

The problem is solved for the plane stress case with P = 1,  
E = 1, c = 2, L = 24 and υ = 0.25.  Regular uniform nodal 
configurations with nodal distances, d, of 2.0, 1.0, and 0.5 are 
used, as shown in Fig. 7.  The numbers of nodes are 39, 125, 
and 441, respectively.  

First, the problem is solved by using the MLS approxima-
tion, with a support size of 1.15d and a local sub-domain size 
of 0.6d.  The vertical displacements are shown in Fig. 8(a), (b), 
and (c), for the three nodal configurations, respectively.  They 
agree with the analytical solution very well.  The effects of the 
approximation methods, the support size, and the test-domain 
size are studied for the present method.  The approximations 
are chosen to the MLS with the first order polynomials.  The 
support size and the sub-domain size are related to the nodal 
distance, d.  Normally, the ratio of the support size is greater 
than 1.0, to make sure that there are enough points to support 
the nodes on the global boundary.  The ratio of the sub-domain 
size is chosen to be less than 1.0 in the present study. 

The local sub-domain is one of the key concepts for the 
MLPG approach.  As over-lapping sub-domains are used, the 
test-domain size (or the size of the sub-domain) affects the 
accuracy of the solution and the efficiency of the method.  It is 
very different from the non-over-lapping methods, in which 
the background cells are required to partition the solution 
domain.  In the present study, the support size is chosen to be 
1.15d, and the test-domain size is chosen to be proportional to 
the nodal distance, d.  Theoretically, the ratio is very flexible.  
In practice, it is chosen to be less than 1.0 to ensure that the 
local sub-domains of the internal nodes are entirely within the  
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Fig. 8. (a) Normalized vertical displacement of a cantilever beam under 

an end loading (39 nodes with nodal distance d = 2.0), (b) Nor-
malized vertical displacement of a cantilever beam under an end 
loading (125 nodes with nodal distance d = 1.0), (c) Normalized 
vertical displacement of a cantilever beam under an end loading 
(441 nodes with nodal distance d = 0.5). 
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Fig. 9. Influence of the test-domain size in a cantilever beam under an 

end load. 
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Fig. 10. Influence of the support size in a cantilever beam under an end 

load. 
 
 

solution domain, without being intersected by the global bound- 
ary.  In the present study, four ratios are used as 0.4, 0.5, 0.6, 
and 0.7.  As various test domain (local sub-domain) sizes give 
the reasonable results, the relative errors of the maximum 
displacements are used to examine the effects of the test- 
domain (local sub-domain where a weak-form is used) size.  
Three nodal configurations are used to examine the displace- 
ment errors, as shown Fig. 9.  It is noticeable that the accuracy 
is less sensitive to the test-domain size from 0.5~0.6d, as the 
sub-domains are slightly over-lapping. 

The support size (or the size of the influence domain) is also 
a very important parameter in meshless methods.  It is related 
to both the accuracy of the solution, as well as the computa-
tional efficiency.  For a smaller size, the meshless approxi-
mation algorithms may be singular and the shape function can 
not be constructed because of too few nodes.  The support size 
is also chosen to be proportional to the nodal distance.  In the 
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present study, four ratios are used, as 1.15, 1.25, 1.5, and 1.8.  
The test size (local sub-domain) is chosen as 0.6d. 

The relative errors of the maximum displacements are 
shown in Fig. 10.  The numerical results show that the smaller 
support size gives better results, which means that the support 
size should be chosen as small as possible, but large enough to 
make sure the local MLS algorithm is not singular. 

VIII. CLOSURE 
A Truly Meshless Galerkin (TMG) Method has been for-

mulated through the MLPG “Mixed” approach.  The differ-
entiation of the shape functions for displacements is totally 
eliminated, and the integration of the local-weak-form is 
performed within the local sub-domain.  As a Galerkin method, 
the test function is chosen to be the same as the trial function.  
However, the local subdomain is chosen to be different in size 
from that of the trial -function support domain; and this makes 
the present MLPG Galerkin Mixed method to be quite dif-
ferent from, and far more general than, the classical Galerkin 
methods.  Hence it enables the use of various combinations of 
the local sub-domains, which makes the present MLPG 
Galerkin method useful for multi-field or multi-physics analy- 
sis.  The numerical results demonstrate the accuracy and sta-
bility of the present methods for solving 2-D static problems.  
The solutions are less sensitive to the parameters used in the 
MLS approximation. 
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