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ABSTRACT 
This paper presents a new mathematical method to construct 

a fuzzy time series model of a system where the fuzzy support 
and interval values are used.  This paper further presents an 
improved fuzzy time series model with a long-term predictive 
value interval and shows that the proposed definition can be 
used for long-term forecasting.  The enrollment data of the 
University of Alabama (adopted by Song and Chissom, 1993) 
are used to demonstrate the proposed forecast model. 

I. INTRODUCTION 
Since its creation in 1965 by Zadeh [15], fuzzy set theory 

has enjoyed successful achievements both in theory ad-
vancement [15-17] and practical applications [1, 4, 6, 10].  In 
previous papers, the inadequacy of fuzzy time series models  
is found when fuzzy implications are used to express fore-
casting rules [1-17].  Several fuzzy time series models have 
been developed since Chen’s [5] paper was published.  The 
main purpose of this paper is to present a mathematical 
method to construct a fuzzy time series model for long-term 
prediction.  This paper proposes a new method for long-term 
forecasting using the fuzzy time series based on Chou and 
Lee’s method [5].  According to Chou and Lee’s method [5], a 
long-term predictive value interval definition is added to im-
prove attribution based on the definition of the fuzzy time 
series.  This paper focuses on the enhancement of increasing 
and decreasing cases in Chou and Lee’s framework.  The 
current paper tackles the issues of improving the forecasting 
accuracy by controlling the uncertainties, and determining the 
support [7] of the fuzzy numbers.  The university enrollment 
data used by Song and Chissom [2-5, 11-14] is used to dem-
onstrate the proposed forecasting model.  The remainder of 
this paper is organized as follows.  Section 2 presents the fuzzy 

time series definition.  In Section 3, the long-term predictive 
value interval using the fuzzy time series is presented.  The 
forecasting of enrollment data is shown in Section 4.  Finally, 
the conclusions are made in Section 5. 

II. FUZZY SETS AND FUZZY TIME SERIES 
Song and Chissom [11-14] use discrete fuzzy sets to define  

the fuzzy time series.  Chen [2] indicates Song and Chissom’s 
method is too complicated, thus he proposes a simple method 
to compute the fuzzy relation.  Lee and Chou [7] provide an 
objective interval method to define the universe of discourse.  
Liaw [9] investigates the nonstationary problem and employs 
the fuzzy trend technique to define the fuzzy time series.  
Various definitions and properties of fuzzy time series fore-
casting [2, 7, 9, 11, 12] are summarized as follows: 

 
Definition 1 [8, 11] A fuzzy number on the real line ℜ is a 
fuzzy subset of ℜ that is normal and convex. 

 
Definition 2 [11, 12] Let Y(t) (t = …, 0, 1, 2, …), a subset of ℜ, 
be the universe of discourse on which the fuzzy sets fi(t) (t = 1, 
2, …) are defined and F(t) is the collection of fi(t) (t = 1,  
2, …).  Then, F(t) is called a fuzzy time series on Y(t) (t = …, 0, 
1, 2, …). 

 
Definition 3 [11, 12] Let I and J be the index sets for F(t – 1) 
and F(t) respectively.  If for any fj(t) ∈ F(t) where j ∈ J, there 
exists fi(t – 1) ∈ F(t – 1) where i ∈ I such that there exists a 
fuzzy relation Rij(t, t – 1) and fj(t) = fi(t – 1) D Rij(t, t – 1) where 
‘D’ is the max-min composition, then F(t) is said to be caused 
by only F(t – 1).  Denote this as fi(t – 1) → fj(t), or equivalently, 
F(t – 1) → F(t). 

 
Definition 4 [11, 12] If for any fj(t – 1) ∈ F(t) where j ∈ J, 
there exists fi(t – 1) ∈ F(t – 1) where i ∈ I and a fuzzy relation 
Rij(t, t = 1) such that fj(t) = fi(t – 1) D Rij(t, t – 1).  Let R(t,  
t – 1) = ∪ijRij(t, t – 1) where ∪ is the union operator.  Then,  
R(t, t – 1) is called the fuzzy relation between F(t) and F(t – 1).  
Thus, we define this as the following fuzzy relational equation: 
F(t) = F(t – 1) D R(t, t – 1). 

 
Definition 5 [11, 12] Suppose that R1(t, t – 1) = ∪ijR1

ij(t, t – 1) 
and R2(t, t – 1) = ∪ijR2

ij(t, t – 1) are two fuzzy relations between 
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F(t) and F(t – 1).  If for any fj(t) ∈ F(t) where j ∈ J, there exist 
fi(t – 1) ∈ F(t – 1) where i ∈ I and fuzzy relations R1

ij(t, t – 1) 
and R2

ij(t, t – 1) such that fi(t) = fi(t – 1) D R1
ij(t, t – 1) and fi(t) = 

fi(t – 1) D R2
ij(t, t – 1),  then define R1(t, t – 1) = R2(t, t – 1). 

 
Definition 6 [11, 12] Suppose that F(t) is only caused by F(t – 
1) or F(t – 1) or F(t – 2) ... or F(t – m) (m > 0).  This relation 
can be expressed as the following fuzzy relational equation: 

 F(t) = F(t – 1) D R0(t, t – m) 

This equation is called the first-order model of )(tF . 
 

Definition 7 [11, 12] Suppose that F(t) is simultaneously 
caused by F(t – 1), F(t – 2), …, and F(t – m) (m > 0).  This 
relation can be expressed as the following fuzzy relational 
equation: 

 F(t) = (F(t – 1) × F(t – 2) × … × F(t – m)) D Ra(t, t – m) 

This equation is called the mth order model of F(t). 
 

Definition 8 [2] F(t) is a fuzzy time series if F(t) is a fuzzy set.  
The transition is denoted as F(t – 1) → F(t). 

 
Definition 9 [7] The universe of discourse U = [DL, DU] is 
defined such that DL = Dmin − stα(n) / n  and DU = Dmax + 
stα(n) / n  when n ≤ 30 or DL = Dmin − σZα / n  and DU =  
Dmax − σZα / n  when n > 30, where tα(n) is the 100(1 − α) 
percentile of the t distribution with n degrees of freedom and 
zα is the 100(1 − α) percentile of the standard normal distri-
bution, that is, if Z is a N(0, 1) distribution, then P(Z ≥ zα) = α. 

 
Definition 10 [7] Assuming that there are m linguistic values 
under consideration, let Ai be the fuzzy number that repre- 
sents the ith linguistic value of the linguistic variable where  
1 ≤ i ≤ m.  The support of Ai is defined to be 

 

( )( 1) ,   ,  1 1

( )( 1) ,   ,  .

U L U L
L L

U L U L
L L

D D i D DD i D i m
m m

D D i D DD i D i m
m m

− −⎧ + − + ≤ ≤ −⎪⎪
⎨ − −⎪ + − + =
⎪⎩

 

Definition 11 [9] For a test H0: nonfuzzy trend against H1: 
fuzzy trend, where the critical region C* = {C⎪C2

k + C2
n – k >  

Cλ = C2
n × (1 − λ)} and the initial value of the significant level 

α is 0.2. 

III. THE STATIC LONG-TERM PREDICTIVE 
VALUE INTERVAL 

In this section, a useful method is proposed to forecast the 
long-term predictive value interval using a fuzzy time series.  

Generally speaking, this method is an extended model of the 
method proposed by Chou and Lee [5, 7]. 

 
Definition 12 Let d(t) be a set of real numbers: d(t) ⊆ R.  An 
upper interval for d(t) is a number b such that x ≤ b for all  
x ∈ d(t).  d(t) is said to be an interval above if d(t) has an upper 
interval.  A number, max, is the maximum of d(t) if max is an 
upper interval for d(t) and max ∈ d(t). 

 
Definition 13 Let d(t) ⊆ R.  The least upper interval of d(t) is  

a number 
→

max  satisfying: 
 

(1): 
→

max  is an upper interval for d(t): x ≤ 
→

max  for all x ∈ d(t). 

(2): 
→

max  is the least upper interval for d(t), that is x ≤ b for all 

x ∈ d(t) ⇒ max
→

≤ b. 
 

Definition 14 Let d(t) be a set of real numbers: d(t) ⊆ R.  A 
lower interval for d(t) is a number b such that x ≥ b for all x ∈ 
d(t).  d(t) is said to be an interval below if d(t) has a lower 
interval.  A number, min, is the minimum of d(t) if min is a 
lower interval for d(t) and min ∈ d(t). 

 
Definition 15 Let d(t) ⊆ R.  The least lower interval of d(t) is  

a number min
←

 satisfying: 
 

(1): min
←

 is a lower interval for d(t): x ≥ min
←

 for all x ∈ d(t). 

(2): min
←

 is the least lower interval for d(t), that is x ≥ b for all 

x ∈ d(t) ⇒ min
←

≤ b. 
 

Definition 16 The long-term predictive value interval, ( min
←

, 

max)
→

 is called the static long-term predictive value interval. 
 

Following Definitions 12-16, ( min,
←

max)
→

 can be obtained.  
In summary,  the long-term predictive value interval for d(t)  

is given by ( min
←

, max
→

).  The stepwise procedure of the pro-
posed method consists of the following steps and a flow dia-
gram is shown in Fig. 1. 

 
Step 1. Let d(t) be the data under consideration and F(t) be  

the fuzzy time series.  Following Definition 11, a dif- 
ference test is used to understand whether or not the 
information is in a stable state.  Recursion is per-
formed until the information is in a stable state, where 
the critical region is C* = {C⎪C2

k + C2
n – k > Cλ = C2

n ×  
(1 − λ)}. 

Step 2. Determine the universe of discourse U = [DL, DU]. 
Step 3. Define Ai by letting its membership function be as 

follows: 
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Is the Data Stable?

Define the Universe of Discourse

Fuzzy Observed Rules

Forecast and Defuzzify

Set Up Prediction Value Interval
 

Fig. 1.  The procedure of the proposed model. 
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Step 4. Then, F(t) = Ai if d(t) ∈ supp(Ai), where supp (·) de-
notes the support. 

Step 5. Derive the transition rule from period t – 1 to t and 
denote it as F(t – 1) → F(t).  Aggregate all transition 
rules.  Let the set of rules be R = {ri⎪ri : Pi → Qi}. 

Step 6. The value of d(t) can be predicted using the fuzzy 
time series F(t) as follows: 

 Let T(t) = {rj⎪d(t) ∈ supp(Pj), where rj ∈ R} be the set 
of rules fired by d(t), where supp(Pj) is the support of 
Pj.  Let supp( )jP be the median of supp(Pj).  The pre- 

dicted value of d(t) is
( 1)

supp( )
( 1)

j

j

r T t

Q
T t∈ − −∑ . 

Step 7. The long-term predictive value interval for d(t) is 

given as ( min
←

, max)
→

. 

IV. ENROLLMENT FORECASTING 
Enrollment forecasting will be used to demonstrate how the 

proposed fuzzy time series model can be applied to forecast 
long-term data.  The walk through of enrollment forecasting is 
presented as follows. 

Table 1. Fuzzy historical enrollment data and forecasted 
enrollment. 

Year Actual Fuzzified  
enrollments 

The forecasted  
results 

1971 13,055 A1  

1972 13,563 A2 14,025 
1973 13,867 A2 14,568 
1974 14,696 A3 14,568 
1975 15,460 A3 15,654 
1976 15,311 A3 15,654 
1977 15,603 A3 15,654 
1978 15,861 A4 15,654 
1979 16,807 A5 16,197 
1980 16,919 A5 17,283 
1981 16,388 A4 17,283 
1982 15,433 A3 16,197 
1983 15,497 A3 15,654 
1984 15,145 A3 15,654 
1985 15,163 A3 15,654 
1986 15,984 A4 15,654 
1987 16,859 A5 16,197 
1988 18,150 A6 17,283 
1989 18,970 A7 18,369 
1990 19,328 A7 19,454 
1991 19,337 A7 19,454 

Source: [7]. 
 
 

1. Forecasting of Enrollment: 
Step 1. Let d(t) be the historical data under consideration and 

F(t) be the fuzzy time series.  Following Definition 11, 
a difference test is used to understand whether or not 
 the information is in a stable state.  Recursion is per- 
formed until the information is in a stable.  Since =  
C" = {C⎪C = C2

4 + C2
21 – 4} = 142 < {C⎪C2

21 × (1 – 0.2)} = 
168, that the information is in a stable state is not re-
jected. 

Step 2. From Definition 9, the discourse U = {DL, DU}.  From 
Table 1, Dmin = 13,055, Dmax = 19,337, s = 1,757, and 
n = 21 can be obtained.  Let α = 0.05.  Since n is less 
than 30, the Student-t distribution with 21 degrees of 
freedom is used as a substitute for the normal distri-
bution.  Thus, tα(n) = t0.05(21) = 1.721, DL = Dmin − 
stα / n  ≈ 12,396, and DU = Dmax + stα / n  ≈ 19,996.  
That is, U = [12,396, 19,996]. 

Step 3. Assume that the following linguistic values are under 
consideration: extremely few, very few, few, some, 
many, very many, and extremely many.  According to 
Definition 10, the supports of fuzzy numbers that 
represent the linguistic values are given by  
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Table 2.  Fuzzy transitions derived from Table 1. 
r1 : A1 → A2 
r2 : A2 → A2 
r3 : A2 → A3 
r4 : A3 → A3 
r5 : A3 → A4 

r6 : A4 → A3 
r7 : A4 → A5 
r8 : A5 → A4 
r9 : A5 → A6 
r10 : A5 → A5 

r11 : A6 → A7

r12 : A7 → A7

Source: [7].  
 

1 for [12,396 ( 1)(1,086),12,396 (1,086)) 
where 1 1;

( ) 1 for [12,396 ( 1)(1,086),12,396 (1,086)]
where ;
0 otherwise.

iA

x i i
i m

u x x i i
i m

∈ + − +⎧
⎪ ≤ ≤ −⎪⎪= ∈ + − +⎨
⎪ =⎪
⎪⎩

 

 where A1 = extremely few, A2 = very few, A3 = few,  
A4 = some, A5 = many, A6 = very many, and A7 = ex-
tremely many.  Thus, the supports are supp(A1) = [12,396, 
13482], supp(A2) = [13,482, 14,568], supp(A3) = [14,568, 
15,654], supp(A4) = [15,654, 16,740], supp(A5) = [16,740, 
17,826], supp(A6) = [17,826, 18,912], and supp(A7) = 
[18,912, 19,996]. 

Step 4. The fuzzy time series F(t) is given by F(t) = Ai when 
d(t) ∈ supp(Ai).  Therefore,  

 
 F(1971) = A1, F(1972) = A2, F(1974) = A3, F(1979) = 

A5, …, and F(1989) = A7  
 
 A comparison between actual enrollment data and the 

fuzzy enrollment data is shown in Table 1. 
Step 5. The transition rules are derived from Table 1.  For 

example, F(1977) → F(1978) is A3 → A4.  All transi-
tion rules obtained from Table 1 are shown in Table 2. 

Step 6. The forecasting results from 1972 to 1991 are shown 
in Table 1. 

Step 7. The long-term predictive value interval for d(t) is 
given as (14,025, 19,454). 

2. Discussion 
One of the major limitations of the existing fuzzy time se-

ries forecasting models [2-5, 7, 11-14] is that they can only 
provide a single-point forecast value.  The current paper pro-
poses a method which is a composite of the fuzzy support [7] 
and the stability concept of fuzzy time series [9].  This method  
not only provides a more objective interval setup technique, [7] 
but also increases the forecasting applicability [2-5, 7, 11-14]. 

It is demonstrated that the proposed time series model 
provides an adequate fit to the data and values for the derived 
fuzzy transitions can be forecasted by using Definitions 12-16.  
To forecast the long-term predictive value interval for d(t), the 

min-max interval, is given by ( min,
←

 max)
→

 = (14,025, 19,454).  

According to the ( min,
←

 max)
→

, it is clear that the proposed 

method can provide better forecasting information than other 
methods [2-5, 7, 11-14]. 

V. CONCLUSIONS 

In this paper, a long-term predictive value interval model 
has been developed for the fuzzy time series.  This model 
helps to minimize the uncertainties of the fuzzy numbers and 
handle fuzzy-trend/non-fuzzy-trend [9].  The method is ex-
amined by forecasting the enrollment of a university from its 

enrollment data from which the min-max interval, (min,
←

 

max),
→

 is obtained.  In summary, the proposed method is as 
accurate as the methods used in the past [2, 3, 7, 11-14], and is 
more robust and systematic in forecasting. 
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