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ABSTRACT 
In this paper, a space-time least-squares finite-element me- 

thod for the 2D nonlinear shallow-water equations (SWE) is 
developed.  The method can easily handle complex geometry, 
bed slope (source term), and radiation boundary condition 
without any special treatment.  Other advantages of the me- 
thod include: high order approximations in space and time can 
easily be employed, no upwind scheme is needed, as well as 
the resulting system equations is symmetric and positive- 
definite, therefore, can be solved efficiently with the pre-con- 
ditioned conjugate gradient method.  The model is applied to 
several benchmark tests, including standing wave in a flat 
closed basin, propagation of sinusoidal wave in a flat channel 
with open boundary, flow past an elliptic hump, and wave- 
cylinder interactions.  Simulation of standing wave in a closed 
flat basin, with water depth ranging from shallow water to 
deep water, shows that prediction of SWE model is accurate 
for shallow waters but inaccurate for deep waters due to the 
hydrostatic pressure and non-dispersive assumption.  Com-
putation of propagation of sinusoidal wave in a flat channel 
shows open boundary condition is treated satisfactorily.  Simu- 
lation of flow past an elliptical hump shows good conservation 
property, and complicate and detailed fine wave structures 
which were not observed using the low order approximations 
in previous study.  Computed result of wave-cylinder interac-
tions compare well with other numerical results. 

I. INTRODUCTION 
The depth-averaged, 2D shallow-water equations (SWE) 

has wide range applications in ocean, environmental and hy-
draulic engineering, such as, tidal flows in estuary and coastal 
regions, and open-channel flows in rivers and reservoirs.  
SWE is a system of nonlinear hyperbolic conservation laws 

that admits sharp gradient solutions like shock waves and 
expansion fans.  Extensive numerical research has been per-
formed in the area of SWE, such as the finite-difference 
methods [1], finite-volume methods [4, 8, 23], finite-element 
methods [10, 15, 17], Godunov-type method [3, 12], and lat-
tice Boltzmann method [42].  And several upwind schemes 
originally designed to solve the Euler equations in gas dy-
namics have been extended to the SWE.  Some examples are 
the Roe’s method [5], the Beam-Warming scheme, the mono- 
tonic upstream schemes for the conservation laws (MUSCL), 
the Osher and Salmon, the essentially non-oscillatory (ENO) 
schemes [39, 40], as well as the Harten, Lax and van Leer 
(HLL) solver.  Most of these methods determine the flux vec- 
tor based on the wave propagation structure, therefore, have 
the ability of shock capturing with a high level of accuracy  
[22, 31, 35, 36]. 

Numerical solution of SWE has been a challenging task 
because of its nonlinear nature and the need to satisfy the 
C-property.  The presence of source terms in momentum equa- 
tions, such as the bottom slope and friction of bed, compounds 
the difficulties further.  Conservation laws with source terms 
often have steady-state in which flux gradients are nonzero but 
exactly balanced by source terms [6, 22, 37].  Many numerical 
methods (e.g., fractional step methods) have difficulty to pre-
serve such steady-state (the C-property) and cannot accurately 
calculate small perturbations of such state.  Numerical solu-
tion of SWE with source terms faces problem that low-accu- 
racy solvers yield quite inaccurate solutions, in particular large 
errors for the wave speed [1].  LeVeque [23] developed a 
treatment for the bed slope source terms which balanced the 
source terms and flux gradients.  This method is suitable for 
quasi-steady problems, but is reported to be less successful 
when applied to calculate steady trans-critical flow with a 
shock.  Zhou, et al. [43] proposed the surface gradient method 
(SGM) for treating source terms in SWE.  This method works 
well for flows with small and mild changes, and experiences 
difficulty to maintain the conservation property and exhibits 
numerical oscillations for flows with large changes [31]. 

Least-squares finite-element method (LSFEM) for approxi- 
mating the solution of boundary value problems of partial dif- 
ferential equations has been studied at least three decades [11, 
16, 19].  In recent years, LSFEMs have been receiving increas- 
ing attention in both engineering and mathematics communi-
ties.  In the engineering literature, for solving Stokes and Na-
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vier-Stokes equations by LSFEMs, the L2 LSFEMs are the 
most popular one because L2 LSFEMs exhibit theoretical and 
computational advantages in algorithmic design and imple-
mentation [7, 11, 16, 19].  One main advantage of LSFEMs is 
that a single approximating space can be used for all variables 
[16, 19], and its choice of approximating space is not subject 
to the Ladyzhenskaya-Babuska-Brezzi (LBB) condition [13, 
16]; The other advantage is that resulting system of equations 
is symmetric and positive-definite (SPD), therefore, can be 
solved efficiently with the preconditioned conjugate gradient 
method [9]. 

LSFEM for SWE using finite-element in space and θ – 
method in time integration has been studied previously [26, 27].  
In this paper, the method is extended using space-time fi-
niteelement approach.  The paper is organized as follows.  Gov- 
erning equations and numerical method are presented in Sec-
tion 2 and 3, respectively.  In Section 4, the model is applied to 
some benchmark problems.  Computed results are compared 
with exact solutions or other numerical results.  Based on the 
computed results, some conclusions are made in Section 5. 

II. GOVERNING EQUATION 
The depth-averaged, 2D shallow-water equations (SWE) is 

derived from equation of 2D mass and momentum conserva-
tion based on assumption of incompressibility of water, hy-
drostatic pressure distribution, and a sufficiently small channel 
slope [20, 28, 38].  The 2D SWE expressed in a non-conser- 
vative form reads 

 
[ ( )] [ ( )] 0

( )
( )

t x y

t x y x t xx yx

t x y y t xy yy

u h v h
u uu vu g u u
v uv vv g v v
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⎪

+ + + = +⎨
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 (1) 

where η = free surface elevation; h = water depth; u and v  
are depth-averaged velocity component in x- and y-coordi- 
nate, respectively; νt = turbulent kinematic viscosity.  νt is an 
important parameter to flow characteristics and practical flow 
simulations.  Relevant reference of νt can be found in Yulisti-
yanto et al. [41]. 

III. NUMERICAL METHOD 

Eq. (1) is first linearized with the simple substitution  
method 

 

( ) ( ) 0

( )

( )

t x y x x y y

x t x y t xx yx

y t x y t xy yy

u v h u h u h v h v

g u uu vu u u

g v uv vv v v

η η η η η

η ν

η ν

+ + + + + + + + =⎧
⎪⎪ + + + = +⎨
⎪

+ + + = +⎪⎩

 (2) 

where “~” represents value of previous time step.  The space- 
time least-squares finite-element method [18, 32-34] is used, 
where unknowns (η, u, v) are approximated by 
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where (ηh, uh, vh) are the approximations at the nodal point, 
and M(x, y) and N(t) are the interpolation functions of space- 
time element.  Substitute the approximations, Eq. (3), into gov- 
erning equations, Eq. (2), one obtain the residuals 
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(4) 

 
in which superscript “n” and “n + 1” represent value of the 
current and next time step, respectively, and Δt = tn+1 – tn.  The 
least-squares functional and its minimization principle are 
then constructed 

 2

x

minimize   
T

R d dt
Ω

Ω∫  (5) 

Eq. (5) is equivalent to 

 
x

  0
T

T

R R d dt
uΩ

⎧ ⎫∂⎪ ⎪ Ω =⎨ ⎬∂⎪ ⎪⎩ ⎭
∫  (6) 

where Ω and T are space and time domain considered, and  
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Fig. 1.  Illustration of a uni-nodal standing wave in a closed flat channel. 

 
 

1( , , )h h h nu u vη += .  The resulting system of equations is sym- 
metric and positive-definite, therefore, can be solved effi-
ciently by the pre-conditioned conjugate gradient method [9, 
19]. 

IV. COMPUTED RESULTS 
The model is applied to following benchmark problems to 

assess its applicability, conservation property and accuracy.  
Test cases include (1) standing wave in a flat closed basin, (2) 
propagation of a sinusoidal wave in a flat channel with open 
boundary, (3) flow past an elliptical hump, and (4) wave- 
cylinder interactions.  Viscous effect is neglect since its role in 
the designed problems is not important.  All the computations 
are performed with the linear interpolation in time and 9-node 
quadrilateral interpolation in space. 

1. Standing Wave in a Closed Basin 
This problem is designed to test the applicability and con-

servation property of the model.  Standing wave in a flat 
closed basin is depicted in Fig. 1, where length of the basin  
L = 10 m (wave length λ = 20 m), water depth h varies, and the 
initial free surface is  

 ( , 0) cos xx a
L
πη ⎛ ⎞= ⎜ ⎟

⎝ ⎠
 (7) 

where a = 0.01 m.  Since the basin is closed, boundary condi-
tion at both ends is 

 0u n⋅ =   (8) 

where n is the outward normal unit vector.  A 25 uniform 
9-node quadrilateral elements (25 elements in x-direction and 
1 element in y-direction) and Δt = 0.5 s is used.  Table 1 and 
Fig. 2 show phase speed at various depth (0.5 ~ 7 m) by the  

Table 1. Comparison of phase speed of a standing wave in 
a closed flat basin at various water depth by small 
amplitude wave theory (Airy), shallow-water ap- 
proximation ( ),gh shallow-water equations (SWE) 
model, and Boussinesq equations (BE) model, re- 
spectively [25]. 

h/L (m) CAiry (m/s) C gh (m/s) CSWE (m/s) CBE (m/s)
0.025 2.20456 2.21360 2.40001 2.00200 
0.05 3.08056 3.13050 3.20000 3.07692 
0.10 4.16797 4.42719 4.39996 4.16667 
0.15 4.79272 5.42218 5.60005 4.78469 
0.20 5.14970 6.26099 6.40000 5.14139 
0.25 5.34883 7.00000 7.19994 5.33333 
0.30 5.45788 7.66811 7.71426 5.71428 
0.35 5.51691 8.28251 8.28569 5.71428 
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Fig. 2. Comparison of phase speed of a standing wave in a closed flat 

basin at various water depth by Airy theory, gh , SWE model, 

and BE model, respectively. 
 
 

small amplitude wave theory (Airy), shallow-water approxi-
mation ( ),gh  shallow-water equations (SWE) model, and 
Boussinesq equations (BE) model, respectively [25].  For 
shallow waters (long waves, h/λ ≤ 1/20), phase speed of all 
methods is close.  However, as water depth (h) increases, 
phase speed by SWE model agree well with shallow-water 
approximation ( ),gh  but differ significantly from phase 
speed by Airy theory and BE model.  This observation sup-
ports that applications of SWE model is limited for shallow 
waters (long waves, h/λ ≤ 1/20). 

2. Propagation of a Sinusoidal Wave in a Flat Channel 
with Open Boundary 
The problem is designed to test the radiation boundary 

condition [14, 34].  The computational domain is [0, 20] × 
[-2.5, 2.5].  At the left boundary, i.e. x = 0, an incident wave is 
specified 
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(a) Global view 

(b) Zoom in view  
Fig. 3. Propagation of sinusoidal wave in a flat channel with open bound- 

ary: finite-element meshes of (a) global view and (b) local view 
near the right exit, respectively. 

 

 2(0, , ) sin ty t a
T
πη ⎛ ⎞= ⎜ ⎟

⎝ ⎠
 (9) 

Where a = 0.01 m and T = 10 s are the amplitude and period 
of the incident wave, respectively.  At the right boundary, i.e.  
x = L = 20 m, the radiation boundary condition is specified 

 0x yc c
t x y
η η η∂ ∂ ∂
+ + =

∂ ∂ ∂
 (10) 

where cx and cy are phase speed of propagating wave in the x- 
and y-direction, respectively, which can be determined by the 
linear dispersion relation.  Still water (h) and gravity accel-
eration (g) are assumed to be 1 m and 1 m/s2, respectively.  Fig. 
3 depicts the computational elements used, 312 9-node quad-
rilateral elements, where fine elements are concentrated in the 
right open boundary region.  Δt = 0.5 s  is used in the com-
putations.  Simulation starts with the still water condition.  Fig. 
4 illustrates the time history of η and u at the middle of exit 
boundary, ie. (x, y) = (20, 0).  As it is shown, wave propagates 
with wave speed closes to 1 m/sc gh= = , and arrives the 
right boundary at about t = 20 s (2T).  After a period of tran-
sition about 3T, wave field reaches sinusoidal - Both η and u 
are sinusoidal with a small distortion.  Fig. 5 depicts water 
surface at various instances.  Wave propagates with constant 
speed to the right and exits freely with unnoticeable reflection.  
This ensures that the radiation boundary condition, Eq. (10), is 
modeled satisfactorily. 

3. Flow Past an Elliptical Hump 
Numerical solution of SWE including source terms is dif-

ficult to preserve the steady-state (C-property) and cannot 
accurately calculate small perturbations of such state.  Low- 
accuracy solvers yield quite inaccurate solutions, in particular  
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Fig. 4. Propagation of sinusoidal wave in a flat channel with open bound- 

ary: Time history of of (a) η and (b) u at the middle of exit 
boundary, respectively. 

 
 

(a1) t = 192.5 s (9.25 T) (b1) t = 192.5 s (9.25 T)

(a2) t = 195 s (9.5 T) (b2) t = 195 s (9.5 T)

(a3) t = 197.5 s (9.75 T) (b3) t = 197.5 s (9.75 T) 

(a4) t = 200 s (10 T) (b4) t = 200 s (10 T)
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Fig. 5. Propagation of sinusoidal wave in a flat channel with open bound- 

ary: (a) 3D view of the water surface (left), and (b) 2D contours  
of the water surface (right) at t = 9.25 T, 9.5 T, 9.75 T, and 10 T, 
respectively. 
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Fig. 6. Flow past an elliptical hump: Illustration of the computational 

domain and the elliptical shaped hump. 
 
 

large errors for the wave speed [1].  A widely used benchmark 
case of the literature [23, 39, 40] is re-examined.  The com-
putational domain is [0, 2] × [0, 1], and the bottom topography, 
shown in Fig. 6, is given by 

 2 2( , ) 0.8exp( 5( 0.9) 50( 0.5) )z x y x y= − − − −  (11) 

After performing refinement of mesh resolution and time 
increment, a 200 × 100 uniform 9-node quadrilateral elements, 
i.e., Δx = Δy = 0.01 m and Δt = 0.001 s are used for computa-
tions.  First, we consider simulation with the flow at rest ini-
tially, i.e. h = 1 m and η = 0 m.  We found the exact C-property 
is respected for a long period of simulation.  Then we consider 
the initial condition with water surface perturbed by the up-
ward displacement 0.01 m in the region 0.05 ≤ x ≤ 0.15 

 
0.01 if 0.05 0.15

( , , 0)
0 otherwise

m x
x y

m
η

≤ ≤⎧
= ⎨
⎩

 (12a) 

The initial momentum in the x and y direction is zero: 

 u = v = 0m/s (12b) 

Fig. 7 shows the 3D contours of free surface and the asso-
ciated velocity field at various time instances.  The initial 
perturbation propagates to right and is affected by the bottom; 
It propagates and exits the left boundary with unnoticeable 
reflection.  Shoaling effect (increasing the amplitude of wave 
due to the decreasing of water depth) is obvious at t = 0.24 s.  
The wave speed is slower above the hump (due to the shallow 
water depth) than elsewhere, leading to a distortion of the 
initially planar perturbation.  Standing waves due to the re-
flection of the hump behind the wave tail is observed at t = 
0.24, 0.36, 0.48, and 0.6 s, respectively.  These fine detailed 
wave structures were not observed in Liang and Hsu [26] and 
Akoh, et al. [2, 23].  Reflections and interactions of the surface 
waves result in complex and symmetric wave structures. 

(a1) t = 0.12 s (b1) t = 0.12 s 
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(a3) t = 0.36 s (b3) t = 0.36 s 
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Fig. 7. Wave past an elliptical hump: (a) 3D contours of the water sur-

face and (b) local velocity field at t = 0.12, 0.24, 0.36, 0.48, and 0.6 
s, respectively. 

 
 
Fig. 8 shows comparison of the computed water surface of 

the present study (Δx = Δy = 0.01 m, and Δt = 0.001 s) with 
the numerical result of Liang and Hsu [26] (Δx = Δy = 0.01 m, 
and Δt = 0.0005 s) and Akoh, et al. [2] (Δx = Δy = 0.01 m, and 
Δt = 0.0005 s).  A 30 uniformly spaced contour lines of water 
surface level η at t = 0.12, 0.24, 0.36, 0.48, and 0.6 s, re-
spectively, are depicted.  Computed water surface contours 
of Liang and Hsu [26] agrees well with that of Akoh, et al. 
[2].  However, the present method employing a high-order 
approximation is apparently better to resolve the fine, sym- 
metric wave structures.  Overall, predictions of the present 
model give sharper gradients and detailed wave structures 
than the numerical results of Liang and Hsu [26] and Akoh, 
et al. [2, 23]. 

4. Wave-Cylinder Interactions 
Wave past a circular cylinder in a flat channel is studied 

numerically in [24] and Liang and Hsu [26].  Computational 
domain is [0, 6.4] × [0, 3.2].  The cylinder is located in the 
center of the consider domain with radius r = 0.25 m.  The  



576 Journal of Marine Science and Technology, Vol. 19, No. 5 (2011) 

 

(a) (b) (c)  
Fig. 8. Wave past an elliptical hump: 2D contours of the water surface of (a) present study with 9-node quadrilateral elements (left), and (b) results of 

Liang and Hsu [26] with 3-node triangular meshes (middle), and (c) result of Akoh, et al. [2] (right) at t = 0.12, 0.24, 0.36, 0.48, and 0.6 s, re-
spectively. 

 
 

(a) (b)  
Fig. 9.  Wave-cylinder interactions: finite-element meshes of (a) global view and (b) local view near the cylinder, respectively. 

 
 

undisturbed water depth is h = 0.12 m, resulting in ka = 1.0, 
where k is wave number and a is wave amplitude, respectively.  
A 14,292 nodes and 5,518 9-node quadrilateral elements, 
depicted in Fig. 9, and Δt = 0.052 s is used for simulation.  
Radiation boundary condition, i.e. ∂η/∂t + cx∂η/∂x = 0, is 
specified at the right open boundary.  The incident wave with 
wave amplitude a = 0.00463 m and period T = 1.3 s is enforced 
at the left boundary.  Simulation starts with water at rest ini-
tially.  Flow reaches a periodic state after a period of transition 

about 2T. 
The 3D perspective and 2D contours of water surface at 

various time instances of a period is shown Fig. 10.  In 
windward of the cylinder, standing waves present due to the 
combination of incident and reflected waves, while scattered 
waves is relatively weak.  Reflection and wave runup due to 
the blockage of the cylinder is obvious.  In the lee side of cyl- 
inder, scattered waves are relatively weak due to the blockage 
of the cylinder.  Diffractions and wave-cylinder interactions  
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Fig. 10. Wave-cylinder interactions: (a) 3D view of the water surface 

(left), and (b) 2D contours of the water surface (right) at t = T/4, 
T/2, 3T/4, and T, respectively. 

 
 

result in complex and symmetric wave structures, and exit the 
right boundary with unnoticeable reflection.  These results  
are very close to the results of previous study using a 29,982 
nodes and 59,196 3-node triangular elements, and Δt = 0.01 s 
[26].  The corresponding velocity field is depicted in Fig. 11.  
At t = T/4, free surface starts to fall and reflected velocity is 
strong in windward of the cylinder since free surface and ve- 
locity is out of phase.  At t = T/2, wave trough hits the cylinder 
front and velocity is weak in t of the cylinder.  At t = 3T/4, free 
surface starts to rise and incoming velocity reaches the maxi- 
mum.  At t = T, wave crest hits the cylinder front and velocity 
is weak again.  The wave field repeats itself periodically. 
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Fig. 11. Wave-cylinder interactions: (a) Global view of the velocity field 

(left), and (b) local view of the velocity field (right) at t = T/4, T/2, 
3T/4, and T, respectively. 
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