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ABSTRACT 
In this paper, the two-dimensional Stokes problem is ana-

lyzed by the modified collocation Trefftz method (MCTM) 
and the Laplacian decomposition.  The coupled Stokes equa-
tions are converted to three Laplace equations by utilizing the 
Laplacian decomposition and then the boundary-type mesh-
less MCTM is adopted to solve the resultant Laplace equations.  
The MCTM, free from mesh and numerical quadrature, is de- 
rived from the conventional Trefftz method by considering the 
characteristic length of the domain, which stabilize the nu-
merical scheme and obtain highly accurate results.  Besides, 
the solutions are expressed as the linear combination of T-com- 
plete functions and the velocity as well as pressure are coupled 
by collocating the boundary conditions.  Several numerical 
examples are provided to demonstrate the efficacy and accu-
racy of the proposed meshless scheme.  In addition, the nu-
merical results demonstrates that the proposed meshless 
scheme can solve the Stokes problems accurately in simply- 
and doubly-connected domains. 

I. INTRODUCTION 
Due to the complexity of the governing equations for vis-

cous incompressible flow, it is almost impossible to mathe-
matically obtain the closed-form solutions of the Navier-Stokes 
equations without any simplification.  Under the assumption 
of negligible inertia force, the Navier-Stokes equations can be 
reduced to the Stokes equations, which are used to describe 

very slow flow field or motion of extremely viscous fluid.  
Although the governing equations can be simplified, it is still 
very difficult to obtain the solutions of Stokes equations by 
mathematical ways.  Owing to the quick developments of 
computer technology in the past decades, the numerical simu- 
lation seems to be the better choice for understanding the fluid 
flow. 

When numerical simulation is considered for flow field, the 
governing equations can be classified as: the primitive-vari- 
ables formulation [14, 19], the velocity-vorticity formulation 
[5, 17], the stream function-vorticity formulation and the 
stream function formulation [16].  Among them, only the primi- 
tive-variables formulation can directly acquire the distribution 
of pressure.  Besides, systems of inhomogeneous partial dif-
ferential equations, which can not be directly resolved by 
boundary-type numerical methods, will appear if the veloc-
ity-vorticity formulation and the stream function-vorticity 
formulation are considered.  Therefore, it is very important to 
develop an efficient numerical scheme for solving the primi-
tive-variables formulation of the Stokes equations.  Because 
the primitive-variables formulation is a system of coupled 
equations, it is not easy to analyze the Stokes equations di-
rectly.  In 2007, Curteanu et al. [4] used the Laplacian de-
composition to convert the Stokes equations to three Laplace 
equations which can greatly simplify the governing equations 
for numerical schemes.  Hence, in this paper, the Laplacian 
decomposition is adopted to transform the governing equa-
tions for the Stokes flow. 

There are some numerical scheme can be used for analyz-
ing the Stokes equations, such as the finite difference method 
(FDM) [14], finite element method (FEM), boundary element 
method (BEM) [5, 20], etc.  The FDM, FEM and BEM be-
longs to the mesh-dependent numerical methods.  Hence, the 
time-consuming mesh generation and the troublesome nu-
merical quadrature are needed during numerical implementa-
tion.  In contract to those mesh-dependent methods, there are 
some numerical schemes which are classified as the mesh- 
independent (meshless) methods.  The most well-known mesh- 
less methods are the multiquadric (MQ) method [18], the 
boundary particle method [2], the method of fundamental 

Paper submitted 03/18/10; revised 05/04/10; accepted 06/05/10.  Author for
correspondence: Chia-Ming Fan (e-mail: cmfan@ntou.edu.tw). 
*Department of Harbor and River Engineering & Computation and Simulation 
Center, National Taiwan Ocean University, Keelung 20224, Taiwan, R.O.C. 
**Department of Systems Engineering and Naval Architecture, National
Taiwan Ocean University, Keelung 20224, Taiwan, R.O.C. 



 C.-M. Fan et al.: The MCTM for Solving 2D Stokes Problems 523 

 

solutions (MFS) [6, 16, 17, 19], the Trefftz method [3, 8, 10- 
13], etc.  Young et al. [18] adopted the MQ method for solv- 
ing the velocity-vorticity formulation of the Stokes equation, 
while Young et al. [19] used the MFS and the Stokeslet  
to analyze the primitive-variable formulation of the Stokes 
equations. 

Among those meshless methods, the MFS and the Trefftz 
method are the most famous methods since both of them are 
the boundary-type meshless methods.  The solution of MFS is 
expressed as the linear combination of fundamental solutions 
which are located out of the computational domain [6, 16,  
17, 19].  The positions of the fundamental solutions will have 
great influence on the accuracy of the numerical results.  
Though many researchers proposed practical ways to locate 
the source, it will cost extra numerical burdens in implemen-
tation.  On the other hand, the solution of Trefftz method is 
expressed as the linear combination of T-complete functions 
[8].  The unknown coefficients can be found by collocating  
the boundary conditions.  Kita and Kamiya [8] classified dif-
ferent kind of Trefftz methods and published a review for the 
Trefftz methods.  Recently, Li et al. [9] compared the Trefftz 
methods with other boundary methods.  Among the previous 
studies, it is found that the condition number of the matrix in 
Trefftz method is extremely high.  Therefore, the numerical 
solutions will become very unstable and inaccurate when more 
nodes are used. 

Because of the ill-conditioning matrix, the engineering  
applications of the Trefftz method are seldom.  In 2007, Liu 
[12, 13] proposed the modified collocation Trefftz method 
(MCTM) by introducing the characteristic length of the 
computational domain.  From his results, it is proved that the 
condition number of the matrix can be greatly reduced.  Hence 
the solution of the MCTM becomes very stable and extremely 
accurate.  Furthermore, Liu [10] extended the MCTM to  
doubly-connected domain by considering two different char-
acteristic lengths, while Chen et al. [3] demonstrated the  
ability of the MCTM for dealing with the problem in 
high-aspect ratio domain.  Hence, the MCTM retains the ad-
vantages of the conventional Trefftz method and, in the 
meantime, gets rid of the ill-conditioning matrix.  So, the 
meshless MCTM will be adopted in this study for analyzing 
the Laplace equations, which are converted from the Stokes 
equations by Laplacian decomposition. 

In this paper, the primitive-variable formulation of the 
Stokes equations will be converted to three Laplace equations 
by the Laplacian decomposition.  Then, the solutions of the 
Laplace equations are expressed as the linear combination of 
T-complete functions according to the MCTM, which is mesh- 
less and integral-free.  The unknown coefficients can be ob-
tained by directly collocating the boundary conditions.  Once 
the coefficients are obtained, the numerical solutions and their 
derivatives at any position inside computational domain can 
be acquired by simple summation.  Unlike other formulations 
for the Stokes equations, the distribution of pressure through 
the computational domain can be obtained directly.  The Stokes 

equations and the Laplacian decomposition are described after 
the brief introduction of the motivation for this study.  Then, 
four numerical examples are provided to show the efficiency 
and accuracy of the proposed numerical scheme.  Finally, 
some conclusions are drawn according to the numerical per-
formance. 

II. MATHEMATICAL FORMULATIONS 

1. Stokes Equations 
The governing equation of the viscous incompressible flow 

is the Navier-Stokes equations.  When the viscous force is very 
large in comparing with the inertial force, the equations can be 
reduced to the Stokes equations, 

 0, ( , ) ,u v x y
x y
∂ ∂

+ = ∈Ω
∂ ∂

 (1) 

 0, ( , ) ,pu x y
x
∂

Δ − = ∈Ω
∂

  (2) 

 0, ( , ) ,pv x y
y
∂

Δ − = ∈Ω
∂

 (3) 

where, u(x, y) and v(x, y) are x-directional and y-directional 
velocity components.  p(x, y) is the pressure and Δ and the 
Laplacian operator.  Ω denotes the computational domain.  
The above system of equations can be solved with suitable 
boundary conditions. 

Eq. (1) is the continuity equation.  Eqs. (2) and (3) are the 
x-directional and y-directional momentum equations, respec-
tively.  By observing the system of equations, the velocity com- 
ponents and pressure are coupled in these equations.  So, it is 
not easy to analyze this system of equations directly.  Since the 
unknowns in Eqs. (1)-(3) are velocity and pressure of the flow 
field, these three equations form the well-known primitive- 
variable formulation of the Stokes equations. 

2. Laplacian Decomposition 
Differentiating of Eq. (2) with respect to x and differenti-

ating of Eq. (3) with respect to y forms the following equation, 

 Δp = 0. (4) 

In order to simplify Eqs. (1)-(3), the following unknown 
variables are introduced, 

 ( , ) ( , ) ( , ),
2
xf x y u x y p x y= −  (5) 

 ( , ) ( , ) ( , ).
2
yg x y v x y p x y= −  (6) 
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By taking Laplacian to Eqs. (5) and (6), the following equa- 
tions can be acquired, 

 0,
2
x pf u p u

x
∂⎛ ⎞Δ = Δ − = Δ − =⎜ ⎟ ∂⎝ ⎠

 (7) 

 0,
2
y pg v p v

y
∂⎛ ⎞Δ = Δ − = Δ − =⎜ ⎟ ∂⎝ ⎠

 (8) 

where Eqs. (7) and (8) are equivalent to the momentum equa-
tions of the Stokes equations, Eqs. (2) and (3). 

Hence, by using the Laplacian decomposition, the Stokes 
equations, Eqs. (1)-(3), are converted to three Laplace equa-
tions, Eqs. (4), (7) and (8).  The transformation can reduce the 
difficulties in solving the governing equations of the Stokes 
flow. 

3. Using the Continuity Equation as the Augmented 
Boundary Condition 
From the descriptions in previous subsection, the Stokes 

equations can be transformed to three Laplace equations.  If 
we follow the mathematical derivation conversely, we should 
find that the continuity equation is not satisfied inside com-
putational domain.  From Eq. (4), the following equation can 
be derived, 

 0 ( , ) .u v x y
x y

⎛ ⎞∂ ∂
Δ + = ∈Ω⎜ ⎟∂ ∂⎝ ⎠

 (9) 

It can be easily found that Eq. (1) is not equal to Eq. (9).  
From Eq. (4), only Eq. (9) can be derived, not Eq. (1).  For-
tunately, according to the maximum-minimum theorem of the 
Laplace equation [7], Eq. (9) with the following boundary 
condition is equivalent to Eq. (1), 

 0, ( , ) ,u v x y
x y
∂ ∂

+ = ∈Γ
∂ ∂

 (10) 

where, Γ denotes the boundary along the computational do-
main, Ω. 

Consequently, the Stokes equations, Eqs. (1)-(3), is equiva- 
lent to three Laplace equations, Eqs. (4), (7), (8), with the con- 
tinuity equation as the augmented boundary condition, Eq. (10).  
The readers, who interest in more rigorous descriptions of the 
transformation, can find the details in [4]. 

III. MODIFIED COLLOCATION TREFFTZ 
METHOD (MCTM) 

In this section, the MCTM for Laplace equation is intro-
duced.  When the following potential problem is considered, 

 Δw = 0,    (x, y) ∈ Ω, (11) 

where the corresponding boundary of the domain in the polar 
coordinates is given by {( , ) ( ), 0 2 }r rθ ρ θ θ πΓ = = ≤ ≤ . 

It is known that the T-complete functions [8] for two-di- 
mensional Laplace equation can be shown as: 

 {1, cos( ), sin( ), 1, 2, 3, ........}.k kr k r k kθ θ =  (12) 

The numerical solution can be expanded in terms of the 
above bases which forms the conventional Trefftz method.  
Instead of the above bases, Liu [10-13] suggested to modify 
the T-complete functions by considering the characteristic 
length of the computational domain, 

 ( ) ( )
0 0

1, cos , sin , 1, 2, 3, ........ ,
k k

r rk k k
R R

θ θ
⎧ ⎫⎛ ⎞ ⎛ ⎞⎪ ⎪=⎨ ⎬⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎪ ⎪⎩ ⎭
(13) 

where 0 max [0,2 ]
max ( ).R

θ π
ρ ρ θ

∈
≥ =  R0 is the characteristic length 

of the computational domain.  In MCTM, the solutions are 
expressed by the modified T-complete functions, Eq. (13), 
instead of the original bases, Eq. (12).  Once R0 is equal to  
one, the formulation of MCTM becomes the conventional 
Trefftz method. 

In MCTM, the numerical solution of the Laplace equation, 
Eq. (11), can be expressed as the linear combination of modi-
fied T-complete functions, Eq. (13), 

 
0

1 0 0

0
1

( , ) cos( ) sin( )

,

k k
w w w

k k
k

w w w
k k k k

k

r rw x y a a k b k
R R

a a b

θ θ

φ ψ

∞

=

∞

=

⎛ ⎞ ⎛ ⎞
= + +⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

≅ + +

∑

∑
(14) 

where 0
wa , and 1{ }w m

k ka =  and 1{ }w m
k kb =  are the unknown coeffi-

cients which can be found by collocating the boundary condi-
tions.  In Eq. (14), we used m terms to truncate the infinite 
series in the original expressions due to the limitation of nu-
merical simulation.  The choice of m will be determined by the 
boundary condition and the smoothness of the solution, so we 
may expect to use larger m to avoid any possible error due to 
the insufficient terms in the solution expression.  When the 
coefficients are determined by collocating the boundary con-
ditions, the numerical solution and its derivative at any posi-
tion inside the computational domain can be found by simple 
summation, Eq. (14).  In Liu’s studies [10-13], the condition 
number of the coefficient matrix can be greatly reduced.  
Therefore, the MCTM is very stable with respect to noise and 
the numerical results are highly accurate. 

Following the similar procedure, the solutions of Eqs. (4), 
(7), (8) can be expressed as: 
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 0
1

( , ) ,
m

p p p
k k k k

k

p x y a a bφ ψ
=

= + +∑  (15) 

 0
1

( , ) ,
m

f f f
k k k k

k

f x y a a bφ ψ
=

= + +∑  (16) 

 0
1

( , ) ,
m

g g g
k k k k

k

g x y a a bφ ψ
=

= + +∑  (17) 

where 0 ,pa 1{ } ,p m
k ka = 1{ } ,p m

k kb = 0 ,fa 1{ } ,f m
k ka = 1{ } ,f m

k kb = 0 ,ga 1{ }g m
k ka =  

and 1{ }g m
k kb =  are the unknown coefficients.  Since p, f and g can 

be expressed as the combination of T-complete functions, we 
can find the expressions of velocity components via Eqs. (5)- 
(6), 

0 0
1 1

( , ) ,
2

m m
f f f g g g

k k k k k k k k
k k

xu x y a a b a a bφ ψ φ ψ
= =

⎛ ⎞
= + + + + +⎜ ⎟

⎝ ⎠
∑ ∑ (18) 

0 0
1 1

( , ) .
2

m m
g g g g g g

k k k k k k k k
k k

yv x y a a b a a bφ ψ φ ψ
= =

⎛ ⎞
= + + + + +⎜ ⎟

⎝ ⎠
∑ ∑  (19) 

Since the velocity components and pressure can be expres- 
sed as summations of T-complete functions, the unknown 
coefficients can be determined by collocating the physics- 
based boundary conditions and the continuity equation, Eq. 
(10).  From previous descriptions of the numerical procedure, 
it can be found that the MCTM is free from mesh and nu-
merical integration.  In addition, the derivatives of velocity 
components and pressure can be derived by differentiating  
Eqs. (15), (18), (19) directly.  Utilizing the Laplacian de-
composition, the Stokes equations can be converted to three 
Laplace equations which can be solved by MCTM.  The effi-
ciency of the proposed meshless scheme can be validated 
through several numerical examples in the following sections. 

IV. NUMERICAL RESULTS AND 
COMPARISONS 

In order to validate the efficacy and demonstrate the accu-
racy of the proposed numerical scheme, four examples are 
adopted.  Three of them are simply-connected domains and the 
other is the doubly-connected domain. 

1. Example 1: Lid-driven Cavity Flow 
The first example is the well-known lid-driven cavity.  The 

schematic diagram of the cavity flow is shown in Fig. 1.  The 
lid is moving with unit velocity in x direction and the boundary 
conditions in the other sides are assumed as no-slip. 

Except for the velocity boundary conditions, the continuity 
equation should be forced along the boundary, Eq. (10), which 
is explained previously.  The reference point for pressure  
(p = 1) is given at (x, y) = (1, 0) to uniquely determine the  

+∂u
∂x

∂v
∂y

= 0

u = 1, v = 0, +∂u
∂x

∂v
∂y

= 0

u = 0, v = 0, +∂u
∂x

∂v
∂y

= 0

+∂u
∂x

∂v
∂y

= 0

u = 0,

v = 0, 

u = 0,

v = 0,

0 0.5 1
0

0.5

1

Ω

Γ

 
Fig. 1. The schematic diagram of computational domain and boundary 

condition for example 1. 
 
 

distribution of pressure.  By observing the momentum equa-
tions, its physical meaning is the balance between the pressure 
force and viscous force.  The pressure force is interpreted by 
the pressure gradient term.  Therefore, the derivative of pres-
sure is very important in comparing with the distribution of 
pressure.  That means if we add a constant to the pressure 
distribution, the modified distribution of pressure still satisfies 
the governing equations.  So, in numerical simulation, we will 
impose a reference pressure which denotes the measureable 
pressure in realistic applications. 

In this numerical experiment, 61 boundary nodes are used 
and m is set as 30.  The profiles of velocity along x = 0.5 and  
y = 0.5 are depicted in Figs. 2(a) and 2(b), respectively.  The 
numerical results are almost identical with MFS solution [19].  
Besides, the distribution of velocity vector is shown in Fig. 3.  
In Fig. 3, it can be found that the circulation is formed by the 
influence of the moving lid.  It should be emphasized that the 
velocity components at any position can be calculated once the 
coefficients are obtained.  The density of vector in Fig. 3 is 
used for demonstration only.  If more details of flow field are 
required, it will not cost a lot from the original procedure. 

2. Example 2 
In the second example, the following analytical solutions 

are used [4]: 

 
3

( , ) 2 ,
6
yu x y xy= +  (20) 

 
3

2 2( , ) ,
6
xv x y x y= − +  (21) 

 ( , ) ,p x y xy=  (22) 

where the square computational domain is used and the ve-
locity components, which are derived directly from the ana-
lytical solutions, are specified along the boundary.  In this test,  
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Fig. 2. The profile of (a) u at x = 0.5 along y axis and (b) v at y = 0.5 along 

x axis. 
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Fig. 3.  The distribution of velocity vector for example 1. 

 
 
101 boundary nodes is adopted and m  is set as 50.  In addition, 
the reference point for pressure, which can be derived from the 
analytical solution, is given at (x, y) = (0.5, -0.5).  In this test, 
the maximum radius of physical domain, ρmax is 0.5 2 , so the 
characteristic length that we adopted is one.  In Fig. 4, the 
contours of u, v and p are demonstrated.  Since the results are 
almost identical to the analytical solutions, only the numerical 
results are present.  In Fig. 5, the distributions of absolute error 
of these three components are shown.  The error for u and v  
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Fig. 4. The distributions of (a) x-directional velocity, (b) y-directional 

velocity and (c) pressure. 
 
 
are about 10-11 as well as the error for p is about 10-8.  From the 
comparisons, it can be found that the numerical results are 
highly accurate due to the use of characteristic length.  In order 
to compare the results by the proposed approach with solu-
tions by the conventional Trefftz method, the numerical com- 
parisons by using different characteristic lengths and different  
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Table 1. The comparisons of Maximum Absolute Error (MAE) in example 2 by adopting different origins for Trefftz 
bases. (ε = 0.5) 

(a) Origin for Trefftz bases at (0, 0) 
MAE R0 = 1 0 0.5 2R ε= +  R0 = 2 R0 = 3 

u 2.19e-011 1.16e-011 3.37e-011 2.55e-010 
v 1.93e-011 1.42e-011 3.47e-011 2.57e-010 
p 8.03e-009 3.41e-009 2.37e-009 2.60e-008 

 
(b) Origin for Trefftz bases at (-0.2, -0.2) 

MAE R0 = 1 2 2
0 (0.5 ( 0.2)) (0.5 ( 0.2))R ε= − − + − − +  R0 = 2 R0 = 3 

u 5.32e-007 1.11e-010 2.28e-011 3.17e-011 
v 9.81e-007 1.19e-010 2.29e-011 3.61e-011 
p 3.23e-004 1.30e-008 2.60r-009 1.41e-009 

 
(c) Origin for Trefftz bases at (-0.3, -0.3) 

MAE R0 = 1 2 2
0 (0.5 ( 0.3)) (0.5 ( 0.3))R ε= − − + − − +  R0 = 2 R0 = 3 

u 0.2195 4.85e-009 7.14e-010 2.66e-010 
v 0.1174 3.79e-009 7.12e-010 2.75e-010 
p 34.541 5.29e-007 8.34e-008 1.82e-008 

 
(d) Origin for Trefftz bases at (-0.4, -0.4) 

MAE R0 = 1 2 2
0 (0.5 ( 0.4)) (0.5 ( 0.4))R ε= − − + − − +  R0 = 2 R0 = 3 

u 0.6082 3.34e-008 7.97e-009 3.95e-010 
v 0.4671 3.07e-008 8.42e-009 3.51e-010 
p 129.54 3.68e-006 1.16e-006 4.41e-008 
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Fig. 5. The distributions of absolute error for (a) x-directional velocity, (b) y-directional velocity and (c) pressure. 

 
 
origins for Trefftz bases are shown in Tables 1(a)-(d). 

In these tables, four different characteristic lengths are used.  
When the characteristic length is equal to one, the MCTM is 
identical to the conventional Trefftz method.  From the com-
parisons of maximum absolute errors for velocity components 
and pressure, it can be found that the results by conventional 
approach are very sensitive to the origins of the Trefftz bases.  
In contrary, the errors by MCTM are very stable with respect 
to different origin locations. 

3. Example 3: General Flow in a Channel 
After the validations from the previous two examples, the 

third example considers more practical case [4].  The sche-
matic diagram of the test is depicted in Fig. 6.  

The uniform inflow velocity is assumed at the left boundary.  
The upper and bottom boundary conditions are considered as 
no-slip.  In addition, the parabolic profile of outflow velocity 
is used in the right boundary.  In this test, 301 boundary nodes 
is used and m  is set as 150.  The distribution of x-directional 
velocity is demonstrated in Fig. 7 when different characteristic 
lengths are used.  In Fig. 7(a), the characteristic length is set  
as one in which the MCTM is equivalent to the convectional 
Trefftz method.  Due to the ill-conditioning matrix, the solu-
tions in Fig. 7(a) is asymmetric with respect to y = 0.  On the  
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Fig. 6. The schematic diagram of computational domain and boundary 

condition for example 3. 
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Fig. 7. The distributions of x-directional velocity for (a) R0 = 1 and (b)  

R0 = 4.25 . 
 
 

other hand, the characteristic length in Fig. 7(b) is 4.25  
Therefore, this distribution in Fig. 7(b) is similar with the 
published results [4].  Following the successful validation, it is 
believed that the results are accurate in comparing with the 
solution by BEM [4].  In addition, it is proved that the use of 
characteristic length can stabilize the numerical scheme and 
obtain accurate solutions. 

4. Example 4 
The computational domain of the fourth example is a dou-

bly-connected domain which is shown in Fig. 8.  This bound- 
ary conditions and the geometry are the same as Young et al. 
[16].  The left and right boundaries are assumed as non-slip.  In 
addition, the upper and bottom boundaries are moving by 
constant speed in positive and negative x directions.  Inside the 
square domain, there is a fixed cylinder.  The Stokes flow in 
such irregular domain is not easily to simulated by any 
mesh-dependent methods.  By using the proposed method, only 
the boundary nodes are needed which will greatly simplify the 
numerical methods for Stokes problems. 

Since the computational domain is a doubly-connected one, 
the problem can be considered as linear combination of an 
exterior problem and an interior problem.  Therefore, the so-
lutions of MCTM, Eq. (14), should be changed to the fol-
lowing form, 
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Fig. 8. The schematic diagram of computational domain and boundary 

condition for example 4. 
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Fig. 9.  The distribution of velocity vector for example 4. 
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where 0 ,wc 1{ }w m
k kc =  and 1{ }w m

k kd =  are the unknown coefficients 
corresponding to the exterior problem.  The detailed explana-
tion can be referred to Liu [10].  R0 and R1 are the character-
istic lengths for the interior and exterior problems.  In the 
numerical experiment, R0 = 5 2  and R1 = 0.75 are used. 

The Eqs. (15)-(19) should be changed by the similar way.  
By collocating the velocity boundary conditions and the con- 



 C.-M. Fan et al.: The MCTM for Solving 2D Stokes Problems 529 

 

Table 2.  The numerical solution and comparison of example 4. 
Channel wall Cylinder boundary 

(x, y) Present Analytical  
solution 

Absolute 
Error (x, y) Present Analytical 

solution 
Absolute 

Error 
(-5.00, -4.75) 2.18E-13   0.00 1E-13 (1.50, 0.00) -5.98E-14 0.00 1E-14 
(-5.00, -2.25) -1.14E-12   0.00 1E-12 (1.21, 0.88) 5.77E-14 0.00 1E-14 
(-5.00, 0.25) 8.50E-13   0.00 1E-13 (0.46, 1.43) 1.80E-13 0.00 1E-13 
(-5.00, 2.75) -2.59E-13   0.00 1E-13 (-0.46, 1.43) 7.53E-14 0.00 1E-14 
(-5.00, 4.75) 2.02E-13   0.00 1E-13 (-1.21, 0.88) -6.71E-14 0.00 1E-14 
(-4.75, 5.00) 9.99 10.00 1E-13 (-1.50, 0.00) -1.80E-13 0.00 1E-13 
(-2.25, 5.00) 10.00 10.00 1E-12 (-1.21, -0.88) -1.24E-13 0.00 1E-13 
(0.25, 5.00) 9.99 10.00 1E-13 (-0.46, -1.43) -1.33E-13 0.00 1E-13 
(2.75, 5.00) 10.00 10.00 1E-13 (0.46, -1.43) -1.27E-13 0.00 1E-13 
(4.75, 5.00) 9.99 10.00 1E-13 (1.21, -0.88) -5.98E-14 0.00 1E-14 

 
 
tinuity equation along the boundary, the unknown coefficients 
can be found.  Hence, the solutions inside the domain can be 
retrieved by linear summation.  In this example, 162 boundary 
nodes are used and m is set as 40.  The velocity vector is 
demonstrated in Fig. 9.  The tendency of flow field in Fig. 9 is 
almost the same as the results in [16].  In order to validate the 
results carefully, the velocity components along the boundary 
are computed and tabulated in Table 2.  Since there is no 
analytical solution can be used, we computed the numerical 
solutions at another set of boundary nodes, which is totally 
different from the set of nodes for collocating the boundary 
conditions.  From the table, we can find that the absolute errors 
are extremely small.  Hence, it is proved that the proposed 
scheme, the combination of MCTM and the Laplacian de-
composition, can obtained similar solutions as BEM and MFS 
based on Stokeslet [16]. 

V. CONCLUSIONS 

In this paper, the combination of the Laplacian decompo-
sition and the MCTM are proposed to solve the flow field 
governed by the Stokes equations. 

At first, the Stokes equations are transformed to three 
Laplace equations by the Laplacian decomposition.  Then the 
solutions of these Laplace equations are expressed by the 
linear combination of T-complete functions by following the 
idea of MCTM.  Besides, the continuity equation is forced to 
be satisfied along the boundary to ensure the satisfaction of 
continuity equation inside the computational domain.  The 
unknown coefficients of the solutions expressions are acquired 
by collocating the boundary condition and the continuity 
equation along the boundary.  Once the coefficients are ob-
tained, the flow field can be retrieved by linear summation. 

The proposed numerical scheme is free from mesh and 
numerical quadrature.  In addition, only boundary nodes are 
needed during the implementation, which can greatly reduce 
the computational cost.  The numerical results of the four ex- 
amples show that the proposed scheme can achieve high ac-

curacy and be very stable.  Besides, the distribution of pressure 
can be computed directly.  Therefore, it is believed that the 
proposed scheme has great potential to be extended to realistic 
applications.  It is well-known that performance of the MTCM 
is usually unsatisfactory when the problem with discontinuous 
boundary conditions is considered.  Therefore, the solution 
expression in MCTM may cooperate with the enriched ap-
proach [1, 15] to increase the accuracy of solutions near the 
discontinuity.  The combination of the MCTM and the en-
riched approach will be the future research topics. 
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