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ABSTRACT 
This paper describes a design of fuzzy controller for the 

input constrained discrete nonlinear passive systems via affine 
Takagi-Sugeno (T-S) fuzzy models.  The stability conditions 
are derived based on Lyapunov and passive theories for the 
closed-loop system.  The fuzzy controller design is accom-
plished by using the concept of Parallel Distribution Com-
pensation (PDC).  According to the proposed fuzzy control ap- 
proach, the controlled system can achieve passive property 
and the input constraint, simultaneously.  The Iterative Linear 
Matrix Inequality (ILMI) algorithm is applied in this paper  
to find the feasible solutions for the proposed fuzzy controller 
design approach.  At last, a numerical simulation to the truck- 
trailer system is provided to demonstrate the applicability and 
effectiveness of the proposed fuzzy control methodology. 

I. INTRODUCTION 
The passivity theory [4, 9, 11-15, 20, 21] provides a nice 

tool for analyzing the stability of the nonlinear or linear sys-
tems by using an input-output description based on energy- 
related consideration.  The main ideal behind this is that many 
important physical systems have certain input-output proper-
ties related to the conservation, dissipation and transport of 
energy.  By constructing proper Lyapunov function and using 
some analytic techniques, several sufficient conditions are 
given to ensure the passivity of the closed-loop systems.  As 
for a storage function, it measures the amount for energy 
stored in the internal of the system, so it is naturally described 

by using internal variables of system, that it, state variables.  
Passivity theory is intimately related to Lyapunov stability 
theory.  The Lyapunov function is represented as a quadratic 
function of state variables in this paper.  The researchers and 
engineers can design controllers to achieve passivity proper-
ties for the systems based on Lyapunov function.  The passive 
property has many types for expressing total energy and input 
energy of systems via power supply.  The choice of the power 
supply is a very interesting task for the control systems [4, 11, 
12, 14, 20, 21]. 

The T-S fuzzy model [2, 3, 5-8, 10, 16-19] provides an ef-
fective representation of complex nonlinear systems in terms 
of fuzzy sets and fuzzy reasoning applied to a set of linear 
input/output subsystems.  One can approach the trajectory of 
an original nonlinear system via combination of the mem-
bership function and the sublinear systems of the T-S fuzzy 
model.  Hence, the T-S fuzzy model becomes a useful ap-
proach to investigate the nonlinear systems.  The T-S fuzzy 
model is described by IF-THEN rules and the corresponding 
fuzzy controller design is developed based on PDC technique 
[2, 3, 5-8, 10, 16-19].  The pioneers, Kim and his colleagues  
[5] have provided a sufficient condition for the stability analy- 
sis of the affine T-S fuzzy models in sense of Lyapunov ine-
quality.  The affine T-S fuzzy model means the T-S fuzzy 
model of which consequent part is affine and which has a 
constant bias term.  The affine T-S fuzzy model is more natural 
and appealing to human beings than the homogeneous one.  
The homogeneous T-S fuzzy model is usually studied by the 
researchers due to the ease of analysis [5-7, 16-19]. 

In this paper, both the controller design synthesis of dis-
crete-time affine T-S fuzzy systems and control input con-
straint discussed in [18] are considered.  In general, the sta-
bility conditions of affine T-S fuzzy systems are most Bilinear 
Matrix Inequality (BMI) problems which were discussed in  
[2, 3, 8, 10].  The BMI problem is difficult to solve by nu-
merically convex optimization technique and cannot be cal-
culated via LMI toolbox in MATLAB.  For this reason, it is 
necessary to take the LMI form to replace the BMI form via 
some transform techniques and relation functions.  In synthe-
sis, the derived stability conditions and the controller design 
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problem can be numerically solved by an iterative manner, 
which is called as ILMI algorithm [2, 3, 8, 10].  The ILMI 
algorithm is developed to solve the BMI problem; hence, it 
can be used to find the feasible solutions of fuzzy controller 
design problems for the affine T-S fuzzy models.  Extending 
the ILMI algorithm developed in [2, 3, 8, 10], a modified ILMI 
algorithm is derived in this paper to find suitable fuzzy con-
trollers such that the control input constraint and passive prop- 
erty of the affine T-S fuzzy models can be achieved.  Hence, 
the contribution of this paper is to develop a useful fuzzy 
controller design methodology to deal with the input con-
strained control problem for the discrete affine T-S fuzzy 
models that achieve passive performance constraints. 

The principle structure of this paper is described as follows.  
The descriptions of discrete affine T-S fuzzy model and pas-
sive property are presented in Section 2.  Based on the PDC 
concept, the stability analysis and input constrained fuzzy 
controller design synthesis are solved for discrete affine T-S 
fuzzy model in Section 3.  Applying the proposed fuzzy con-
troller design approach to the truck-trailer system via nu-
merical simulations is shown in Section 4.  Finally, concluding 
remarks are made in Section 5. 

II. SYSTEM DESCRIPTIONS AND STABILITY 
ANALYSIS WITH PASSIVITY 

The passivity and Lyapunov stability conditions of discrete 
affine T-S fuzzy systems are discussed via Lyapunov criterion 
in this section.  Besides, the S-procedure is used to derive the 
Lyapunov stability conditions with passivity constraints.  The 
detail of S-procedure can be referred to [1, 2, 10].  By using the 
IF-THEN fuzzy rule form, the discrete-time affine T-S fuzzy 
system is described as follows. 

 
Plant Part: 
Rule i: IF x1(k) is Mi1 and x2(k) is Mi2 and …and xp(k) is Mip 

 i i i iTHEN ( 1) ( ) ( ) ( )u wx k x k u k w k+ = + + +A B B a  (1a) 

i i( ) ( ) ( ) i 1, ..., ry k x k w k= + =C D  (1b) 

where Ai ∈ ℜnx × nx, Bui ∈ ℜnx × nu, Bwi ∈ ℜnx × ny, ai ∈ ℜnx, Ci ∈ 
ℜny × nx, and Di ∈ ℜny × ny are constant matrices and x(k) ∈ ℜnx is 
the state vector, y(k) ∈ ℜny is the output vector, w(k) ∈ ℜny is 
the square-integrable exogenous input vector, u(k) ∈ ℜnu is the 
control input vector, Mij is the fuzzy set, p is the premise 
variable number and r is number of fuzzy model rules.  Given 
the pair of (x(k), u(k)), the closed-loop of the fuzzy model (1) 
can be referred as follows. 
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and Mij(xj(k)) is the grade of membership function of xj(k) in 

Mij.  It is assumed that ωi(x(k)) ≥ 0, 
r

i
i 1

( ( )) 0,x kω
=

>∑  hi(x(k)) ≥ 

0, 
r

i
i 1

( ( )) 1h x k
=

=∑ and i = 1, …, r for all x(k). 

For the nonlinear plant provided in (2) or (3), the fuzzy 
controller is designed to share the same fuzzy set with the 
plant.  This fuzzy controller is developed based on the PDC 
technique that can be referred to [2, 3, 5-8, 10, 16-19].  The 
PDC-based fuzzy controller has the following form. 

 
Controller Part: 
Rule i: IF x1(k) is Mi1 and x2(k) is Mi2 and …and xp(k) is Mip 

 iTHEN ( ) ( ), i 1, ...,  ru k x k= − =F  (6) 

Based on PDC concept, the fuzzy controller can be repre-
sented via summation as follows. 

 
r

i i
i 1

( ) ( ( ))( ( )) i 1, ...,  ru k h x k x k
=

= − =∑ F  (7) 

Substituting (7) into (3a), one can obtain the corresponding 
closed-loop system such as 
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Assumption 1: 

The region Xi ⊆ ℜ nx is nx-dimensional convex polyhedron 
which is called as a cell.  The cell indices are denoted by Ĩ and 
union of all cells ii I∈Χ ⊆ Χ�∪  is referred to as the partition.  

Let Î ⊆ Ĩ be the set of indices for the fuzzy rules that contain 
the origin and others be the set of indices for the fuzzy rules 
that not contain the origin.  Here, the origin x(0) = 0 is the 
equilibrium point of the discrete affine T-S fuzzy model and it 
is assumed ai = 0 for i ∈ Î. 

 
The concept of the passive property proposes a very useful 

tool in the stability analysis and controller design synthesis for 
linear or nonlinear dynamic systems.  The strictly input pas-
sive property is introduced in the following definition that will 
be used to discuss the passivity constraints for the discrete 
affine T-S fuzzy systems in the paper. 

 
Definition 1 [4]: 

The system (3) with exogenous input w(k) and output y(k) is 
said to be strictly input passive if 

 
q q

T T

0 0
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y k w k w k w kγ

= =

>∑ ∑  (9) 

where γ ≥ 0, kq > 0 and x(0) = 0. 
 
There are many other types of passive inequality, which can 

be referred to the references [13, 20, 21].  The passivity 
analysis problem can also be considered as an H∞ analysis 
problem via some assumptions that can be refereed to [11, 15, 
21].  The passivity conditions for the discrete-time affine T-S 
fuzzy system (8) and (3b) can be characterized by the follow- 
ing theorem. 

 
Theorem 1: 

If there exist a positive definite matrix P > 0, scalars γ ≥ 0 
and εijq ≥ 0 for satisfying the following conditions, then the 
discrete-time affine T-S fuzzy model (3) driven by fuzzy con-
troller (7) is strictly input passive and Lyapunov stable. 
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where 

 T
11 ij ij= −Φ G PG P  (12) 

 T
21 ij ij i= −Φ N PG C   (13) 

 T T
22 ij ij i i γ= − − +Φ N PN D D I   (14) 

and Tijq ∈ ℜnx × nx, nijq ∈ ℜnx and vijq ∈ ℜ are defined such as 

 T T
ijq ijq ijq ijq( ( )) ( ) ( ) 2 ( ) 0x k x k x k x k vΘ = + + ≤T n  (15) 

Proof: 
First, we select the case of fuzzy rules i ∉ Î in following 

proof.  Use the storage function V(x(k)) = xT(k)Px(k) as a 
Lyapunov function for the closed-loop system (8).  By evalu-
ating the first forward difference of V(x(k)) along the trajec-
tories of (8), one has 

T T( ( )) ( 1) ( 1) ( ) ( )V x k x k x k x k x kΔ = + + −P P  

r r r r

i j s z
i 1 j 1 s 1 z 1
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Choosing the performance function such as 
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with zero initial condition for all w(k).  Then, for any nonzero 
w(k) one has 
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According to (17) and (18), one has 
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Converting (19) to an LMI by applying the S-procedure  
[1, 2, 10], one has 
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where Θijq(x(k)) ∈ ℜ is defined in (15).  Due to εijq ≥ 0 and 
Θijq(x(k)) ≤ 0, the (20) can be rewritten as  
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Obviously, if inequality (11) is held for all x(k) ∈ Xi and i ∉ 

Î then 
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Since (23) is equivalent to (9), it is easy to show that the 
system is strictly input passive with exogenous input and out- 
put. 

Now, we have to show that the discrete-time affine T-S 
fuzzy model (8) is Lyapunov stable.  From (21), if the in- 
equality (11) is held, thus we have L(x, w, k) < 0.  By assuming 
the exogenous input w(k) = 0, one has 

 ΔV(x(k)) < 0 (24) 

Thus, the discrete-time affine T-S fuzzy model (3) is 
Lyapunov stable and strictly input passive driven by the fuzzy 
controller (7).  Besides, the proof of condition (10) of rules i ∈ 
Î is similar to (11) with setting ãi = 0 and assuming Θijq(x(k)) 
be zero.  The proof is completed. 

 
How to compute the Tijq, nijq and vijq for the S-procedure is 

explained in [10].  In order to achieve the sufficient conditions 
of (10) and (11), one must find suitable positive definite 
common matrix P = PT > 0, scalars εijq ≥ 0 and γ ≥ 0.  The 
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forms of the conditions (10) and (11) are the BMI forms which 
cannot be calculated by LMI approach for obtaining the solu-
tion to satisfy the conditions directly.  Hence, the ILMI algo-
rithm need to be developed to solve the problem of BMI and to 
find the feasible solution for the conditions (10) and (11).  By 
applying some transform techniques, the BMI conditions can 
be transformed into LMI conditions via the application of aux- 
iliary variables.  One of the important transform techniques is 
Schur complement [1], which is presented in the following 
lemma. 

 
Lemma 1: (Schur complement) [1] 

Nonlinear (convex) matrix inequalities can be converted to 
LMIs form using Schur complement.  Considering the fol-
lowing matrix inequality 
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where B(x) = BT(x), T(x) = TT(x), the (25) can be represented 
as 

 T(x) > 0 (26) 

and 

 1 T( ) ( ) ( ) ( ) 0x x x x−− >B S T S  (27) 

By applying the auxiliary variables and Schur complement 
defined in Lemma 1, some new stability conditions can be 
modified from the conditions (10) and (11) in the next section.  
Based on these new stability conditions, the feasible solutions 
of fuzzy controllers can be solved by using the ILMI algo-
rithm. 

III. FUZZY CONTROLLER DESIGN BY USING 
ILMI ALGORITHM WITH INPUT 

CONSTRAINTS 
In this section, an ILMI algorithm is applied to obtain fuzzy 

controller to achieve the conditions of Theorem 1 for dis-
crete-time affine T-S fuzzy model (3).  In order to solve the 
BMI conditions of Theorem 1, we first hold some auxiliary 
variables as given matrices and then converting it to a LMI 
problem.  After that, the fuzzy controller design problem can 
be solved by LMI technique.  The modified stability condi-
tions are derived in the following theorem. 

 
Theorem 2: 

If there exist positive definite matrices, and scalars, εijq ≥ 0 
for satisfying the following conditions, then the discrete-time 
affine T-S fuzzy model (3) is strictly input passive and Lyapunov 
stable with fuzzy controller (7). 

 ij

T

0 ˆi, j
0

I
<⎧⎪ ∈⎨

− ≤⎪⎩

Ω

X PX X
 (28) 

and 

 ij

T

ˆ 0 ˆi, j
0

I
⎧ <⎪ ∉⎨

− ≤⎪⎩

Ω

X PX X
 (29) 

where 

T T 1 T
ij ij ij i

ij ij
T 1 T 1 T
ij ij i ij ij i i

0
0

α

γ

−

− −

⎡ ⎤− −
⎢ ⎥

= −⎢ ⎥
⎢ ⎥− − − +⎣ ⎦

P G G X N C
Ω G X

N X G C N X N D D I
, 

p
T T 1 T

ijq ijq ij ij ij i
q = 1

ij
ij T 1 T 1 T

ij ij i ij ij i i
p

T 1 T T 1
ij ij ijq ijq ij ij

q = 1

0ˆ
0

0

α ε

γ

ε

−

− −

− −

⎡
− − −⎢

⎢
⎢ −
⎢=

− − − +⎢
⎢
⎢ −
⎢⎣

∑

∑

P T G G X N C

G X
Ω

N X G C N X N D D

a X G n a X N� �

 

p
T 1
ij ij ijq ijq

q 1

T 1
ij ij

p
T 1
ij ij ijq ijq

q 1

0

ε

ε

−

=

−

−

=

⎤
− ⎥

⎥
⎥
⎥
⎥
⎥
⎥−
⎥⎦

∑

∑

G X a n

N X a

a X a v

�

�

� �

 

Proof: 
Using the Schur complement of Lemma 1, the first condi-

tion of (29), i.e., ij
ˆ 0<Ω , can be rewritten as  

 

p
T T 1 T

ijq ijq ij ij ij i
q = 1

ij
T 1 T 1 T
ij ij i ij ij i i

p
T 1 T T 1
ij ij ijq ijq ij ij

q = 1

0
0

0

α ε

γ

ε

−

− −

− −

⎡
− − −⎢

⎢
⎢ −
⎢

− − − +⎢
⎢
⎢ −
⎢⎣

∑

∑

P T G G X N C

G X
N X G C N X N D D

a X G n a X N� �

 

p
T 1
ij ij ijq ijq

q 1

T 1
ij ij

p
T 1
ij ij ijq ijq

q 1

( 1) 0 0
0

0 0 0
0 0 0

ε

α

ε

−

=

−

−

=

⎤
− ⎥

⎥ −⎡ ⎤⎥ ⎢ ⎥⎥ < ⎢ ⎥⎥ ⎢ ⎥⎣ ⎦⎥
⎥−
⎥⎦

∑

∑

G X a n
P

N X a

a X a v

�

�

� �

 (30) 
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Obviously, if the decay rate and P > 0 are held then in- 
equality (30) is strictly negative definite.  Multiplying this 
inequality from left and right by T T[ ( ) ( ) 1]x k w k and, re-
spectively, one can rearrange it as 

T T 1 T T 1 T T
ij ij ij i( ) ( ) ( ) ( ) ( ) ( )x k x k x k w k x k w k− −+ −G X G G X N C  

T T 1 T T 1 T
ij ij ij i( ) ( ) ( ) ( ) ( )x k w k x k w k x k− −+ + −G X a N X G C�  

T T 1 T T T
ij ij i( ) ( ) ( ) ( ) ( ) ( )w k w k w k w k w k w kγ−+ + −N X N D  

T T T 1 T 1 T 1
ij ij ij ij( ) ( ) ( ) ( )w k w k w k x k− − −− + + +D N X a a X G a X� � �  

p
T 1 T

ij ij ij ijq ijq
q 1

( ) ( ) ( ) ( ( ))w k x k x k x kε−

=

× + − − Θ∑N a X a P� �  

T( 1) ( ) ( )x k x kα< − P   (31) 

or 

 T 1
ij ij ij ij ij ij( ( ) ( ) ) ( ( ) ( ) )x k w k x k w k−+ + + +G N a X G N a� �  

T T T( ) ( ) ( ) ( ) 2 ( ) ( )x k x k w k w k y k w kγ− + −P  

T( 1) ( ) ( )x k x kα< − P  (32) 

If there exist P > 0 such that XTPX – X ≤ 0 is held, one can 
obtain the following inequality according to (32). 

 T
ij ij ij ij ij ij( ( ) ( ) ) ( ( ) ( ) )x k w k x k w k+ + + +G N a P G N a� �  

T T T( ) ( ) ( ) ( ) 2 ( ) ( )x k x k w k w k y k w kγ− + −P  

p
T

ijq ijq
q 1

( ( )) ( 1) ( ) ( )x k x k x kε α
=

− Θ < −∑ P  (33) 

or 

p p
T T

11 ijq ijq 21 ij ij ijq ijqT
q = 1 q = 1

T
21 22 ij ij

p p
T T T T
ij ij ijq ijq ij ij ij ij ijq ijq

q = 1 q = 1

( )
( )
1

x k
w k

v

ε ε

ε ε

⎡ ⎤
− −⎢ ⎥

⎡ ⎤ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ − −⎢ ⎥

⎣ ⎦

∑ ∑

∑ ∑

Φ T Φ G Pa n

Φ Φ N Pa

a PG n a PN a Pa

�

�

� � � �

 

 

T( ) ( ) ( 1) 0 0 ( )
( ) ( ) 0 0 0 ( )
1 1 0 0 0 1

x k x k x k
w k w k w k

α −⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥× <⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

P
 (34) 

Obviously, 

 

p p
T T

11 ijq ijq 21 ij ij ijq ijq
q = 1 q=1

T
21 22 ij ij

p p
T T T T
ij ij ijq ijq ij ij ij ij ijq ijq

q = 1 q=1
v

ε ε

ε ε

⎡ ⎤
− −⎢ ⎥

⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥

− −⎢ ⎥
⎣ ⎦

∑ ∑

∑ ∑

Φ T Φ G Pa n

Φ Φ N Pa

a PG n a PN a Pa

�

�

� � � �

 

 
( 1) 0 0

0 0 0
0 0 0

α −⎡ ⎤
⎢ ⎥< ⎢ ⎥
⎢ ⎥⎣ ⎦

P
 (35) 

Since P > 0 and α < 1, one has 

p p
T T

11 ijq ijq 21 ij ij ijq ijq
q = 1 q=1

T
21 22 ij ij

p p
T T T T
ij ij ijq ijq ij ij ij ij ijq ijq

q = 1 q=1

0

v

ε ε

ε ε

⎡ ⎤
− −⎢ ⎥

⎢ ⎥
⎢ ⎥ <
⎢ ⎥
⎢ ⎥

− −⎢ ⎥
⎣ ⎦

∑ ∑

∑ ∑

Φ T Φ G Pa n

Φ Φ N Pa

a PG n a PN a Pa

�

�

� � � �

 (36) 

The inequality (36) is equivalent to (11).  Hence, in the case 
of i ∉ Î, if condition (29) is satisfied then the discrete-time 
affine T-S fuzzy model is strictly input passive and Lyapunov 
stable.  The proof of (28) for rule including the origin (i ∈ Î )  
is similar to (29) by setting ãi and Θijq be all zero.  Hence, the 
proof of (28) is omitted here and the proof of this theorem is 
completed. 

 
The conditions of Theorem 2 provide the stability condi-

tions for achieving the passivity property of discrete affine T-S 
fuzzy models.  However, the control input constraint was not 
considered in these conditions.  For achieving the input con-
straint, the following theorem provide the LMI conditions 
such that  

 
Theorem 3: 

Considering the system and conditions described in Theo-
rem 2, assume that the initial condition x(0) is known.  The 
input constraint 

2
( )u k μ≤  is enforced at all times k ≥ 0 if  

the following LMI conditions are satisfied. 

 
T1 (0)

0
(0)

x
x
⎡ ⎤

≥⎢ ⎥
⎣ ⎦X

 (37) 

 
T
i

2
i

0
μ

⎡ ⎤
≥⎢ ⎥

⎣ ⎦

X M
M I

 (38) 

where X = P−1, Mi = FiX. 
 

Proof: 
Assume that V(x(k)) = xT(k)Px(k) is a Lyapunov function 

and xT(0)Px(0) ≤ 1.  Then, 
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 T1 (0) (0) 0x x− ≥P  (39) 

where X = P−1.  The inequality (39) can be transformed into 
(37) by the Schur complement procedure. 

The derivation of (38) is stated as follows.  From 
2

( )u k ≤ 

μ, one has 

 
r rT T T 2

i j i j
i 1 j 1

( ) ( ) ( ( )) ( ( )) ( ) ( )u k u k h x k h x k x k x k μ
= =

= ≤∑ ∑ F F  

Therefore, 

 
r r T T

i j i j2
i 1 j 1

1 ( ( )) ( ( )) ( ) ( ) 1.h x k h x k x k x k
μ = =

≤∑ ∑ F F  (40) 

Since xT(k)X−1x(k) < xT(0)X−1x(0) ≤ 1 for k > 0, if 

r r T T T 1
i j i j2

i 1 j 1

1 ( ( )) ( ( )) ( ) ( ) ( ) ( )h x k h x k x k x k x k x k
μ

−

= =
∑ ∑ ≤F F X  (41) 

then (41) holds.  Therefore, one has 

r r T 1
i j i j2

i 1 j 1

1( ( )) ( ( )) ( ) ( ) 0Th x k h x k x k x k
μ

−

= =

⎛ ⎞
− ≤∑ ∑ ⎜ ⎟

⎝ ⎠
F F X  (42) 

From the left-hand side of (42), one has 

r r T T T 1
i j i j j i2 2

i 1 j 1

1 1 1( ( )) ( ( )) ( ) 2 ( )
2

h x k h x k x k x k
μ μ

−

= =

⎛ ⎞
+ −∑ ∑ ⎜ ⎟

⎝ ⎠
F F F F X  

( )r r T T T
i j i j j i2

i 1 j 1

1 1( ( )) ( ( )) ( )
2

h x k h x k x k
μ= =

⎛
= +∑ ∑ ⎜

⎝
F F F F  

T T 1
i j i j2

1 ( )( ) 2 ( )x k
μ

− ⎞
− − ⎟

⎠
− −F F F F X  

r r T T T 1
i j i j j i2

i 1 j 1

1( ( )) ( ( )) ( ) ( ) 2h x k h x k x k
μ

−

= =

⎛ ⎞
+ −∑ ∑ ⎜ ⎟

⎝ ⎠
≤ F F F F X  

( )x k×  

r T T 1
i i i2

i 1

1( ( )) ( ) ( )h x k x k x k
μ

−

=

⎛ ⎞
= −∑ ⎜ ⎟

⎝ ⎠
F F X  

Thus, if 

 T 1
i i2

1 0
μ

−− ≤F F X  (43) 

then (42) holds.  By defining Mi = FiX, one can obtain 

 T
i i2

1 0
μ

− ≤M M X  (44) 

Inequality (38) can be obtained from the above inequality 
by the Schur complement procedure. 

 
In order to achieve the conditions (28), (29), (37) and (38), 

an ILMI algorithm is developed to interactively search for P, 
Fi, α, εijq and to update the auxiliary variable X until α < 1.  
The operation process of the present ILMI algorithm is pro-
posed as follows. 

 
ILMI Algorithm 
Step 1: Define the iterative auxiliary variable as follows. 

 1
(t ) ( t 1)

−
−=X P  (45) 

where t is iterative index.  Set t = 1 and the initial P(0) can be 
calculated by the following equation. 

T T T 1 T
(0) (0) (0) (0) (0)

ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ( )(1 ) ( )−− − + + =A P A P A P B B P B B P A Q 0  
  (46) 

where 
r

i
i 1

1ˆ ,
r =

= ∑A A
r

i
i 1

1ˆ
r =

= ∑B B , and Q > 0.  The matrix Q is 

assigned by the designers.  Then start the ILMI algorithm. 
 

Step 2: Use the auxiliary variable 1
(t) ( t 1)

−
−=X P  to solve the 

optimization problem for P(t), Fi, εijq(t) from (28) and 
(29) subject to minimizing α(t).  That is, 

Minimize α(t) 

Subject to P(t) > 0, εijq(t) > 0, (28) for i, j ∈Î and (29) for i, j ∉ Î. 

If α(t) < 1, then P(t), Fi and εijq(t) obtained in Step 2 are the 
feasible solutions for the conditions (28) and (29).  Then go to 
Step 4.  Otherwise, go to Step 3. 

 
Step 3. Resolve the following optimization problem for P(t), 

Fi and εijq(t) using α(t) determined in Step 2 and aux-
iliary variable X(t) obtained in Step 2. 

Minimize trace(P(t)) 

Subject to P(t) > 0, εijq(t) > 0, (28) for i, j ∈Î and (29) for i, j ∉ Î. 

If 1
(t ) ( t ) τ− − <X P , where τ is the predetermined small value, 

then the conditions (28) and (29) are not feasible and then stop 
the iterative manner.  Otherwise, set t = t + 1 and go back to the 
Step 2 for updating the auxiliary variable X(t) using 1

(t 1)
−
−P , 

where 1
(t 1)
−
−P  is determined in Step 3. 



 W.-J. Chang et al.: Fuzzy Control for Input Constrained Passive Affine T-S Fuzzy Models 477 

 

Step 4: Using the matrix P determined in Step 2 to obtain the 
auxiliary variable X = P−1 and then to solve the fol-
lowing optimization problem for P, Fi and εijq. 

Minimize μ 

Subject to P > 0, εijq > 0, XTPX – X ≤ 0, (28) for i, j ∈ Î, (29) 
for i, j ∉Î and (37)-(38). 

The minimized value μ is the minimum upper bound for the 
input norm constraint.  The parameters obtained in this step 
are the final feasible solutions and the algorithm is stop in this 
step. 

 
The input energy constrained fuzzy control problem con-

sidered in this paper can be solved by using the above ILMI 
algorithm.  According to the above ILIMI algorithm, a nu-
merical example is presented to show the application of pro-
posed fuzzy controller design approach for discrete-time  
affine T-S fuzzy model.  Using the proposed fuzzy controller 
design procedure, the feasible solutions P > 0, Fi and εijq > 0 
can be solved by the LMI toolbox of MATLAB to satisfy 
conditions (28), (29), (37) and (38), simultaneously. 

IV. APPLICATION TO CONTROL THE 
NONLINEAR TRUCK-TRAILER SYSTEM 

In this section, a discrete nonlinear truck-trailer system [17] 
shown in Fig. 1 is considered to test and verify the fuzzy con- 
troller design approach developed in Section 3.  It is well 
known that backing up control of truck-trailers is a difficult 
exercise since its dynamics is nonlinear and unstable.  The 
specific problem in this simulation is to back up a truck-trailer 
from an arbitrary initial position by manipulating the steering.  
Referring to the literature [17], the dynamics of discrete non- 
linear truck-trailer system can be characterized as follows. 

 1 1
1 2

( 1) 1 ( ) ( ) 0.1 ( ),vt vtx k x k u k w k
L L

⎛ ⎞
+ = − + +⎜ ⎟⎜ ⎟

⎝ ⎠
 (47a) 

 2 1 2
1

( 1) ( ) ( ),vtx k x k x k
L

+ = +  (47b) 

 3 3 2 1
1

( 1) ( ) sin ( ) ( ) ,2
vtx k x k vt x k x kL

⎛ ⎞⎛ ⎞+ = + +⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

 (47c) 

 1( ) ( ) ( )y k x k w k= +  (47d) 

where x1(k) is the angle difference between truck and trailer; 
x2(k) is the angle of trailer; x3(k) is the vertical position of rear 
end of trailer; w(k) is the exogenous input provided by a ran-
dom which noise with variance 1.  Note that x1(k) corresponds 
to two “jackknife” positions, 90° and −90°.  The sampling  

Trailer Part

Desired Path

Truck Part

x1(k)

x2(k)
x3(k)

u(k)

L1 L2

0  
Fig. 1. Nonlinear truck-trailer system. 

 
 

M1 M3M2

x1(k)
−90° −60° 90°60°

1

0  
Fig. 2. Membership function of x1(k). 

 
 

period t = 2 sec and the length of trailer L1 = 5.5 m, the length 
of truck L2 = 2.8 m, the constant speed of the backward move- 
ment v = −1 m/sec.  Appling the above system parameters, the 
dynamic equation (47) can be thus represented as follows. 

 1 1( 1) 1.3636 ( ) 0.7143 ( ) 0.1 ( )x k x k u k w k+ = − +  (48a) 

 2 2 1( 1) ( ) 0.3636 ( )x k x k x k+ = −  (48b) 

 3 3 2 1( 1) ( ) 2sin( ( ) 0.1818 ( ))x k x k x k x k+ = − −  (48c) 

 1( ) ( ) ( )y k x k w k= +   (48d) 

It can be found that the equilibrium point of (48) is x1(k) = 
x2(k) = x3(k) = u(k) = w(k) = 0.  In addition to the equilibrium 
point, we choose other two operating points for obtaining the 
T-S fuzzy models of the truck-trailer system (48).  These op-
erating points are given as follows. 

 o o
oper1( , , ) ( 88  90  20  0  0)x u w− − − = − − −  (49a) 

 o o
oper2( , , ) (0  0  0  0  0)x u w =  (49b) 

 o o
oper3( , , ) (88  90  20  0  0)x u w+ + + =  (49c) 

The structure of affine T-S fuzzy model of the nonlinear 
truck-trailer system (48) can be constructed by linearization 
method through the above three linear operating points with 
defining the membership function as Fig. 2.  Thus, one can 
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represent the discrete affine T-S fuzzy model, which is com-
posed by three fuzzy rules, as follows.  

 
Plant Part: 
Rule 1: IF x1(k) is M1 THEN 

 
1.3636 0 0 0.7143

( 1) 0.3636 1 0 ( ) 0 ( )
0.1002 0.5513 1 0

x k x k u k
−⎡ ⎤ ⎡ ⎤

⎢ ⎥ ⎢ ⎥+ = − +⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦

 

0.1 0
0 ( ) 0
0 1.2105

w k
⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥+ +⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 

 ( ) [1 0 0] ( ) ( )y k x k w k= +  (50a) 

Rule 2: IF x1(k) is M2 THEN 

1.3636 0 0 0.7143
( 1) 0.3636 1 0 ( ) 0 ( )

0.3636 2 1 0
x k x k u k

−⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥+ = − +⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦

 

0.1
0 ( )
0

w k
⎡ ⎤
⎢ ⎥+ ⎢ ⎥
⎢ ⎥⎣ ⎦

  

 ( ) [1 0 0] ( ) ( )y k x k w k= +  (50b) 

Rule 3: IF x1(k) is M3 THEN 

1.3636 0 0 0.7143
( 1) 0.3636 1 0 ( ) 0 ( )

0.1002 0.5513 1 0
x k x k u k

−⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥+ = − +⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦

 

0.1 0
0 ( ) 0
0 1.2105

w k
⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥+ +⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦

 

 ( ) [1 0 0] ( ) ( )y k x k w k= +  (50c) 

The corresponding matrices of S-procedure [1, 2, 10] are pre-
sented as follows. 
 
For Rule 11, −90° ≤ x1(k) ≤ −60° which means 

 111 111

1 0 0 (( 60 90 /180) / 2
0 0 0 , 0 and
0 0 0 0

π− − −⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

T n  

 111 ( 60 /180) ( 90 /180)v π π= − × −  (51a) 

For Rule 31, 90° ≥ x1(k) ≥ 60° which means 

 331 331

1 0 0 ((60 90) /180) / 2
0 0 0 , 0 and
0 0 0 0

π− +⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

T n  

 331 (60 /180) (90 /180)v π π= ×  (51b) 

where the notion Rule ij means the correlation between Rule 
and Rule j of the plant part. 

For the fuzzy controller design of truck-trailer system (47), 
the control purpose is to realize the backward movement of the 
truck-trailer system to guarantee the Lyapunov stability and 
passivity for the closed-loop system.  Through the above dis-
crete affine T-S fuzzy model (50), the fuzzy controller can be 
designed by applying Theorem 2 and Theorem 3 as well as 
fuzzy controller design procedure developed in ILMI algo-
rithm.  First, let us choose the dissipative rate γ = 1 and the 
matrix Q such as 

 
1 0 0
0 1 0
0 0 1

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

Q  (52) 

The initial P(0) can be solved via Riccati Eq. (46) as follows. 

 (0)

99.892 62.001 11.0722
62.001 121.4182 21.4873

11.0722 21.4873 7.0375

−⎡ ⎤
⎢ ⎥= − −⎢ ⎥
⎢ ⎥−⎣ ⎦

P  (53) 

Thus, the matrix X(1) can be obtained from (45). 

 1
(1) (0)

0.0147 0.0074 0.0005
0.0074 0.0217 0.0545
0.0005 0.0545 0.3091

−

−⎡ ⎤
⎢ ⎥= = ⎢ ⎥
⎢ ⎥−⎣ ⎦

X P  (54) 

Using the above initial auxiliary parameters, one can obtain 
the minimum α from Step 2 of the proposed ILMI algorithm.  
If α < 1, then one can obtain the feasible solution for fuzzy 
controllers.  Otherwise, if α ≥ 1, a new matrix P(1) should be 
re-calculated from the Step 3 and then be substituted into Step 
2 to produce new auxiliary parameter X(2).  Repeating this 
ILMI algorithm until α < 1, one can obtain the feasible solu-
tion of suitable fuzzy controllers.  In this example, the feasible 
solution is obtained after six iterations of the proposed ILMI 
algorithm.  The final α is 0.9832  and the feasible solution is 
obtained as follows. 

 
13.9962 27.5528 3.3429
27.5528 96.8441 16.6789
3.3429 16.6789 3.4385

−⎡ ⎤
⎢ ⎥= − −⎢ ⎥
⎢ ⎥−⎣ ⎦

P  (55) 
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Fig. 3.  Responses of state x1(k). 
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Fig. 4.  Responses of state x2(k). 
 

 
0.3643 0.2584 0.8963
0.2584 0.2439 0.9288
0.8963 0.9288 3.9093

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

X ,  (56) 

1 [ 2.5023 3.1145 0.3749]= − −F , 

2 [ 2.2118 3.4128 0.457]= − −F , 

3 [ 2.5023 3.1145 0.3749]= − −F   (57) 

 2.7103μ =  (58) 

and 

 111 331 19.6752ε ε= =  (59) 

Based on the above feasible solutions, the PDC-based fuzzy 
controller can be obtained as follows. 
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Fig. 5.  Responses of state x3(k).  
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Fig. 6.  Responses of control input u(t).  
 
 

Controller Part: 
Rule 1: IF x1(k) is M1 THEN 

 ( ) [ 2.5023 3.1145 0.3749] ( )u k x k= − − , (60a) 

Rule 2: IF x1(k) is M2 THEN 

 ( ) [ 2.2118 3.4128 0.457] ( )u k x k= − − , (60b) 

Rule 3: IF x1(k) is M3 THEN 

 ( ) [ 2.5023 3.1145 0.3749] ( )u k x k= − − , (60c) 

Setting the initial condition as 0 0 T(0) [88 60 5] ,x =  the 
simulation results of states and intput are shown in Fig. 3 to  
Fig. 6.  Observing the responses of Fig. 3 to Fig. 6, one can 
find that the closed-loop system is Lyapunov stable and it is 
passive in sense of Definition 1 via the fuzzy controller (60).  
Besides, from the simulated responses, one can obtain ( )u k =  
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Fig. 7.  Comparisons of fuzzy controllers Eqs. (60) and (61) for state x1(k). 
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Fig. 8.  Comparisons of fuzzy controllers Eqs. (60) and (61) for state x2(k). 
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Fig. 9.  Comparisons of fuzzy controllers Eqs. (60) and (61) for state x3(k). 

2.6794 that is smaller than the desired input constraint (58), 
i.e., μ = 2.7103.  Hence, the nonlinear system (47) can be 
achieved performance of input constraint via designed fuzzy 
controller (60). 

In order to compare the proposed design method with pre-
vious fuzzy control method, the approach developed in [16] is 
applied to stabilize the same nonlinear system (47) with the 
same input constraint (58).  Applying the design method of 
[16], one can obtain the following fuzzy controller. 

 
r

1 i i
i 1

( ) ( ( ))( ( ))hu k h x k x k
=

= −∑ F  (61) 

where 1 [ 1.359 0.9222 0.0779]= − −F , 

2 [ 1.3434 0.7772 0.0969]= − −F , 

3 [ 1.359 0.9222 0.0779].= − −F  Employing the fuzzy con-
troller (61) to control the system (47), the simulation results 
can be obtained with the same initial conditions x(0) =  
[880   600   5]T in Fig. 7 to Fig. 9.  From the responses, one can 
obtain 1( )hu k = 2.3494 that also achieves the desired input 
constraint.  In conclusions, the input constraints of system (47) 
controlled by controllers (60) and (61) are both achieved.  
However, from the Fig. 7 to Fig. 9, one can find that the per-
formances of setting time and overshoot of controller (60) is 
better than that of controller (61).  Thus, the proposed fuzzy 
controller design method provides a better solution than the 
previous design approach developed in [16]. 

Without loss of generality, the performances of setting time 
and overshoot can be improved if the input constraint is not 
considered in the controller design.  Thus, the fuzzy controller 
design method without considering input constraint [17] is 
applied in this example to compare with the proposed fuzzy 
control method.  Applying the method of [17] to design the 
fuzzy controller, one can obtain the following fuzzy controller 
by solving some LMI stability conditions. 

 
r

2 i i
i 1

( ) ( ( ))( ( ))hu k h x k x k
=

= −∑ F  (62) 

where 1 [ 3.205 4.1698 0.5899]= − −F , 

2 [ 3.0037 3.0136 0.5967]= − −F , 

3 [ 3.205 4.1698 0.5899]= − −F .  The Fig. 10 to Fig. 12 show 
the simulation responses of system (47) that is controlled by 
the fuzzy controller (62).  It can be found that the perform-
ances of setting time and overshoot of (62) are better than  
that of (61).  They are similar to the performance responses  
of (60).  However, from the simulation results, one can obtain 

2 ( )hu k = 4.6266 that does not achieve the desired input 
constraint (58).  Therefore, one can find that the proposed 
fuzzy control method can provide improvements for the pre-
vious works. 
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Fig. 10.  Comparisons of fuzzy controllers Eqs. (60) and (62) for state x1(k). 
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Fig. 11.  Comparisons of fuzzy controllers Eqs. (60) and (62) for state x2(k). 
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Fig. 12.  Comparisons of fuzzy controllers Eqs. (60) and (62) for state x3(k). 

V. CONCLUSIONS 
Using the properties of the passivity and input constraint, 

this paper has discussed the stability analysis and controller 
design synthesis for the discrete-time affine T-S fuzzy models.  
The Lyapunov function associated with the stored function for 
passivity property was used to derive the stability conditions.  
The stability conditions were first derived of the BMI forms, 
which were transformed into LMI forms by applying the aux-
iliary variables in this paper.  Moreover, a modified ILMI 
algorithm was developed to solve the above stability condi-
tions and to obtain the feasible solutions of fuzzy controllers.  
For controlling a nonlinear truck-trailer system, a numerical 
example has been provided to demonstrate the effectiveness 
and applicability of the proposed fuzzy controller design ap-
proach. 
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