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ABSTRACT 
There are many methods able to extract the instantaneous 

frequencies from a time series for practical applications. Ga-
bor’s method is one of the most popular and simple methods.  
For wide band time series, Gabor’s method may produce 
negative frequencies.  The limitation of Gabor’s method is that, 
in order to avoid resulting with negative frequencies, it can 
only be applied to time series with mono component and near 
zero mean.  In this paper, a new method that does not generate 
negative frequencies, the Osculating Circle (OC) Method, is 
presented.  The OC method is based on Gabor’s method but 
with modified unwrapped phase calculation. This new method 
can provide accurate instantaneous frequency (IF) and in-
stantaneous amplitude (IA) calculation with only positive 
frequency results.  This paper is focused on overcoming the 
negative frequency encountered in traditional Garbo’s method.  
Although, other important topics such as the noise are not 
discussed in detail in this paper. 

I. INTRODUCTION 
For non-stationary signals whose spectral contents vary 

with time, the frequency at a particular instance can be char-
acterized by its instantaneous frequency (IF).  In many appli-
cations such as communication systems, bio-medical engi-
neering, failure analysis, the IF can depict important physical 
parameters of the signals.  It is, therefore, critical to have 
effective methods for IF calculation. Using Gabor’s method 
for IF calculation is limited because the results may include 

negative frequencies.  In this paper, we introduce a new 
method, the Osculating Circle (OC) Method, that can over-
come the limitation of negative frequencies when Gabor’s 
method is used.  

II. THE INSTANTANEOUS FREQUENCY 
OBTAINED THROUGH HILBERT  

TRANSFORM 
Many methods had been invented and used to estimate in-

stantaneous frequency. These methods include Short-Time 
Fourier Transform, Wigner Distribution [1, 2], Gabor’s method 
[3, 4, 6] Wavelet Transform, and EMD [7].  Among these 
methods, Gabor’s method [4] that uses Hilbert Transform (HT) 
is the simplest.  In this section, we will discuss the Hilbert 
transfer and issues with negative frequencies. 

1. Hilbert Transform (HT) 
For an arbitrary time series, x(t), we can derive its HT, y(t), 

as 

 1 ( )( ) xy t P d
t
τ τ

π τ
∞

−∞

−
=

−∫  (1) 

where P is the Cauchy principal value [6].  With this definition, 
x(t) and y(t) form a complex conjugate pair and we have an 
analytic signal, z(t), as 

 ( )( ) ( ) ( ) ( ) i tz t x t iy t a t e θ= + =  (2) 

where 

 2 2 1/ 2( ) [ ( ) ( )]a t x t y t= +  (3) 

and 

 1 ( )( ) tan ( )
( )

y tt
x t

θ −=  (4) 
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Fig. 1. (a) A cosine function (with a global mean of 0) and its HT form a 

circle in x – y  plane.  (b) The unwrapped phase vs. time.  Higher 
angular speed would have steeper slope and vice versa.  (c) A 
three dimensional view of cos(ωt); its HT, sin(ωt); and time. 

2. Instantaneous Frequency for a Simple Harmonic  
Function 
Assume a time series, x(t), is a cosine function with a global 

mean of 0.  The HT of x(t) is a sine function.  These two time 
series form a circular trajectory in x – y plane (Fig. 1(a)).  We 
can imagine this as a particle, P, moving counterclockwise 
along a circle with a radius, R, and a constant angular speed.  
The position of the particle can be expressed as the unwrapped 
phase vs. time (Fig. 1(b)) and the slope of the unwrapped 
phase-time plot is the frequency of the particle moving along 
the circle.  A steeper slope corresponds to a higher frequency 
and vice versa.  When the angular speed of the particle varies 
with time, the slope of the unwrapped phase will change with 
time as well.  Fig. 1(c) is the three dimensional view of a time 
series, cos(ωt); its HT, sin(ωt); and the spiral trajectory of the 
particle when time is used as the third axis. 

Suppose we define instantaneous frequency as the time 
derivative of the unwrapped phase of the analytic signal 

 1 ( )( )
2

d tt
dt
θ

π
Ω =  (5) 

where θ (t) is unwrapped phase and Ω(t) is the IF in Hz.  In 
order for IF to be meaningful (i.e., always positive), the slope 
of the unwrapped phase-time plot has to be always positive.  
This implies that the time signal must be locally symmetric to 
the zero mean [3, 6, 7].  Since the majority of real life data 
does not satisfy this requirement, the Gabor’s method often 
produces results with negative frequencies that are difficult to 
interpret and use. 

3. Negative Instantaneous Frequency of the Analytic  
Signal  
Cohen [3] and Hahn [6] noted that, with Gabor’s method, 

the instantaneous frequency of wideband analytic signals may 
change its signs.  An example from their work [6] is presented 
here. 

Let x(t) be the sum of two simple harmonic signals such as  

 x(t) = cos(at/2) + k cos at (6) 

where a and k are real constants.  The combined signal is 
showed in Fig. 2 with a = 2π/512 and k = 0.8.  Fig. 2(a) shows 
one cycle of time series x(t).  Fig. 2(b) is the HT of x(t).  Fig. 
2(c) is the trajectory of a particle formed by x(t) and its HT.  
For a particle moving along the trajectory counterclockwise as 
shown in Fig. 2(c), the solid line in Fig. 2(d) is the unwrapped 
phase-time plot.  Further, the solid line in Fig. 2(e) is the in-
stantaneous frequency obtained by (5) and the solid line in Fig. 
2(f) is the instantaneous amplitude which is the distance from 
the origin to the particle.  Since some portion of the slope is 
negative (solid line in Fig. 2(d)), the corresponding negative 
IF is derived as showed by the solid line in Fig. 2(e).  The IF  
of wideband analytic signals will change from positive to  
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Fig. 2. (a) x(t) = cos(at/2) + k cos at with k = 0.8 and a = 2π/512, (b) HT of x(t), (c) the trace of the particle, (d) unwrapped phase vs. time, (e) instanta-

neous frequency, and (f) instantaneous amplitude.  In (d), (e), and (f), the traditional Gabor’s method is in solid line and OC Method is in dashed 
line. 

 
 

negative when the phasor changes its rotation from counter-
clockwise to the clockwise. 

Under certain circumstances such as a DC offset, even a 
mono-component time series can result negative instantaneous 
frequencies [7].  An example from Huang et al. [7] work is 
presented here.  Consider a cosine time series with some DC 
offset of d 

 x(t) = d + R cos ωt (7) 

Three time series are shown in Fig. 3(a).  The solid line 
shows no offset (d = 0).  The dash line shows an offset smaller 
than the amplitude (d = 0.8 and ⎜d⎪ ≤ R).  The dash dot line 
shows an offset larger than the amplitude (d = 1.5 and ⎜d⎪ > R).  
Although the value of d is different in these three cases, their 
HT are the same (R sin ωt) as showed in Fig. 3(b).  Their phase 
plots of x – y (trajectories) are simple circles with the radius R  
but centered at different location as showed in Fig. 3(c).  Their 
unwrapped phase functions with corresponding d are showed 

in Fig. 3(d).  The IF for corresponding d are shown in Fig. 3(e).  
The IA with corresponding d are showed in Fig. 3(f). 

When there is no offset, ⎜d⎪ = 0, the center of the circle 
(trajectory) is at the origin (solid line in Fig. 3(c)).  For a par-
ticle moving along the circle with a constant angular speed, the 
slope of unwrapped phase-time plot is a straight line (solid line 
in Fig. 3(d)).  The IF (solid line in Fig. 3(e)) and IA (solid line 
in Fig. 3(f)) obtained by Gabor’s method are constant. 

When the offset is smaller than the amplitude, ⎜d⎪ ≤ R, the 
origin will be located inside the circular trajectory but not at 
the center (dash line in Fig. 3(c)).  Although the particle moves 
along the circle (trajectory) with a constant angular speed, the 
slope of unwrapped phase varies with time.  Since the slopes 
of unwrapped phase are always positive (dash line in Fig. 3(d)), 
the IF derived by (5) is also always positive except its value 
varied with time (dash line in Fig. 3(e)).  The Gabor’s IA, 
which is defined as the distance between the origin and the 
particle, is showed as dash line in Fig. 3(f). 

When the distance between the origin and the particle is  
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Fig. 3. (a) x(t) = d + R cos ωt, (b) HT of x(t), (c) the path of the particle, (d) unwrapped phase vs. time, (e) instantaneous frequency, and (f) instantaneous 

amplitude, where R = 1; d = 0 (solid line), d = 0.8 (dash line), and d = 1.5 (dash dot line).  When ⎪d⎪ ≥ R, the unwrapped phase may have negative 
slopes with corresponding negative frequencies. 

 
 

large, IA will be large and vice versa.  In the case when ⎜d⎪ > R, 
the origin is outside of the circular trajectory (dash dot line  
in Fig. 3(c)).  Like the previous case, even if a particle is mov- 
ing with a constant angular speed, the slope of unwrapped 
phase-time in this case is not a constant (dash dot line in Fig. 
3(d)).  In the region where the slope of unwrapped phase func- 
tion is negative, the corresponding IF to that region will be 
negative (dash dot line in Fig. 3(e)).  The IA are showed in Fig. 
3(f) as the dash dot line. 

Intuitively, for a particle with a circular trajectory and a 
constant angular speed, the frequency (IF) and the amplitude 
(IA) should be a constant at any instant regardless the DC 
offset.  However, in the cases presented above, both IF and  
IA are not constant with non-zero offsets.  The example illus-
trated the fact that using Gabor’s method, the IF for a simple 
harmonic signal, such as a cosine function, can be accurately 
depicted only for functions that are symmetric locally with 
zero mean.  Any DC offset can cause inaccurate IF and IA 

measurements.  This limitation is detrimental to most practical 
applications and needs to be removed [7].  One approach to 
overcome this restriction is to decompose the data in such a 
way that the instantaneous frequency can be properly calcu-
lated.  Huang et al. [7] developed the Empirical Mode De-
composition Method (EMD Method) that decomposes a signal 
into a series of zero mean Intrinsic Mode Functions (IMFs).  
For each IMF, the instantaneous frequency can be defined 
everywhere. 

In the following sections, we will present a simple approach 
to solve the Gabor’s negative frequency limitation.  

4. Using the Osculating Circle Method to Derive the  
Instantaneous Frequency and Corresponding  
Amplitude 
The basis of the osculating circle method is similar to the 

traditional Gabor’s method but with modified definitions of 
unwrapped phase and the time dependent amplitude (IA).  In  
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Fig. 4. The trajectory of  particle, P, moving along a circle counterclock- 

wise with constant angular speed.  The correct radius of the circle 
is R (a1) (not a2 or a3 as calculated by Gabor’s method).  A circular 
type trajectory should be a “circle” in x – y plane regardless the 
locations of the origin (global zero) O1, O2 or O3.  For a circular 
hodograph, the corrected unwrapped phase should be θ 1(t) (not 
θ 2 or θ 3).  θ 1(t) is equal to φ(t) – π/2 which is the angle between x 
axis and the tangential line at point P (or velocity vector at point 
P).  Instantaneous amplitude can be calculated from the centri- 
petal acceleration. 

 
 

the OC method, the location of the origin (global mean) is 
ignored and the IF and IA are derived directly from the hodo- 
graph itself.  Take previously discussed example:  Imagine a 
particle, P, traveling counterclockwise in a circular trajectory 
with a radius, R, and a constant angular speed, regardless 
whether the origin (global zero) is at O1, O2 or O3 in Fig. 4, the 
trajectory is always a “circle” in the x-y plane.  For a circular 
hodograph (Fig. 4), the corresponding unwrapped phase, θ1(t), 
can be obtained by subtracting π/2 from the angle ϕ(t).  This is 
the angle between x axis and the tangential line at point  
P (or velocity vector at point P).  The IF is calculated as the 
derivative of unwrapped phase θ1(t).  Using this approach, 
let’s define an osculating circle, C, of a curve at a given point, 
P, as the circle that has the same tangent and the same curva-
ture as the curve at point P [5, 9].  Let’s also define the inverse 
of the curvature as the radius of the osculating circle.  With 
these definitions, the corresponding IA can be obtained from 
the inverse of the curvature of the osculating circle at point P 
(or centripetal acceleration vector at point P).  Therefore, at 
any point, P, of the trajectory constructed by a time series itself 
and its HT, we can find a local inner tangent circle, the oscu-
lating circle, which has the same tangent as the trajectory at 
point P and the same curvature as the trajectory at point P.  The 
unwrapped phase θ(t) is derived from the tangential line of the 
trajectory at point P, and IA is the radius of the osculating 
circle at point P.  Thus, procedure of the OC method for cal-
culating IF and IA is: 
 
Step 1: For a giving time series x(t), apply HT to obtain the 

imaginary part, y(t).  These two time series form the 
trajectory of a particle. 

Step 2: Calculate the velocity vector of the particle and then 
the unwrapped phase, θ(t), at time, t, as 

 ( ) ( )
2

t t πθ ϕ= −  (8) 

 where ϕ(t) is the angle between x axis and the tan-
gential line at point P. 

Step 3: Calculate IF(t) (5) in Hz as 

 1 ( )IF( ) ( )
2

d tt t
dt
θ

π
= Ω =  (9) 

 From [8], for a vector function, ( )r t , where t is time, 
the curvature κ(t) at point P can be calculated as 

2

3/ 2

( '( ) '( )( ''( ) ''( ) ( '( ) ''( ))
( )

( '( ) '( ))
r t r t r t r t r t r t

t
r t r t

κ
⋅ ⋅ − ⋅

=
⋅

 (10) 

 where ( )r t′  and ( )r t′′ are first and second derivative 
of vector )(tr . 

Step 4: The amplitude, IA(t), that corresponding to this IF(t) 
can be found by 

 1IA( ) ( )
( )

t R t
tκ

= =  (11) 

III. CASE STUDY AND COMPARISON 
We will re-examine the example discussed in previous sec-

tion using the new OC method. 

1. Simple Harmonic Function with Non-zero Mean 
In the case of a simple harmonic function with a non-zero 

mean (or DC offsets) 

 x(t) = d + R cos ωt (12)  

We have shown that when ⎪d⎪ > R, the traditional Gabor 
method will result negative IF from HT unwrapped phase-time 
plot.  Using the OC method, the HT of (12) is 

 y(t) = R sin ωt (13) 

The trajectory, ( )r t , of particle, C, can be expressed as 

 ( ) ( cos ) ( sin ) r t d R t i R t jω ω= + +  (14) 

The unit tangent vector of C is  

 '( ) ( sin ) ( cos ) r t R t i R t jω ω ω ω= − +  (15) 
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The unwrapped phase is 

 1 cos t( ) tan
sin t 2

Rt t
R
ω ω πθ ω
ω ω

− ⎛ ⎞
= − =⎜ ⎟−⎝ ⎠

 (16) 

The IF is  

 ( )( ) d tt
dt
θ ωΩ = =  (17) 

The centripetal acceleration of the particle [8, 9] is 

 1( )t
R

κ =  (18) 

The amplitude of instantaneous frequency (radius of the 
circle) at time t is 

 1( )
( )

A t R
tκ

= =  (19) 

With this method, regardless the magnitude of the DC off-
set, d = 0, ⎪d⎪ ≤ R, or ⎪d⎪ > R,  IF, and IA are constant (shown 
as the solid line in Fig. 3(d) and Fig. 3(f)).  As we take the time 
derivative of the trajectory to calculate the velocity vector, the 
constant DC shift is dropped.  In this example, the OC method 
correctly concluded that IF and IA are constant. 

This OC method can be applied to any hodograph of phasor 
defined by a time series and its Hilbert Transform. 

2. Adding Two Simple Harmonic Signals Together 
For the combined simple harmonic signal example  

 x(t) = cos(at/2) + k cos at 

where k = 0.8 and a = 2π/512.  The OC in this example would 
have a changing radius as the circle moves along the trajec- 
tory.  The unwrapped phases can be calculated from the tan-
gent line at any point of time.  The dash lines in Fig. 2 are 
obtained from the OC method.  The first three figures (a, b, 
and c) are the same for both the tradition Gabor’s method and 
the OC method.  The dash line in Fig. 2(d) is the unwrapped 
phase-time plot and the dash line in Fig. 2(e) is the IF given by 
(9).  IA, the radius of osculating circles, which is equivalent to 
the derivative of the velocity for the particle trajectory at point 
P is given by (11) and showed as the dash line in Fig. 2(f).  As 
shown in Fig. 2(d), the slope of unwrapped phase is always 
positive, so is the IF shown as the dash line in Fig. 2(e). 

From  Fig. 2(e) and 2(f), due to the larger radius of oscu-
lating circle at point A than it is at point B on Fig. 2(c), the 
phase change is faster at point B.  Thus, the frequency at point 
B is higher than at point A.  On the other hand, the radius of 
osculating circle at point A on Fig. 2(c) is smaller than the 
length of OA, thus the IA obtained by OC method is smaller 
than the IA from Gabor’s method. 

3. Frequency Shift Cosine Waves 
For the frequency shift cosine waves  

x(t) = cos(at)             0 ≤ t ≤ 1023 
  (20) 

x(t) = cos(at/2)          1024 ≤ t ≤ 2047 

where a = 2π/128.  The frequency shift cosine wave x(t) is 
showed in Fig. 5(a).  Fig. 5(b) is the HT of x(t).  Fig. 5(c) is the 
trajectory of a particle formed by x(t) and its HT.  For a particle 
moving along the trajectory counterclockwise as shown in  
Fig. 5(c), the unwrapped phase-time plot in Fig. 5(d).  The in- 
stantaneous frequency obtained by (8) and (9) is in Fig. 5(e) 
and the instantaneous amplitude is in Fig. 5(f).  Fig. 6 is the 
Hilbert spectrum for the data on Fig. 5(a), using HHT for com- 
parison [7]. 

Look at Fig. 5(e) and 5(f), the end effects manifested at the 
ends of the time series and at frequency shift region could be 
found.  The end effects could not be prevented in this example 
due to limited data points in this time series.  The spike at fre- 
quency shift region is due to an abrupt change of unwrapped 
phase.  These problem could be solved or depressed by 
smoothing the unwrapped phase at adjacent points.  Compare 
Fig. 5(e) and Fig. 6, both of them showing sharp frequency and 
time localizations, but in Fig. 6 the frequencies shift smoothly 
from high frequency to low frequency. 

IV. DISCUSSIONS 
The OC method treats the input data (signal plus noise) as 

signal only.  For real data with both signal and noise, the sec- 
ond derivative of vector ( )r t  may sharply fluctuate from time 
to time.  Thus, the calculated curvature could be negative.  In 
some cases, the original data is not varied smoothly, even the 
first derivative of vector ( ),r t  could be negative as showed in 
previous example.  Thus, when the input data are signal mixed 
with noises, when preprocesses are not applied to remove or 
depress the noise, the calculated IF(t) may quite different from 
the IF(t) obtained from signal only.  One way to solve the 
problem, is removed the noise before applying the OC method, 
such as apply FFT or HHT to the time series first, then remove 
the highest frequency component.  The other way is using 
moving average to smooth the unwrapped phase etc. before 
calculating IF and IA by using OC method. 

For signal that comprises two wave components, there are 
six unknowns: two frequencies, two amplitudes and two 
phases.  Theoretically, the IF and IA could be extracted by 
solving six nonlinear equations simultaneously.  For data more 
than six points, these six unknown parameters could be solved 
by solving a series of six unknowns over determined nonlinear 
equations. 

V. CONCLUSIONS 
In this paper, the OC method, a new method of calculating  
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Fig. 5. (a) The frequency shift cosine wave a = 2π/128 x(t) = cos at, 0 ≤ t ≤ 1023, x(t) = cos(at/2), 1024 ≤ t ≤ 2047, (b) HT of x(t), (c) the path of the particle, 

(d) unwrapped phase vs. time, (e) instantaneous frequency, and (f) instantaneous amplitude. 
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Fig. 6. The Hilbert spectrum for the data on Fig. 5(a), showing sharp 
frequency and time localizations.  (From Huang, 1998)  

 
IF and IA is introduced.  This method employs the basic ap-
proach from Gabor’s method with modified definitions of 
unwrapped phase, IF and IA.  The OC method eliminated the 
possibility of arriving negative frequency results.  Since the 
osculating circle of a given curve at any given time is unique, 
there will be only one corresponding IF and IA at any instant.  

The OC method calculates the combined effects at any instant 
with no decomposition.  This fact applies to any time series 
whether it is a simple harmonic function or a superposition of 
many linear components. 

The new approach treats the input data as signal without 
any noise.  If the input data is signal mixed with noises, di-
rectly use the OC method may cause unpredicted errors, when 
IF and IA are calculated.  In order to get meaningful informa-
tion, when apply OC method to real data, preprocess with care 
is necessary to decrease the effect of noise.  Since, OC method 
provide a more accuracy IF and IA than the tradition Gabor’s 
method.  One potential application of OC method is applying 
OC method to estimate IF and IA for each IMFs obtained by 
EMD method [7]. 
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