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ABSTRACT 
Thin structures, such as thin films and coatings, have been 

widely designed and utilized in many industries recently.  How- 
ever, the widespread experimental research in thin structural 
problems underlies a general lack of modeling efforts which 
can accurately and efficiently predict their performance.  In 
this paper, the boundary element method (BEM) based on 
elasticity theory is developed for two-dimensional (2D) thin 
structures with the thickness to length ratio in the micro (10-6) 
or nano (10-9) scales.  The BEM-based approach proposed in 
this paper is constructed using a combination of the regular-
ized indirect boundary integral equations (BIEs) and a general 
nonlinear transformation which can eliminate the nearly sin-
gular properties of the integral kernels.  For the test problems 
studied, very promising results are obtained when the thick-
ness to length ratio is in the orders between 10-6 and 10-9, 
which is sufficient for modeling most thin structures in the 
micro- or nano-scales. 

I. INTRODUCTION 
Structures made from plate and shell assemblies, also 

known as thin-walled structures, are important in many areas 
of engineering.  The efficient solution of such structures has 
wide application, from the design of more conventional civil 
engineering systems to more sophisticated structures em-
ployed, for instance, by the aircraft industry.  However, the 
widespread experimental research in thin structures underlies 
a general lack of modeling efforts which can accurately and 

efficiently predict their performance. 
For computational models of thin structures or thin shapes 

in structures, two numerical methods can be employed, namely, 
the finite element method (FEM) and the boundary element 
method (BEM).  In the last three decades, the FEM based on 
plate and shell theories has been a successful tool for the 
analysis of 3-D thin structures such as plates, shells and  
layered composite structures to study their deformation and 
stress in macro-scale.  However, the FEM element count in-
creases dramatically for thin structures due to aspect ratio 
limitations, and it was found out that, as shown in Ref. [14], 
the number of the finite elements were so large that the task 
quickly exceed the capacity of the computer used as the 
thickness decreases.  The BEM is a powerful and efficient 
computational method if integrals are evaluated accurately, 
and the BEM based on the elasticity theory is in general more 
accurate in stress analysis of structures.  This accuracy will be 
maintained in the analysis of thin structures as well, if the 
BEM is implemented correctly to deal with the difficulties 
associated with thin structures. 

Studies show that the conventional boundary element 
method (CBEM) using the standard Gaussian quadrature fails 
to yield reliable results for thin-walled structures.  The major 
reason for this failure is that the kernels’ integration presents 
various orders of near singularities, owing to the mesh on one 
side of the thin-body being too close to the mesh on the op-
posite side.  Nearly singular integrals are not singular in the 
sense of mathematics.  However, from the point of view of 
numerical integrations, these integrals can not be calculated 
accurately by using the conventional numerical quadrature 
since the integrand oscillates very fiercely within the integra-
tion interval.  Other than the nearly singular integral, many 
direct and indirect algorithms for singular integral have been 
developed and used successfully [1-4, 6, 7, 10, 11, 19, 23, 24].  
Therefore, the key point in achieving the required accuracy 
and efficiency of the BEM is not the singular integral but the 
nearly singular integral.  Although that difficulty can be over-
come by using very fine meshes, the process requires too 
much preprocessing and CPU time. 

In the past decades, tremendous effort is devoted to derive 
convenient integral forms or sophisticated computational tech- 
niques for calculating the nearly singular integrals.  These 
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proposed methods can be divided on the whole into two cate- 
gories: “indirect algorithms” and “direct algorithms”.  The in- 
direct algorithms, which benefit from the regularization ideas 
and techniques for the singular integrals, are mainly to calcu-
late indirectly or avoid calculating the nearly singular integrals 
by establishing new regularized BIE [5, 13, 17, 20, 22, 27].  
The direct algorithms are calculating the nearly singular inte-
grals directly, such as interval subdivision method [9], special 
Gaussian quadrature method [15], exact integration method 
[18, 28], and various nonlinear transformation methods [8, 16, 
25, 26].  In a recent study, the above methods have been re-
viewed in detail by Zhang and Sun [26]. 

With the development of the numerical techniques for cal-
culation nearly singular integrals, considerable progress has 
been made in the application of the BEM to the analysis of thin 
walled structures in the past few years.  Sladek et al. have 
obtained amount of the original results in this field [21].  Non- 
singular integral equations for thin-walled structures are pro-
posed based on a subtraction technique and mathematical 
regularization.  Liu et al. [12, 14] have undertaken a lot of 
researches in this field.  The nearly singular surface integrals 
are transformed into a sum of weakly singular integrals, and a 
nonlinear coordinate transformation is developed for nearly 
weakly singular integrals.  The theory is also applied to in-
terfacial stress analysis for multi-coating systems, thermal 
stress analysis of multi-layer thin films and coatings, and also 
thin piezoelectric solids.  However, in Liu’s work only some 
boundary unknowns can be computed, for example, this ap-
proach only gives the results of radial stresses on the boundary 
nodes.  The tangential stresses on the boundary and the physi- 
cal quantities at interior points need further investigation.  
Zhou et al. proposed semi-analytical or analytical integral 
algorithms to solve 2-D or 3-D thin body problems [30, 31].  
Both boundary and interior unknowns are computed in their 
works which the geometry boundary is depicted by using 
linear shape functions when nearly singular integrals need to 
be calculated. 

Although great progresses have been achieved of each of 
the above works, it should be point out that most of these 
earlier methods are neither general used nor providing accu-
rate results when the thickness of the thin structure is smaller 
than 1.0E-6.  The objective of this paper is to develop a general 
BEM-based simulation for predicting the physical quantities 
in thin structures when the thickness to length ratio is in the 
orders of 1.0E-6 to 1.0E-9. 

It is well-known that the geometries of many problems of 
practical interest are created from circular or elliptic arcs.  Arc 
boundary elements can represent circular and elliptic bounda- 
ries exactly, and consequently, errors caused by representing 
such geometries using polynomial shape functions can be 
removed using exact geometrical representations.  Therefore, 
the exact geometrical representation is expected to give more 
accurate results than lower-order boundary element analysis 
when nearly singular integrals need to be calculated.  Another 
more important reason for using exact geometrical represen-

tation can be found in the following conditions.  If the bound- 
ary geometry is depicted by using lower order element, the 
linear element of the outer surface will attach or even pass 
through the inner boundary if the thickness of the considered 
structure is very small.  Consequently, the actual geometry of 
considered domain can not be described lively, and thus lower- 
order geometry approximation will fail to yield reliable results 
for such problems.  In order to avoid this phenomenon, very 
fine meshes mush be used in this situation, but this is bound to 
require more preprocessing and CPU time.  Most importantly, 
a great number of  meshes will produce a lot of artificial cor-
ners which will lead to the uncontinuity of the tangent de-
rivative of the boundary unknowns.  This is fatal to many 
engineering problems.  Obviously, the utilization of exact geo- 
metrical representation can be a good choice to avoid this prob- 
lem.  In view of these reasons, this paper will give an efficient 
strategy to treat thin body problems with circular and elliptic 
boundaries. 

This paper is an extension of our previous work [25] where 
a new nonlinear transformation method was proposed and 
applied to treat the thin body effect occurring in 2D potential 
problems.  Herein, we derive a general BEM-based approach 
to treat thin body problems in 2D elastostatics.  The BEM- 
based approach proposed in this paper is constructed using a 
combination of the regularized indirect BIEs and a general 
nonlinear transformation which can remove or damp out the 
nearly singular properties of the integral kernels.  It is shown 
that this combined BIE formulation can provide stable results 
for the analysis of thin body problems.  For the test problems 
studied, very promising results are obtained when the thick-
ness to length ratio of the coatings is in the orders between 
1.0E-1 and 1.0E-9, which is sufficient for modeling most thin 
coated cutting tools in the micro- or nano- scales.  In conclu-
sion, the seeming difficult task of determining the physical 
quantities in thin structures can be dealt with effectively and 
efficiently. 

II. NON-SINGULAR BOUNDARY INTEGRAL 
EQUATIONS (BIES) 

It is well known that the domain variables can be computed 
by integral equations only after all the boundary quantities 
have been obtained, and the accuracy of boundary quantities 
directly affects the validity of the interior quantities.  However, 
when calculating the boundary quantities, we have to deal with 
the singular boundary integrals, and using the regularized 
boundary integral equations (BIEs). 

In this paper, we always assume that Ω is a bounded domain 
in R2; Ωc is its open complement, and Γ denotes the boundary; 
t(x) and n(x) (or t and n) are the unit tangent and outward 
normal vectors of Γ to the domain Ω at the point x, respec-
tively.  For 2D elastic problems, the non-singular BIEs with 
indirect variables are given in Ref. [29].  Regardless of to the 
rigid body displacement and the body forces, the non-singular 
BIEs on Ωc can be expressed as 



 Y.-M. Zhang et al.: Boundary Element Analysis of Thin Structural Problems in 2D Elastostatics 411 

 

 *( ) ( ) ( , ) ,  i k iku u dφ
Γ

= Γ ∈Γ∫y x y x y  (1) 

*( ) [ ( ) ( )] ( , ) ( )i k k ik ku u dφ φ φ
Γ

∇ = − ∇ Γ −∫y x y y x y  

* ( , )[ ( ) ( )] [ ( ) ( )]iku d
Γ Γ

⎧ ∂
− Γ + −⎨ ∂⎩

∫ ∫
y xt x t y n x n y
t

 

(*
0( , ) ( ) [ ( ) ( )]ik

k k
u kd n n

G Γ

∂
Γ + −

∂ ∫
y x n y x y
n

 

ln ln( ) [ ( ) ( )]k i i
i

r rd n t t d
x Γ

∂ ∂
Γ + − Γ

∂ ∂∫y x y
t

 

ln( ) [ ( ) ( )] ,k i i
rn n n d

Γ

⎫∂ ⎞+ − Γ ∈Γ⎬⎟∂ ⎠⎭
∫y x y y

n
 (2) 

For the domain Ω, the non-singular BIEs are given as 
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For the internal point y, the integral equations can be writ-
ten as 

 * ˆ( ) ( ) ( , ) ,i k iku u dφ
Γ

= Γ ∈Ω∫y x y x y  (5) 

 * ˆ( ) ( ) ( , ) ,i k iku u dφ
Γ

∇ = ∇ Γ ∈Ω∫y x y x y  (6) 

In Eqs. (1)~(6), i, k = 1, 2; k0 = 1/4π(1 – v); G is the shear 
modulus; φk(x) is the density function to be determined; *

iku (y, 
x) denotes the Kelvin fundamental solution.  In Eqs. (5) and  
(6) Ω̂ = Ω or Ωc. 

Note that, the Gaussian quadrature is directly used to cal-
culate the integrals in discretized equations in the CBEM.  
However, if the domain of a considered problem is thin, some 

boundaries will be very close to each other.  Thus, the distance 
r between some boundary nodes and boundary integral ele-
ments probably approaches zero.  This causes the integrals in 
discretized Eqs. (1)~(4) nearly singular, and the results of the 
Gaussian quadrature become invalid.  Therefore, the density 
functions cannot be calculated accurately, needless to say, to 
calculate the physical quantities at interior points.  Moreover, 
almost all the interior points of thin bodies are very close to the 
integral elements.  Thus, there also exist nearly singular inte-
grals in Eqs. (5) and (6).  These nearly singular integrals can be 
expressed as 
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where α > 0, ψ(x) is a well-behaved function including the 
Jacobian, the shape functions, and a finite sum of polynomials 
divided by rn.  Under such a circumstance, either a very fine 
mesh with massive integration points or a special integration 
technique needs to be adopted.  In the last two decades, nu-
merous research works have been published on this subject in 
the BEM literature.  Most of the works have been focused on 
the numerical approaches, such as subdivisions of the element 
of integration, adaptive integration schemes, exact integration 
methods and so on.  However, most of these earlier methods 
are either inefficient or can not provide accurate results when 
the thickness of the thin structure is smaller than 1.0E-6.  In 
this work, a very efficient transformation method is proposed 
to avoid the integration difficulty for thin coatings with the 
thickness to length ratio in micro- or nano- scales. 

III. THE APPROXIMATION OF GEOMETRY 
BOUNDARIES 

The quintessence of the BEM is to discretize the boundary 
into a finite number of segments, not necessarily equal, which 
are called boundary elements.  Two approximations are made 
over each of these elements.  One is about the geometry of the 
boundary, while the other has to do with the variation of the 
unknown boundary quantity over the element. 

1. Linear Element Approximation 
In this section, the geometry segment is modeled by a con-

tinuous linear element.  
Assuming x1 = 1 1

1 2( , ),x x x2 = 2 2
1 2( , )x x are the two extreme 

points of the linear element Γj, then the element Γj can be ex- 
pressed as 

 1 2
1 2( ) ( ) ( ) , [ 1,1], 1,2k k kx N x N x kξ ξ ξ ξ= + ∈ − =  (8) 

where N1(ξ) = (1 – ξ)/2, N2(ξ) = (1 + ξ)/2. 
Letting si = 2

ix – 1,ix wi = yi – 2 1( ) / 2,i ix x− one has 
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where g(·) is a regular function that consists of shape function 
and Jacobian. 

2. “Arc Element” Approximation 
It is well-known that the geometries of many problems of 

practical interest are created from circular or elliptic arcs.  Arc 
boundary elements can represent circular and elliptic bounda- 
ries exactly, and consequently, errors caused by geometries 
using polynomial shape functions which can be removed by 
using exact geometrical representations.  Therefore, the exact 
geometrical representation is expected to give more accurate 
results than lower-order or even high-order boundary element 
analysis when nearly singular integrals need to be calculated. 

An exact geometrical representation, termed “arc element”, 
for circular and elliptic boundaries has been proposed by 
Zhang [29] in 2004.  Consider a circular are element of radius 
of curvature R with its centre of curvature located at ( 1x′ , 2x′ ).  
Suppose (R, θ 1), (R, θ 2) are the coordinates of the two extreme 
points of the arc element Γj, respectively.  Then the exact 
boundary elements can be expressed as: 

 1 1

2 2

( ) cos
( ) sin

x x R
x x R

ξ θ
ξ θ

′= +⎧
⎨ ′= +⎩

 (12) 

where θ  = 1
2

ξ− θ 1 +
1

2
ξ+ θ 2, (−1 ≤ ξ ≤1). 

The Jacobian of transformation from arc element to intrin-
sic coordinate ξ reduces to: 

 1 2( )
2

J R
θ θ

ξ
−

=  (13) 

For the interior point y = (R0 cos θ 0, R0 sin θ 0), we can 
suppose θ 1 < θ0 < θ 2 and 1( ,x′ 2 )x′  = (0, 0).  Then 

 0 1 2
1 1 ( 1 1)

2 2
η ηθ θ θ η− +

= + − < <  

Using the procedure described above, the distance between 
the source point and the field point can be expressed as: 

 { }22 2 2
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where γ = β(ξ − η), β = (θ 2 – θ 1)/4, d = 0

04
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Substituting r2 into Eq. (7), then the integrals I1 and I2 can 
be divided into two parts at point η as follows 
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where L = 02 RR and g(·) is a regular function that consists of 
shape function, the Jacobian and a finite sum of polynomials 
divided by rn. 

IV. THE TRANSFORMATION FOR NEARLY 
SINGULAR INTEGRAL 

In Eqs. (11) and (15), if d is very small, the above integrals 
would present various orders of near singularity.  The key to 
achieving high accuracy is to find a method to calculate these 
integrals accurately for a small value of d. 

The integrals I1 and I2 in Eqs. (11) and (15) can be reduced 
to the following integrals by simple deduction 
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Introducing the following nonlinear transformation 
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We can observe that (ek(1+t) – 1)2 + 1 ≥ 1.  Thus, the inte- 



 Y.-M. Zhang et al.: Boundary Element Analysis of Thin Structural Problems in 2D Elastostatics 413 

 

p

L = 2 m

h
x

y
A

 
Fig. 1. A thin plate under constant pressure p (Shear modulus μ = 8.0 × 

1010, Poisson’s ratio v = 0.2). 

 
 

grand is fully regular even if the value of d is very small.  By 
following the procedures described above, the near singularity 
in the BIEs has been fully regularized.  The final integral for- 
mulations are obtained as shown in Eq. (18), and be computed 
straightforwardly by using the standard Gaussian quadrature. 

V. NUMERICAL EXAMPLES 
To verify the method developed above, two simple test 

problems are studied in which BEM solutions are compared 
with the exact solutions. 

1. Test Problem 1: A Thin Plate 
First, a thin plate under external pressure p shown in Fig. 1 

is studied.  We assume the length of the plate in z direction  is 
large so that this problem can be simplified as a plane strain 
problem.  The length L of the plate in x direction is constant in 
this study, while the thickness h changes from L to 10-9 L.  
Note that the thickness is changing from macro-scale to micro- 
scale, and eventually to nano-scale.  On the boundary y = 0, 
displacement components in both x and y directions are con-
strained. 

The finite element analysis of this problem was attempted 
in Ref. [14], but it was soon found out that the number of the 
2D finite element was so large that the task quickly exceed the 
capacity of the computer used.  In the BEM model, the 
boundary of the plate is discretized with only 20 linear 
boundary elements, 16 elements with length L = 2 m, and 4 
other elements with thickness h. 

When the thickness h ranges from 1.0E-1 to 1.0E-10, the 
results of the  normal stresses σxx and σyy at interior point A(0.8, 
h/2 are shown in Fig. 2 and Fig. 3, respectively.  It is obvious 
that the results calculated by using the CBEM deteriorate 
quickly as the thickness less than 1.0E-2.  In contrast, the re- 
sults calculated by using the proposed method are very con-
sistent with the exact solutions even for the thickness as small 
as 1.0E-10.  This proves that the developed transformation 
work in the BEM procedure is effective.  For h = 1.0E – 9, the 
stress results at the interior points on the line 1.8x =  are 
listed in Table 1 and Table 2.  These results calculated by the 
present BEM are all in good agreement with the exact solu-
tions with the largest relative error less than 2.0E-4 (%).  
However, the CBEM are invalid to calculate both the radial and 
tangential stresses at these points. 
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Fig. 2.  Normal stresses σxx at the interior point A of Fig. 1. 
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Fig. 3.  Normal stresses σyy at the interior point A of Fig. 1. 

 
 
The example problem studied here is a very simple one in 

thin structures.  The purpose of using this example is to verify 
the correctness of the present transformation method in deal-
ing with nearly singular integrals. 

2. Test Problem 2: Thin Coating on a Shaft 
In this section, the method developed in this paper will be 

used to solve a problem of a shaft with a thin coating [14], as 
shown in Fig. 4.  The shaft and coating have outer radii ra and 
rb respectively, with their centre of curvature located at the 
point o(0, 0).  In this example, the coated system is loaded by a 
uniform pressure p = 1, and the shaft is considered to be rigid 
when compared to the coating, so the boundary conditions are 
ux = uy = 0 for all nodes at the shaft/coating interface.  In this 
example, δ = (rb – ra)/ra is defined as the thickness to length 
ratio.  As ra is held constant at 1, the ratio reduces as rb de-
creases. 

There are totally 20 discontinuous “arc elements” divided 
along the shaft and coating surfaces, regardless of the thick- 
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Table 1.  Normal stresses σxx at the interior points on the line x = 1.8, where h = 1.0E – 9. 
y Exact CBEM Relative error (%) Present Relative error (%) 

1.0E-10 -0.25 -0.2633707E-06 0.9999989E+02 -0.2500004E+00 -0.1443958E-03 
2.0E-10 -0.25 -0.2633707E-06 0.9999989E+02 -0.2500001E+00 -0.5765732E-04 
3.0E-10 -0.25 -0.2633707E-06 0.9999989E+02 -0.2500002E+00 -0.6570008E-04 
4.0E-10 -0.25 -0.2633707E-06 0.9999989E+02 -0.2500001E+00 -0.4155786E-04 
5.0E-10 -0.25 -0.2633707E-06 0.9999989E+02 -0.2500001E+00 -0.5236237E-04 
6.0E-10 -0.25 -0.2633707E-06 0.9999989E+02 -0.2500001E+00 -0.4155786E-04 
7.0E-10 -0.25 -0.2633707E-06 0.9999989E+02 -0.2500002E+00 -0.6570008E-04 
8.0E-10 -0.25 -0.2633707E-06 0.9999989E+02 -0.2500001E+00 -0.5765732E-04 
9.0E-10 -0.25 -0.2633707E-06 0.9999989E+02 -0.2500004E+00 -0.1443958E-03 

 
 

Table 2.  Normal stresses σyy at the interior points on the line x = 1.8, where h = 1.0E – 9. 
y Exact CBEM Relative error (%) Present Relative error (%) 

1.0E-10 -1.0 -0.1174473E-06 0.9999999E+02 -0.9999998E+00 0.1649320E-04 
2.0E-10 -1.0 -0.1174473E-06 0.9999999E+02 -0.9999999E+00 0.1442842E-04 
3.0E-10 -1.0 -0.1174473E-06 0.9999999E+02 -0.9999999E+00 0.1284025E-04 
4.0E-10 -1.0 -0.1174473E-06 0.9999999E+02 -0.9999999E+00 0.1196222E-04 
5.0E-10 -1.0 -0.1174473E-06 0.9999999E+02 -0.9999999E+00 0.1168348E-04 
6.0E-10 -1.0 -0.1174473E-06 0.9999999E+02 -0.9999999E+00 0.1196222E-04 
7.0E-10 -1.0 -0.1174473E-06 0.9999999E+02 -0.9999999E+00 0.1284025E-04 
8.0E-10 -1.0 -0.1174473E-06 0.9999999E+02 -0.9999999E+00 0.1442842E-04 
9.0E-10 -1.0 -0.1174473E-06 0.9999999E+02 -0.9999998E+00 0.1649320E-04 
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Fig. 4.  A shaft with a thin uniform coating. 

 
 

ness of the structure.  The elastic shear modulus is G = 8.0 × 
1010 Pa, Poisson’s ratio is v = 0.2. 

In 1998, Luo et al. [14] have handled this coating system.  
However, in their work only boundary unknown radial stresses 
σr are computed.  The physical quantities at interior points 
need further investigation. 

For different thickness-to-length ratios, the results of the  
radial and tangential stresses at interior point B((ra + rb)/2, 0) 
are listed in Table 3.  For δ = 1.0E – 9, the results of tangential 
stresses on the line y = 0 are listed in Table 4.  Both the CBEM 
and the proposed method are employed for the purpose of 
comparison. 

It is obvious that the results calculated by using the pro-
posed method, shown in Table 3, are very consistent with the 
exact solutions even for the thickness to length ratio as small 
as 1.0E-10.  We can see from Table 4 that the results of tan-
gential stresses calculated by using the proposed method are 
very consistent with the exact solutions, with the largest rela-
tive error less than 0.2%, even when the thickness-to-length 
ratio as small as 1.0E – 9. 

For δ = 1.0E – 9, convergence curves of the computed 
tangential stresses at interior points B by using the presented 
method are shown in Fig. 5, which we can observe that the 
convergence speeds are still fast even when the thickness- 
to-length ratio is as small as 1.0E – 9.  In Fig. 5, only the errors 
of the present method are given since the errors of the CBEM 
are relatively too large. 

VI. CONCLUSION 
In this paper, a BEM-based approach is presented and ap-

plied to deal with 2-D elastic problems of thin bodies.  Using 
the transformation technique demonstrated in this paper, the 
seemingly difficult task of evaluating the nearly singular in-
tegrals in the BIE for 2-D thin structures can be dealt with 
effectively and efficiently.  Two numerical examples of elastic 
thin-walled structures with thickness-to-length ratios ranging 
between 1.0E – 1 and 1.0E – 9, which is sufficient for mod-
eling most thin structures in industrial applications, are pre-
sented to test the proposed method.  In conclusion, the  
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Table 3.  Radial and Tangential stresses at the interior point B of Fig. 4. 
Radial stresses σr Tangential stresses σθ δ 

Exact Present Exact Present 
1.0E-01 -0.1032322E+01 -0.1032346E+01 -0.3046943E+00 -0.3046613E+00 
1.0E-02 -0.1003694E+01 -0.1003546E+01 -0.2556108E+00 -0.2557357E+00 
1.0E-03 -0.1000374E+01 -0.1000387E+01 -0.2505624E+00 -0.2506734E+00 
1.0E-04 -0.1000037E+01 -0.1000038E+01 -0.2500562E+00 -0.2502721E+00 
1.0E-05 -0.1000004E+01 -0.1000004E+01 -0.2500056E+00 -0.2496582E+00 
1.0E-06 -0.1000000E+01 -0.1000000E+01 -0.2500006E+00 -0.2495967E+00 
1.0E-07 -0.1000000E+01 -0.1000000E+01 -0.2500001E+00   -0.2495906E+00 
1.0E-08 -0.1000000E+01 -0.9999999E+00 -0.2500000E+00 -0.2495901E+00 
1.0E-09 -0.1000000E+01 -0.1000000E+01 -0.2500000E+00 -0.2495896E+00 
1.0E-10 -0.1000000E+01 -0.9999984E+00 -0.2500000E+00 -0.2495898E+00 

 
 

Table 4.  Tangential stress σθ at the interior point on the line y = 0, where δ = 1.0E – 9. 
x Exact CBEM Relative error (%) Present Relative error (%) 

1.0000000001 -0.25 0.2015379E+01 0.9061517E+03 -0.2495897E+00 0.1641369E+00 
1.0000000002 -0.25 0.2015378E+01 0.9061514E+03 -0.2495895E+00 0.1641839E+00 
1.0000000003 -0.25 0.2015378E+01 0.9061510E+03 -0.2495895E+00 0.1641885E+00 
1.0000000004 -0.25 0.2015377E+01 0.9061507E+03 -0.2495896E+00 0.1641685E+00 
1.0000000006 -0.25 0.2015375E+01 0.9061500E+03 -0.2495896E+00 0.1641754E+00 
1.0000000007 -0.25 0.2015374E+01 0.9061497E+03 -0.2495896E+00 0.1641706E+00 
1.0000000008 -0.25 0.2015373E+01 0.9061494E+03 -0.2495895E+00 0.1641929E+00 
1.0000000009 -0.25 0.2015373E+01 0.9061491E+03 -0.2495895E+00 0.1641836E+00 
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Fig. 5.  Convergence curves of σθ at the interior point B of Fig. 4. 

 
 

thin-body problem has been overcome successfully by using 
the proposed strategy, which indicates that BEM is especially 
accurate and efficient for numerical analysis of thin boy prob-
lems.  The developed method for analyzing 2-D thin structures 
can be extended to model layered coatings, thin films or other 
layered structures, and some work along this line for thin 
structures will be discussed later. 
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