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ABSTRACT 
The accident factor identification and risk assessment is an 

essential requirement for prevention of major construction acci- 
dents in the construction project process.  An integrated quan- 
titative risk assessment (IQRA) method has been proposed in 
this paper to overcome the problems of difficult to quantify 
accident probability for construction industry.  The proposed 
approach employs influence diagram and fuzzy theory to esti- 
mate accident probability and to deal with the imprecision 
inherent to the process of subjective judgment.  A case study 
that evaluates accident probability of diaphragm wall collapse 
is presented to illustrate the use of this methodology and to 
demonstrate its capability. 

I. INTRODUCTION 
The construction industry typically has a higher accident 

rate than other industries.  Direct and indirect losses gener- 
ated by major construction accidents reduce profits and can 
cause management crises.  Such losses significantly impact 
construction business owners, workers, clients and the public.  
Developing accident prevention strategies and examining 
accident risks has become increasingly important [16].  As 
selection of personnel, material, machines and safety plan 
affects accident risk level and is closely related to total con-
struction cost, an accident quantitative risk analysis (QRA) 

method that considers construction conditions can be ex-
tremely useful in performing safety and economic analysis for 
planning prevention strategies of major accidents. 

Working environments differ markedly between the con-
struction and manufacturing industries.  The working envi-
ronment of the manufacturing industry is characterized by 
certain working areas and operational processes, and forms a 
relatively closed system in which the quantitative analysis of 
accident risk can depend on accident statistics and historical 
data.  Conversely, individual construction project environments 
are usually outdoor, open and unique systems.  Directors, op- 
erators, machinery, equipment and working environments 
change between projects.  Therefore, gathering accident data 
from previous construction projects to predict quantitative risk 
for specific construction accidents in current projects is dif-
ficult.  Additionally, accident causal factors (e.g., personnel, 
machinery, materials, construction methods, geography, ge-
ology, and weather conditions) are numerous, complex and 
highly interdependent.  The QRA technique commonly used in 
the manufacturing industry (e.g., fault tree analysis and event 
tree analysis.) is unsuitable for construction accident analysis.  
The main goal of this study is to create an accident IQRA tool 
integrating accident causation theory, influence diagrams and 
fuzzy theory for use in safety analysis, influence factors analy- 
sis and economic analysis for accident prevention strategy 
planning. 

This study highly focuses on developing a IQRA method-
ology that can quantify the probability of a specific construc-
tion accident.  The QRA methodology can be used to perform 
safety and economic analysis for optimizing accident preven-
tion strategy.  For ambiguous and complex construction ac-
cident situations, it is often difficult to collect useful historic 
data for QRA of construction accidents.  This study creates a 
hierarchical fuzzy system that applies accident causation the-
ory, influence diagrams and fuzzy theory for analyzing acci-
dent causal relationships and quantifying accident probability.  
Experts can assist in developing accident factor influence 
diagram, assessing the conditions of accident causal factors, 
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developing fuzzy rule bases of a hierarchical fuzzy system and 
predicting accident costs. 

II. LITERATURE REVIEW 
Few studies have applied quantitative analysis to assess the 

risk of a specific accident in construction operations.  Ayyub 
and Haldar [2] used fuzzy theory to assess the quantitative risk 
of failure of construction alternatives, and considered worker 
skill, supervisor experience and falsework condition as the 
three principal factors affecting construction operation safety, 
for selecting the most desirable construction strategy.  Lee and 
Halpin [17] used the same method and three accident causal 
factors to predict the probability of accidents in utility-trench- 
ing operations via fuzzy relations and fuzzy probability [37].  
Fuzzy probability was finally normalized to a mean value to 
perform sensitivity analysis for the various factors.  These 
methods focus on risk causal factor selection and use selected 
fuzzy membership function of probability to forecast the 
probability of failure or accidents in operations.  In practice, 
the quantitative risk analysis involved in specific accidents is 
very useful in the safety and economic analysis of accident 
prevention strategies. 

Besides these construction accident risk studies, Tanaka et 
al. [30] proposed using fuzzy sets defined in a probability 
space to determine system failure in a fault tree model ac-
cording to the extension principal.  Singer [23] applied a fuzzy 
set approach to fault tree and reliability analysis, and discussed 
the tolerances of the probability values of hazard events in 
complex systems.  Suresh et al. [26] presented a fuzzy meth-
odology for ranking system components or basic events based 
on their contribution to the top event failure probability and 
the uncertainty of the top event.  Tah and Carr [28, 29] applied 
fuzzy logic and a hierarchical risk breakdown structure to de- 
velop a formal model for construction project QRA.  Cho et al. 
[5] proposed a fuzzy-based uncertainty model for risk assess- 
ment for considering the uncertainty range that represented the 
degree of uncertainty of both probabilistic parameter estimates 
and subjective judgments.  Choi et al. [6] applied this model to 
design a software for risk assessment of underground con-
struction projects.  Etienne [10] enabled a procedure to import 
arguments from post-accident studies and to combine them 
with empirical data on normal operational organizations in 
order to produce relative measures of reliability.  Dağdeviren 
et al. [9] proposed a fuzzy analytic network process model to 
identify faulty behavior risk in work system. 

Many studies have discussed accident causation theories 
for various industries and are important for risk analysis.  Dur- 
ing the 1930s,  Heinrich [11] first proposed the Domino The-
ory and considered five factors in accident sequences.  The 
accident sequence is that human behavior deficiencies, pre-
ceded and influenced by social and environmental factors, 
might lead to an unsafe state, accident, and injury.  Unsafe 
states are described as “unsafe acts and mechanical hazards” 
that are central in the accident sequence and are key to re-

moving the effectiveness of preceding factors.  Weaver [32] 
used “unsafe act and/or condition” as the central domino for 
modifying the domino theory of Heinrich.  Unsafe acts and 
conditions are generally traceable to poor management poli-
cies and decisions, in addition to personal and environmental 
factors [34].  Nishishima [19] introduced a fishbone model to 
describe the accident causation process, in which four related 
factors generate unsafe states and unsafe behaviors.  These 
factors include human, equipment, work, and management.  
Bellamy and Geyer [3] proposed a sociotechnical pyramid 
model of accident causation, which consists of five causal 
factors: engineering reliability, operator reliability, commu-
nication and feedback control, organization and management, 
and psychological climate. 

In the construction industry, Hinze [12] proposed a dis-
traction theory based on the assumption that accident risk may 
result from work distractions caused by physical hazards or 
mental diversions.  Suraji et al. [25] developed a constraint-re- 
sponse model that describes the constraints and responses 
experienced by parties involved in project conception, design, 
and construction, which may affect accident causation.  This 
model considers both proximal and distal factors (e.g., opera-
tive factors, site environment and work systems, and project 
management and organizational issues).  Choudhry and Fang 
[7] identified some influence factors (e.g., safety procedure, 
experience, and education) on the safety behavior of construc- 
tion workers. 

The literature review reaches the following conclusions: 
 

1. Previous discussions of construction accident risk focused 
on failure or accidents in operations using a probabilistic 
perspective.  Few studies have examined specific accident 
risks by adopting quantitative perspectives.  In practice, the 
quantitative analysis involved in specific accidents is very 
useful in the safety and economic analysis of accident pre-
vention strategies. 

2. For construction projects that have open, unique and com-
plex systems, accumulating suitable historical data to con- 
duct accident QRA becomes difficult.  Previous studies  
indicate that expert judgment and fuzzy theory can be ap-
plied in risk analysis. 

3. General QRA methods such as fault tree analysis (FTA) or 
event tree analysis (ETA) must precisely analyze the causal 
relationships involved in risk events; however, because of 
the openness, uniqueness and complexity of construction 
projects, establishing analytical causal relationships for ac- 
cident scenarios is difficult.  Some studies have applied 
fuzzy relations to establish causal relationships for accident 
risk analysis considering few influence factors. 

4. Most accident causation theories share the common con-
cept that direct and proximal causal factors are unsafe acts 
and conditions, and can be further analyzed as resulting 
from three primary failures, namely poor conditions of 
humans (e.g., skill and experience of labor and director), 
engineering (e.g., equipment, material, machine, working  
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Fig. 1. The main steps of quantitative risk analysis for accident prob-

ability. 
 
 

 method), and working environment (e.g., site condition, 
weather).  Therefore, the measurement and improvement of 
the safety performances of these causal factors are essential 
to risk analysis and accident prevention on working sites. 

III. METHODOLOGY 
This study proposes a quantitative analysis methodology 

focused on major accident probability to perform risk and 
safety analysis for preventing construction accidents.  This 
methodology combines accident causation theory, influence 
diagrams and fuzzy theory to quantify accident probability 
based on expert judgment.  Fig. 1 shows the main steps of quan- 
titative risk analysis for accident probability. 

1. Establishment of Accident Causal Relationships Using 
Influence Diagrams and Fuzzy Systems 
Based on the accident causation, this study utilizes influ-

ence diagrams and fuzzy theory to develop a hierarchical 
structure of accident causal relationships for further risk as-
sessment.  The influence diagram, proposed by Howard and 
Matheson [13], is applied early for strategy analysis and mainly 

indicates the relationships among related influential factors.  
Ashley and Bonner [1] used influence diagrams to illustrate 
the status and interactive influential relationships of risk fac-
tors for construction project risk analysis.  Afterwards, this 
tool is applied to risk analysis, decision analysis, and prob-
abilistic inference.  This study utilizes influence diagrams to 
organize accident causal factors to describe the possibility of a 
specific accident that may occur during construction.  In this 
study, the possibility is the subjective measure of likelihood 
defined in the fuzzy concept for further quantification of ac-
cident probability.  Based on accident causation theory, the 
direct influence factors on accident possibility are the possi-
bility of on-site unsafe acts and conditions.  These two factors 
are closely related to the states of on-site working conditions 
and work personnel.  That is, the worse the states of working 
conditions and work personnel, the higher the possibility of 
unsafe conditions and acts and the higher the relative accident 
possibility.  Working conditions and working personnel can be 
further divided into many on-site and human factors.  For ex- 
ample, engineering and environmental states form the state of 
working conditions, and the states of operators and directors, 
two key parties involved in construction sites, form the state of 
work personnel.  These factors can be hierarchically divided 
into many detailed factors (e.g., performances of temporary 
structures, machines and materials, conditions of site geology, 
geography and weather, skills and experience of operators, and 
directors, etc.) based on expert judgments and project attrib-
utes.  The upside of Fig. 2 shows an example of the influence 
diagram organizing accident and causal factors.  These factors 
are variables whose states influence subsequent accidents and 
are easily expressed by linguistic terms such as very good, 
good, medium, and so on.  Fuzzy theory thus can play a fun-
damental role in formulating quantitative linguistic variables 
by fuzzy sets, and can also deduce the relationships among 
causal factors using fuzzy logic.  This study combines influ-
ence diagrams and fuzzy theory to develop the influence dia-
gram of accident possibility using the hierarchical fuzzy sys-
tem, called the hierarchical fuzzy influence diagram (HFID) 
here.  The downside of Fig. 2 displays the example of a HFID 
by adding fuzzy engine nodes following each causal factor 
which is impacted by other factors.  HFID helps in analytically 
developing the hierarchical structure of accident causal rela-
tionships based on accident causation theory and solves the 
rule-explosion problem (i.e., the number of rules increases ex- 
ponentially with the number of input variables to the fuzzy 
controller) of a multi-variable (i.e. high-dimensional) fuzzy 
system using a hierarchical fuzzy system comprising low-di- 
mension fuzzy systems.  Previous studies have demonstrated 
that the number of rules in the hierarchical fuzzy system in-
creases linearly with the number of input variables, and that 
the hierarchical fuzzy system can approximate any nonlinear 
function on a compact set to arbitrary accuracy [31].  HFID 
thus forms the basis of the quantification of accident prob-
ability by operations of the hierarchical fuzzy system in this 
study. 
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Fig. 2. Inference of accident possibility using hierarchical fuzzy influence diagram.  (The upside of Fig. 2 shows an example of the influence diagram 

organizing accident and causal factors.  The downside of Fig. 2 displays the example of a HFID by adding fuzzy engine nodes following each 
causal factor which is impacted by other factors.) 

 
 

2. Calculation of Accident Possibility by Hierarchical 
Fuzzy Systems 
The concepts of fuzzy theory and fuzzy systems were pro-

posed by Zadeh [35, 36].  Generally, a fuzzy system is any 
system whose variables (or at least some of them) range over 
states that are fuzzy sets.  Fuzzy sets here are fuzzy numbers, 
and the associated variables are linguistic variables.  Repre-
senting states of variables using fuzzy sets is a way of quan-
tifying the variables.  The most successful area of application 
of fuzzy systems has undoubtedly been the area of fuzzy 
control; this area is used to evaluate accident likelihood for 
purposes of safety and economic analysis in developing ac-
cident control strategies in this study.  A general fuzzy con-
troller consists of four modules: a fuzzy rule base, a fuzzy 

inference engine, and fuzzification/defuzzification modules.  
Fig. 3 presents a general fuzzy controller with two-input vari- 
ables and one-output variable. 

Although fuzzy control techniques have been successfully 
applied to various problems, applications are usually limited 
to systems with few input variables.  A fundamental limitation 
of standard fuzzy controllers is that the number of fuzzy rules 
increases exponentially with the number of input variables.  
This phenomenon was called by Bellman [4] the “curse of 
dimensionality”.  The rule base rapidly overloads the memory 
and makes the fuzzy controller unimplementable.  For exam-
ple, with 8 input variables and 7 fuzzy sets defined for each 
variable, the number of fuzzy rules is 78 = 5764801.  This 
problem can be solved by using hierarchical fuzzy systems.  If  
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the 8-variable fuzzy system is reduced into a hierarchical fuzzy 
system comprising ten hierarchically connected low-dimen- 
sional fuzzy systems as shown in Fig. 2, the number of fuzzy 
rules reduces to 10 × 72 = 490.  Previous studies have dem-
onstrated that hierarchical fuzzy systems with decomposed 
low-dimensional fuzzy systems can approximate any nonlin-
ear function to arbitrary accuracy [15, 31].  Hierarchical fuzzy 
systems can be applied to more complex systems, such as the 
systems of accident causal relationships in this study. 

A hierarchical fuzzy system operates by repeating a cycle of 
four-step operations (shown as Fig. 3) in each fuzzy controller 
within the system from bottom to top.  The input and output 
variables of each fuzzy controller are all linguistic variables 
and the state of each variable is a linguistic expression of each 
expert opinion from a macroscopic point of view.  One ad-
vantage of using linguistic variables is that such expressions 
are more intuitive and make it easier for experts to give their 
opinions in ambiguous and complex situations in which nu-
merical estimations are hard to obtain.  According to Wickens 
[33], the typical estimate of human working memory capacity 
is 7 ± 2 chunks, meaning humans can effectively make 5-9 
comparisons at a time.  This study assesses the state of each 
input factor (i.e. linguistic variable) using seven linguistic 
values {“Very High (Good)”, “High (Good)”, “Fairly High 
(Good)”, ” Medium”, ”Fairly Low (Bad)”, “Low (Bad)”, 
“Very Low (Bad)”}: 

Very High (Good) = VH/VG = u(x, 0.085, 1); 

High (Good) = H/G = u(x, 0.085, 5/6), 

Fairly High (Good) = FH/FG = u (x, 0.085, 4/6); 

Medium = M = u(x, 0.085, 3/6), 

Fairly Low (Bad) = FL/FB = u(x, 0.085, 2/6); (1) 

Low (Bad) = L/B = u(x, 0.085, 1/6), 

Very Low (Bad) = VL/VB = u(x, 0.085, 0). 

where  
2

2
( )
2( , , )
x c

u x c e σσ
− −

=  

The symmetric Gaussian function, shown as Eq. (1), is se-
lected as the membership function of each input variable, and  
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forms the fuzzy sets shown in Fig. 4.  First, measurements are 
taken of all input variables representing relevant states of 
causal factors.  Next, these measurements are converted into 
appropriate fuzzy sets to express measurement uncertainty.  
This step is called fuzzification. 

The fuzzified measurements are then used by the inference 
engine to evaluate whether each rule stored in the fuzzy rule base 
is triggered.  Each rule is a logical inference regarding the states 
of input and output variables.  Fig. 5 illustrates the fuzzy rule base 
in matrix form.  The fuzzy logic if-then rule performs approxi-
mate reasoning using imprecise or vague dependencies and 
commands [37], in which the antecedent and consequent are 
propositions containing linguistic variables, and has the follow-
ing form: 

 If X1 is Ai1 … and Xn is Ain then Y is Bi, i = 1, …, m (2) 

where n = number of input variables X = {X 1, ..., X n} and m = 
number of rules; Aij and Bi are linguistic values of X and Y, 
respectively.  In Fig. 5, n = 2, m = 7 × 7 = 49. 

Next, the fuzzy inference engine calculates the rule strength 
or level of firing of the antecedents (inputs) “If X1 is Ai1 … and 
Xn is Ain” for aggregating all the rules triggered to produce one 
output membership function.  The most commonly seen fuzzy 
inference methods are those of Mamdani [18] and Sugeno  
[24].  The main difference between the Mamdani and Sugeno 
methods of fuzzy inference is that in the Sugeno method the 
output membership functions must be linear or constant.  Be- 
cause of the linear dependence of each rule on the system input 
variables, the Sugeno method is ideally suited to the task of 
smoothly interpolating the linear gains that would be applied 
across the input space.  The Sugeno system is suited for mod- 
eling nonlinear systems by interpolating multiple linear mod-
els.  This study selects the Sugeno method as the fuzzy in-
ference engine, and the membership functions of the seven 
linguistic values of each output variable are a set of constants 
(i.e. B = {“VH/VG”, “H/G”, “FH/FG”, ”M”, ”FL/FB”, “L/B”, 
“VL/VB”} = {1, 5/6, 4/6, 3/6, 2/6, 1/6, 0}). 

The rule strength can be derived using the composition 
conjunction, as follows: 
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 wi = min[uAi1(x1), uAi2(x2), ..., uAin(xn)] (3) 

The Sugeno-type fuzzy inference engine finally generates 
one output associated with membership function uagg(y) using 
a conjunction operation on the rule strength (wi) and the con-
stant for the linguistic value of the consequent. 

uagg(y) = max{min[w1, B1], min[w2, B2], …, min[wm,Bm]} (4) 

The output uagg(y) of the Sugeno-type fuzzy inference 
engine has to be expressed by a crisp value for the next opera- 
tion of the fuzzy controller.  This study adopts the center of 
gravity method (COG) for the defuzzification: 

 1
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Fig. 6 illustrates the operation of the Sugen-type fuzzy in- 
ference engine and defuzzification method. 

To more reliably assess the accident possibility with lin- 
guistic variables, it is necessary to aggregate the opinions of 
multiple experts.  Numerous methods are available for aggre- 
gating expert opinions, such as voting, arithmetic averaging, 
fuzzy preference relations, the max-min Delphi method, and 
the fuzzy Delphi method.  However, no firm theoretical guid- 
ance can be provided for choosing the most suitable method 
[14].  The arithmetic averaging operation satisfies two charac- 
teristics of rational combination [8]: (a) a small variation in 
any possibility distribution does not noticeably impact the 
combined possibility distribution; and (b) when experts are 
equally weighted it can also include weights that indicate the 
relative importance of different experts.  The arithmetic aver- 
aging operation is also the most commonly used.  Thus, 
arithmetic averaging is used to aggregate expert judgments 
regarding the input variables and fuzzy rules.  That is, the 
weight of the estimation of each expert regarding linguistic  
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Fig. 7.  Accident probability influence diagram of diaphragm wall collapse used for case study in this paper. 

 
 

value and fuzzy rules equals 1/p, where p = the number of ex- 
perts involved in the assessment. 

3. Quantification of Accident Probability 
To perform quantitative safety and economic analysis of 

accident prevention strategies, a transformation is required to 
convert the subjective accident possibility into the relatively 
objective accident probability.  Onisawa [20-22] has proposed 
a function which can be used to convert these two measure- 
ments.  This function is derived by satisfying certain prop- 
erties such as the proportionality of human sensation to the 
logarithmic value of a physical quantity [14].  The accident 
probability can then be obtained from the accident possibility, 
as follows: 

Pb = 1/10M, when Ps ≠ 0, 

Pb = 0, when Ps = 0, (6) 

M = (1/ Ps-1)1/3 × log(1/Psc), 

where Pb ≡ failure probability, Ps ≡ failure possibility, Psc ≡ 
safety criterion. 

Safety criterion denotes the probability that can be used as a 
standard to assess operating safety via comparison with the 
predictive accident probability.  If the accident probability 
exceeds the safety criterion, the on-site operation is less safe, 
and vice versa.  Safety criterion value is generally an experi-
ence value based on historic data, expert judgment and enter-
prise risk taking ability.  Swain and Guttmann [27] suggested 
that the routine error rate is 10-2-10-3 and the lower bound error 
rate is 5 × 10-5.  Based on the high error rate and low reliability 

of construction systems, this study assigns 10-2 as the safety 
criterion (Psc). 

IV. CASE STUDY 
A practical case study is used to illustrate the application of 

the accident IQRA tool.  The case involves considering the 
collapse risk of diaphragm walls during an underground deep 
excavation operation.  The collapse accident may lead to 
catastrophic consequences to construction companies; hence 
quantitative analysis of accident probability is very important 
for further safety analysis, economic analysis and decision- 
making related to accident prevention strategies. 

The first step of performing IQRA is to use the proposed 
accident probability quantification methodology.  Four experts 
were consulted for modeling accident causal relationships.  
Based on the accident scenario and the practical experiences 
of experts, six principal causal factors were proposed as bot-
tom factors for further developing an accident HFID.  Fig. 7 
shows an integrated accident risk influence diagram based on 
accident causation theory and the application of the hierar-
chical fuzzy system. 

Each expert must provide a fuzzy rule base for each fuzzy 
controller according to the accident risk influence diagram 
shown in Fig. 7.  The diagram contains seven fuzzy controllers 
and Table 1 shows the 6th fuzzy controller’s rule base pro-
vided by one of four experts.  The final fuzzy rule base asso-
ciated with each fuzzy controller is an aggregation of four 
expert rule bases where the weight of each rule equals 1/4. 

Table 2 lists four expert judgments regarding the linguistic 
values of six accident causal factors.  Each representative 
value is defuzzified from a fuzzy set obtained by averaging  
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Table 1. Example of a fuzzy rule base provided by one of four experts represents the 6th controller shown in Fig. 7 with 
two input variables (geology stability and excavation depth) and one output variable (site condition). 

Geology stability 
Site condition 

VB B FB M FG G VG 
VL FB M FG G G VG VG 
L FB FB M FG G G VG 

FL B FB M FG FG G G 
M B B FB M FG FG G 
FH B B B FB M M FG 
H VB VB B FB FB FB M 

Excavation depth 

VH VB VB VB B B B FB 
 
 

Table 2. States of six accident causal factors assessed by four experts and their representative values defuzzified from a 
fuzzy set obtained by averaging four experts’ membership functions. 

Accident causal factor Expert A Expert B Expert C Expert D Representative value 
Geology stability B FB FB M 0.333 
Excavation depth H FH H FH 0.750 
Diaphragm wall performance M M FG M 0.542 
Support performance FG G G G 0.792 
State of directors  FG G FG FG 0.708 
State of operators FG FG FG M 0.625 

 
 

 
Fig. 8. Operation of the hierarchical fuzzy system designed using the 

accident hierarchical fuzzy influence diagram shown in Fig. 7. 

 
 

these membership functions for expressing the linguistic values 
of the judgments of four experts on the state of each input 
variable.  Using these representative values as input, hierar-
chical fuzzy system operations can be initiated to calculate 
accident probability. 

To obtain the expected value of quantitative accident 
probability, this study designed a graphical user interface 
program to efficiently calculate the hierarchical fuzzy system 
using Fuzzy Logic Toolbox and Simulink Toolbox built in 
MATLAB, a numerical computing environment and pro-
gramming language created by MathWorks, Inc. Fig. 8 illus-
trates the inner operations of the hierarchical fuzzy system 
designed using the accident HFID shown in Fig. 7.  In this 
example program calculation is used to obtain the final acci-
dent probability expected value of 0.1071. 

Based on the above analysis, the accident probability ex-
pected value of 0.1071 exceeds the value of safety criterion, 
which is assigned a value of 0.01 in this study, implying that 
the current condition of construction operation in the example 
presented here is unsafe and an unacceptable risk of collapse 
exists.  Using this tool to conduct follow-up safety analysis, 
influence factors analysis and economic analysis will be nec-
essary and applicable. 

V. CONCLUSIONS 
This study combines fuzzy theory, HFID and probabil-

ity-possibility convertible functions to generate a novel quan-
titative approach based on expert judgment.  The construction 
industry is a high-risk business in which major accidents can 
cause large direct and indirect losses.  Besides preventing 
common injuries (e.g., falls and electrical shocks) to general 
laborers, it is extremely important to prevent major construc-
tion accidents (e.g. collapses).  Historically, few risk assess-
ments focused on QRA of accident probability.  Enterprises 
can use this developed tool to conduct accident IQRA, influ-
ence factors analysis, safety analysis and economic analysis. 

As construction sites are typically open outdoor systems, 
each construction project is unique.  Consequently, it is ex-
tremely difficult to use accident data from previous construc-
tion projects to predict the quantitative risk for a specific ac-
cident.  Furthermore, the relationships among accident causal 
factors in the construction industry are extremely complex and 
fuzzy; that is, it is difficult to use general QRA methods, such 
as fault tree analysis and event tree analysis, to define rela-



 Y.-H. Lin et al.: Integrated Quantitative Risk Analysis Method for Major Construction Accidents 391 

 

tively analytical causal relationship.  This study adopts an 
overall perspective and emphasizes that the application of the 
qualitative accident causation model and subjective expert 
judgment can simplify hard-to-quantify problems involved in 
construction accident risk assessment. 

This study utilizes accident causation theory to establish a 
HFID for accident risk analysis.  The proposed method can 
conduct risk assessment of multiple factors with minimum 
fuzzy rule number requirements.  The application of expert 
judgments and the convertible functions between possibility 
and probability help transform a subjective possibility meas-
ure into a quantitative probability scale capable of overcoming 
problems of insufficient data or complex systems.  The pro-
posed method can allow many experts to perform accident 
IQRA simultaneously also matches the practice of safety as-
sessment conducted by multiple experts on construction sites.  
Thus it is possible to achieve improved objectivity of accident 
IQRA. 
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