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ABSTRACT 

Option pricing is a tool that investors often use for the 
purpose of arbitrage or hedging.  However, both the Black- 
Scholes model and the CRR model can only provide a theo-
retical reference value.  The volatility in the CRR model can- 
not always appear in the precise sense because the financial 
markets fluctuate from time to time.  Hence, the fuzzy vola-
tility is naturally to be considered.  The main purpose of this 
paper is the application of fuzzy sets theory to the CRR model.  
It is expected that fuzzy volatility, instead of the crisp values 
conventionally used in the CRR model, can provide reason-
able ranges and corresponding memberships for option prices, 
as a result of which, investors can interpret optimal value 
differently for different risk preferences.  This paper shows a 
new method for option valuation using fuzzy set theory that is 
based on findings from earlier option valuation methods and 
from fuzzy membership function.  In conclusion, the empirical 
evidence indicates the effectiveness of the proposed fuzzy 
model. 

 

I. INTRODUCTION 

Warrants supply investors with choices for financial lev-
erage.  When the price of the underlying asset rises, the owner 
of the warrant can buy the stocks at the specified price, the 
return will be a simple multiple of the purchased stocks.  When 
the price of the underlying asset goes down, at most the pre-
mium is lost.  If we can accurately predict the optimal range of 
an option price, investors can make a profit and hedge against 
losses from the derivatives. 

The Black-Scholes model [3] or binomial tree option pric-
ing model has been widely applied for computing the optimal 
warrant price.  Volatility is assumed to be constant.  However, 
as pointed out by Lauterbach and Schultz [51] and Hauser and 
Lauterbach [33], the volatility is the most controversial vari-
able.  Hence, many subsequent studies have focused on esti-
mating the volatility, for example using historical data or the 
Parkinson method [66].  The different estimated volatilities 
certainly result in price variation.  In this study, fuzzy set 
theory is applied to model the volatilities.  It is expected that 
this method will replace the complex models used in the pre-
vious studies [6-28, 34-40, 47-50, 52-64, 68-76, 79-84, 88-92, 
95-105]. 

Most recent studies of option pricing have focused on how 
to relax the assumptions made in the Black-Scholes model and 
CRR model [31].  These assumptions include: (1) the price 
fluctuation of the underlying asset must follow a log-normal 
distribution; (2) the short-term risk-free rate of interest is 
constant; and (3) the volatility of a stock remains constant.  
After relaxing these assumptions, we can set up new defini-
tions.  For example, we assumed that the price of an underly-
ing asset follows the Poisson Jump-Diffusion Process or the 
Markov Process.  The interest and volatility can also be ran-
dom processes.  In line with the focus in this paper on the 
volatility, we first discuss some literature regarding option 
pricing which is relevant to volatility.  Fuzzy set theory as well 
as the binomial tree option pricing model are reviewed in the 
following section.  In Section 3 fuzzy set theory is applied to 
the binomial tree option pricing model.  Some empirical re-
sults from the fuzzy model are presented in Section 4.  Con-
clusions to sum up the article are offered in Section 5. 
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II. LITERATURE REVIEW 
Hull and White [46] relaxed the assumption that the dis-

tribution of the price of underlying assets and volatility were 
constant.  Wiggins [86], and Scott [67] let go of the assump-
tion that the volatility was constant instead, assumed Sto-
chastic-Volatility.  Cox [30] introduced the concept of Con-
stant-Elasticity-of-Variance for volatility.  Amin [1] and Scott 
[67] considered the Jump-Diffusion processes of both stock 
prices and the volatility to be a random process.  These models 
all endeavored to provide more accurate prices. 

1. Fuzzy Set Theory Revisited 
The origins of fuzzy sets theory track back to an article by 

Lotfi Zadeh [94] who stated that an element either belongs to a 
set or does not belong to a set at all in classical set theory.  This 
type of true or false logic is commonly applied in financial 
applications.  But, bi-value logic was not sufficiently com-
prehensive to deal with real world problems and presents a 
problem, because financial decisions are generally made under 
uncertainty.  Consequently, an algebra called fuzzy sets was 
developed to deal with imprecise elements in our decision 
making processes, and is the formal body of theory that allows 
the treatment of practically all decisions in an uncertain en-
vironment [29].  Instead, it is more proper to represent items 
by a degree of membership indicating the degree of belong-
ingness.  Since then, this theory has been successfully applied 
in many problem domains, such as engineering, transportation, 
management and business.  

Zadeh [94] extended the characteristic function to introduce 
the concept of fuzzy subset which is defined by its member-
ship function that is viewed as an extension of characteristic 
function [87].  The fuzzy set concept deals with real observa-
tions through possibility.  The membership function of a fuzzy 
set is introduced as follows.  In traditional relations, we use 0 
or 1 to represent the relationship.  In fuzzy relations, we in-
stead use a number between 0.0 and 1.0 to show the degree of 
relationship, as shown in Fig. 1.  When the relationship is 
closer to 1, the relationship is stronger.  On the other hand, 
when the relationship is closer to 0, the relationship is weaker.  
In fuzzy set theory, the relationship is described through a 
membership function. 

Two basis operators are applied to describe the relation-
ships: an algebraic product and a minimum.  The algebraic 
product is used to describe the propagation of the degree of 
membership (μ) from one time period to another.  Let R and S 
be two fuzzy sets.  Then 

 ( ) ( )R S R Sx yμ μ μ= ⋅i  (1) 

The minimum is used to calculate the intersection of the 
degree of membership (μ) of two different fuzzy sets; the 
maximum is used to represent the union 

 min( ( ), ( ))R S R Sx yμ μ μ∩ =  (2) 

µ
1.0

L M R

ρ ρ  
Fig. 1.  A triangular fuzzy set. 

 

 max( ( ), ( ))R S R Sx yμ μ μ∪ =  (3) 

2. Option Pricing Model 
Options play more and more important roles in the financial 

market as a widely applied in financial derivatives [62].  Gen- 
erally, options are commonly valued with three methods.  
Black-Scholes option pricing formula [3] is also called Black- 
Scholes model.  The binomial option valuation method [31] 
and Monte-Carlo based methods [4, 29] are also utilized in the 
present work.  Black and Scholes [3] made an important 
breakthrough by deriving a differential equation that the price 
of any derivative security dependent on a non-dividend paying 
stock must satisfy it.  Concerning risk-neutral investors, the 
Black-Scholes pricing formula for a call option is [5] 

 0 0 1 2( ) ( )rTC S N d Xe N d−= −  

where 

 
2

0
1 2 1

ln( / ) ( / 2) ,S X r Td d d T
T

σ σ
σ
+ +

= = −  

C0 is the price of option; S0 is the stock price; N(d) is the 
probability that a random draw from a standard normal dis-
tribution which will be less than d; r is the annualized con-
tinuously compounded rate with the same maturity as the 
expiration of the option; X is the exercise price; T is the time  
of maturity and δ denotes the standard deviation of the annu-
alized continuously compounded rate of return of the stock.  
Merton [65] extended the Black-Scholes model to dividends- 
paying stocks as 

 0 0 1 2( ) ( )T rTC S e N d Xe N dδ− −= −  

where 

 
2

0
1 2 1

ln( / ) ( / 2) ,S X r Td d d T
T
δ σ σ

σ
+ − +

= = −  

δ denotes the dividends paid out during the life-time of the  
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t = 1 t = 2 t = 1 t = 2
Su (= u ⋅ S) Cu
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Su (= d ⋅ S) Cd

Stock Price Option Price

 
Fig. 2.  Stock price movement in time Δt under the binomial model. 
 
 

option.  The standard Black-Scholes model prices a European 
option on an asset follow a geometric Brownian motion.  By 
using the modification of Black-Scholes formula [87], many 
methodologies for the option pricing have been proposed.  
Black-Merton-Schole developed a more general approach that 
derives a partial differential equation.  Wang et al. [85] ap- 
plied partial differential equation in pricing barrier options.  
Harrison and Kreps [32] developed the martingale approach  
to arbitrage thory that is the most general method for pricing of 
contingent claims [2]. 

3. Binomial Tree Option Pricing Model 
Binomial options pricing model originated from Cox et al. 

[31], henceforth CRR model that has simple structure is widely 
applied in the financial market and is one of the basic options 
pricing methods [62].  First, the binomial tree option pricing 
model is introduced with a one-step example (n = 2, where n is 
the total period of time), including an option pricing model 
and its inference process.  Other cases can be derived similarly 
as n gets larger.  Suppose the stock price at period t = 1, S, is 
known.  The one-step option pricing model can inference two 
possible stock prices (up and down movements) at some pe-
riod t = 2, as in Fig. 2.  The corresponding call prices are 
calculated from the stock prices at t = 2.  Then, we can cal-
culate back to the call price at t = 1. 

Let P be the probability for S to move up, and 

 a dP
u d
−

=
−

 (4) 

where a = er ⋅ Δt, the factor of discount; r is the risk-free rate; Δt 
is the length of one time period.  Let 

 tu eσ ⋅ Δ=  (5) 

represent the stock price after moving up, where σ is the vola- 
tility of stock price.  Let d = 1/u.  Hence, 

 td e σ− ⋅ Δ=  (6) 

represents the stock price after moving down.  Suppose u >  
a > d. 

From equation (4), we can calculate 

 1 u aP
u d
−

− =
−

 (7) 

As in Fig. 2, we define the following: 

 uS u S= ⋅  (8) 

 dS d S= ⋅  (9) 

where Su is the stock price for the next period (at t = 2) when 
the stock price moves up; Sd is the stock price for the next 
period (at t = 2) when the stock price moves down. 

Meanwhile, from the concept of the call price, let 

 Cu = max (0, Su − K) (10) 

 Cd = max (0, Sd − K) (11) 

where Cu is the call price at t = 2, calculated from Su; and Cd is 
the call price at t = 2, calculated from Sd; K is the exercised 
price. 

Accordingly, we can get the following: 

 ( ) ( )
( )

u da d C u a CC
u d a

− + −
=

−
 (12) 

Finally, substituting Eqs. (4) and (7) into Eq. (12), we ob-
tain the call price at t = 1, which is our goal 

 (1 )u dP C P CC
a

⋅ + − ⋅
=  (13) 

Similarly, we can calculate different stock prices for dif-
ferent total time periods n, and then calculate back to the call 
price at t = 1. 

III. FUZZY BINOMIAL TREE OPTION  
PRICING MODEL 

Before set up the model, the following assumptions are al- 
lowed: (1) There is no transaction costs, no taxes, no restric-
tions on short sales, no arbitrage opportunities in the markets 
and assets are infinitely divisible.  (2) The underlying asset 
does not pay dividends during the life of derivative.  (3) The 
riskless rate of interest is constant and all maturities are the 
same.  After combining binomial tree option pricing model 
and fuzzy theory, the binomial tree option pricing model is 
extended to fit a fuzzy binomial tree option pricing model.  
The results of inferences for fuzzy stock prices and fuzzy call 
prices are introduced in detailed by Yu et al. [93]. 

1. The Process of Inference for Fuzzy Stock Prices 
Similar to the binomial tree option pricing model, we sup-

pose that S is known at t = 1.  After the fuzzification of σ 
and –σ, the up and down movements u and d are replaced by 
uu, um, and ud, and du, dm, and dd, respectively.  uu, um, and 
ud are three possibilities for the up movement under the largest,  
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Fig. 3.  Stock prices at t = 2. 

 
 

medium, and smallest volatility, respectively.  uu, um, and ud 
can be defined as follows: 

 (1 ) (1 ), ,t t tuu e um e ud eρ σ σ ρ σ+ Δ Δ − Δ= = =i i i i i  

We also let 1 ,uu
dd

=
1 ,um

dm
=

1 .ud
du

=   Hence, du = 

(1 ) te ρ σ− − Δi i , tdm e σ− Δ= i , (1 ) tdd e ρ σ− + Δ= i i . 
Now, we can list all the possible stock prices through 

various combinations of uu, um and ud, and du, dm and dd. 
All the stock prices at t = n can be derived as follows: 

 uu a ⋅ um b ⋅ ud c ⋅ du x ⋅ dm y ⋅ dd z ⋅ S 

where a, b, c, x, y, z are integers and can be any combinations 
under the condition a + b + c + x + y + z = n − 1; and n is the 
total number of time periods. 

Suppose there are n time periods.  The number of stock 
prices at t = n are 6n – 1. 

For example, suppose for t = 2 there are in total 6 stock 
prices.  a + b + c + x + y + z = n − 1 = 1.  The stock prices at  
t = 2 are derived as follows: when a = 1, b = c = x = y = z = 0, 
Suu = uu ⋅ S with μ = 0.1.  When b = 1, a = c = x = y = z = 0,  
Sum = um ⋅ S with μ = 1.0.  When c = 1, a = b = x = y = z = 0,  
Sud = ud ⋅ S with μ = 0.1.  When x = 1, a = b = c = y = z = 0,  
Sdu = du ⋅ S with μ = 0.1.  When y = 1, a = b = c = x = z = 0,  
Sdm = dm ⋅ S with μ = 1.0.  When z = 1, a = b = c = x = y = 0,  
Sdd = dd ⋅ S with μ = 0.1. 

We have the above six equations for stock pricing: see Fig. 
3.  In this figure, the dash lines with arrows indicate upward 
movement from t = 1 to t = 2; while the solid lines indicate 
downward movement.  The values in solid boxes (Sud and Sdu) 
indicate the stock prices with the smallest volatilities at t = 2; 
those in dashed boxes (Sum and Sdm) indicate the stock prices 
with medium volatilities; and those in double boxes (Suu and 
Sdd) indicate the stock prices with largest volatilities. 

um ⋅ uu ⋅ S

ud ⋅ uu ⋅ S

du ⋅ uu ⋅ S

dd ⋅ uu ⋅ S

uu ⋅ uu ⋅ S

dm ⋅ uu ⋅ S

uu

um

ud

du

dm

dd

0.01

0.1

0.01

0.0

0.1

0.01

t = 1       t = 2 μ t = 3 μ

uu ⋅ S

um ⋅ S

ud ⋅ S

du ⋅ S

dd ⋅ S

dm ⋅ S

S

uu

um

ud

du

dm

dd

0.1

1.0

0.1

0.1

1.0

0.1
 

Fig. 4.  Stock prices at t = 3. 
 
 
Let us take another example, n = 3.  There are 6n – 1 = 62 =  

36 stock prices.  Only stock prices derived from Suu(= uu ⋅ Suu) 
are listed in Fig. 4.  Similar to the case for n = 2, there are six 
stock prices derived: uu ⋅ Suu, um ⋅ Suu, ud ⋅ Suu for the upward 
movement and du ⋅ Suu, dm ⋅ Suu, dd ⋅ Suu for the downward 
movement.  Meanwhile, μ(uu ⋅ Suu) = 0.1 ⋅ 0.1 = 0.01, μ(um ⋅ 
Suu) = 0.1 ⋅ 1.0 = 0.1, μ(ud ⋅ Suu) = 0.1 ⋅ 0.1 = 0.01.  Similarly, 
μ(du ⋅ Suu) = 0.1 ⋅ 0.1 = 0.01, μ(dm ⋅ Suu) = 0.1 ⋅ 1.0 = 0.1,  
μ(dd ⋅ Suu) = 0.1 ⋅ 0.1 = 0.01. 

2. The Process of Inference for Fuzzy Call Prices 
Now we trace all the possible call prices from the stock 

prices.  Following the definition of call prices, they are defined 
at t = n. 

The call prices at t = n (the last period) can be expressed as 

 max(0, )uu h hC uu S K= ⋅ −i  (14) 

 max(0, )um h hC um S K= ⋅ −i  (15) 

 max(0, )ud h hC ud S K= ⋅ −i  (16) 

 max(0, )du h hC du S K= ⋅ −i  (17) 

 max(0, )dm h hC dm S K= ⋅ −i  (18) 

 max(0, )dd h hC dd S K= ⋅ −i  (19) 

where h represents the combination of uu, um and ud; du, dm 
and dd. 
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We can use the call prices at t = n to trace all other call 
prices.  Accordingly, the call prices from t = n to t = n − 1 can 
be similarly derived. 

Each fuzzy call price at t = n − 1 is formed as a fuzzy 
number (Cl, Cc, Cr), where Cl is created from the two call 
prices with the largest volatilities, Cc is created from the two 
with the medium volatilities and Cr is created from the two 
with the smallest volatilities.  Finally, we get the general call 
price valuation formula as follows: 

 
( ) ( )

( )
uu h dd h

l

a dd C uu a C
C

uu dd a
⋅− ⋅ + − ⋅

=
− ⋅
i  (20) 

 
( ) ( )

( )
um h dm h

c

a dm C um a C
C

um dm a
⋅− ⋅ + − ⋅

=
− ⋅

i  (21) 

 
( ) ( )

( )
ud h du h

r

a du C ud a C
C

ud du a
⋅− ⋅ + − ⋅

=
− ⋅

i  (22) 

The μ’s for the derived call prices are calculated by the min 
operation 

 2 1 2min( ( ), ( ))Cq C C Cp qμ μ μ∩ =  (23) 

where C1 and C2 are the two call prices from which a new call 
price is derived. 

For example, if we let t = 3, there are six call prices listed in 
Fig. 5. 

 max(0, )uu h hC uu S K= ⋅ −i  

 max(0, )um h hC um S K= ⋅ −i  

 max(0, )ud h hC ud S K= ⋅ −i  

 max(0, )du h hC du S K= ⋅ −i  

 max(0, )dm h hC dm S K= ⋅ −i  

 max(0, )dd h hC dd S K= ⋅ −i  

Cuu ⋅ h and Cdd ⋅ h indicate the largest volatilities and are used 
to calculate the Cl at t = 2.  Similarly, Cum ⋅ h and Cdm ⋅ h indicate 
the medium volatilities and are used to calculate the Cc; Cud ⋅ h 
and Cdd ⋅ h indicate the smallest volatilities and are used to 
calculate the Cr.  The μ of Cl (at t = 2) = min(0.01, 0.01) = 0.01.  
Similarly, the μ of Cc = min(0.1, 0.1) = 0.1 and the μ of Cr = 
min(0.01, 0.01) = 0.01. 

Next, we take the call price with the greatest μ from which 
we derive the call price at t = 2, Cc.  Similarly, we can calculate 
the 30 other call prices at t = 3 and the other five values of Cc, 
as in Fig. 6. 

0.01

0.1 
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0.1 
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0.1 
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t = 1 μ t = 2 μ t = 3              μ

C = max (0, uu · uu · S – K)

C = max (0, um · uu · S – K)

C = max (0, ud · uu · S – K)

C = max (0, du · uu · S – K)

C = max (0, dm · uu · S – K)

C = max (0, dd · uu · S – K)

0.01

0.1

0.01

0.01

0.1

0.01

0.1 

1 

0.1 

 
Fig. 5.  Call prices at t = 3 and t = 2. 

IV. EMPIRICAL ANALYSIS 
Most existing studies are conceptual, which leads to the 

empirical findings are not able to be generalized to companies 
and industries.  Hereafter, we utilized empirical date and 
analyzed the effectiveness of the proposed model. 

1. Data Description 
Analysis is conducted using data from the Taiwan Eco-

nomic Journal (TEJ) Data Bank.  The issuing date of the stock 
was 2000/01/11, and the maturity day was 2001/01/20.  The 
stock price and call price at the issuing date were NT 35 and 
NT 9.3, respectively.  The warrant we chose was Fubon 04, 
and its underlying security was the TCC (Taiwan Cement 
Corporation).  In Taiwan, the date of maturity of a warrant is 
usually less than one year from the date of issuance.  Thus we 
used the rate for one year time deposits from the First Com-
mercial Bank as the risk-free rate.  The rate was between 4.9% 
and 5%, and we chose 5% for use with the geometric mean 
method.  The exercised price of Fubon 04 was 35 (at t = 1). 
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Fig. 6.  Empirical example of fuzzy stock prices. 

 
 
Historical approach is utilized to obtain the volatilities for 

applying the CPR model [87].  As in Hull [45], trading days 
instead of calendar days were used when annualizing the Δt.  
The volatility ρ was estimated using the daily stock closing 
prices over the past 90 to 180 days. 

2. Fuzzy Stock Prices 
First, the estimated σ was 0.36.  This was fuzzified into a 

fuzzy set (σ(1 – ρ), σ, σ(1 + ρ)).  For example, if we set ρ = 5%; 
we have a fuzzy σ of (0.95 σ, σ, 1.05 σ).  The fuzzy σ is cal-
culated to be (0.34, 0.36, 0.38).  Suppose the number of time 
periods n = 2.  For the upward movement, 

 (1 ) 1.05 0.5, so 35 45.78;t
uuuu e S eρ σ σ+ Δ ×= = × =  

 0.5, so 35 45.20;t
umum e S eσ σΔ= = × =  

 (1 ) 0.95 0.5, so 35 44.63.t
udud e S eρ σ σ− Δ ×= = × =  
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Fig. 7.  Empirical example of fuzzy call prices. 
 
 
For the downward movement, 

 (1 ) 0.95 0.5, so 35 27.45;t
dudu e S eρ σ σ− − Δ − ×= = × =  

 0.5, so 35 27.10;t
dudm e S eσ σ− Δ= = × =  

 (1 ) 1.05 0.5, so 35 26.76.t
dddd e S eρ σ σ− + Δ − ×= = × =  

The details are depicted in Fig. 6. 

3. Fuzzy Call Prices 
From the stock price at t = 3 and the exercised price we 

compute the call prices at t = 3.  As in Fig. 7, the call price 
(second value in the leftmost column) is equal to max 
(59.1218814-35, 0) = 24.1218814.  The call price (second 
value in the leftmost column) is equal to max (35.45040654- 

35, 0) = 0.45040654.  By (1 )m um m dm
m

P C P CC
a

⋅ + − ⋅
= , we get 

Cm = 11.63459355. 
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Table 1.  Sensitivity analysis. 
 Numbers of Periods 
 2 3 4 5 

  10.03 7.67 8.28 7.92 
 5% 9.60 7.35 8.16 7.75 
  9.16 7.35 8.03 7.75 
  10.46 7.98 8.40 8.08 
 10% 9.60 7.35 8.16 7.75 
ρ  8.72 7.35 7.91 7.75 
  10.89 8.29 8.52 8.25 
 15% 9.60 7.35 8.16 7.75 
  8.27 7.35 7.79 7.75 
  11.32 8.60 8.64 8.42 
 20% 9.60 7.35 8.16 7.75 
  7.82 7.35 7.67 7.75 
 
 
Next, we choose the medium value of the triangular fuzzy 

number with the same weight for the operation.  For instance, 
11.63459355 is Cuu at t = 2; 0 is Cdd at t = 2.  We thus get Cu = 
5.50245741.  Similarly, we can calculate the current call price 
of triangular fuzzy numbers as (5.50245741, 5.22736817, 
5.16856623). 

4. Sensitivity Analysis 
To conduct sensitivity analysis, let there be four periods 

with fuzzy intervals ρ of 5%, 10%, 15%, and 20%.  From 
Table 1, we know that the larger the ρ, the bigger the fuzzy 
interval.  In other words, when ρ becomes smaller, the preci-
sion improves.  In this case, the model becomes much closer to 
the continuous Black-Scholes model. 

Since there are more nodes in the fuzzy option pricing 
model than in the conventional model, the speed of conver-
gence is faster than for the previous model. 

V. CONCLUSIONS 
Using this combination of option pricing models and fuzzy 

set theory, risk averters and risk lovers can find the correct 
portfolio building strategy, according to the right and left 
values of the triangular fuzzy number, to suit their own incli-
nations.  When market prices are lower than the left value of 
the triangular fuzzy number, risk lovers can buy more, risk 
averters can buy less.  When market prices are between the 
right value and left value of the triangular fuzzy number, risk 
averters can buy less than those who are risk neutral, and risk 
lovers can buy much more.  In other words, the study results 
provide more guidance for investors. 

The fuzzy binomial tree option pricing model is much 
closer to what occurs in the real world than is the CRR model, 
and the concepts on which it is based are much easier to un-
derstand.  Since there are three conditions for the upward and 
downward movements, there are six nodes for t = 2.  We use  

Risk
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Sell Sell Sell

Sell Sell Hold

Buy Buy Hold

Strong
Buy Buy

(a)

(b)

(c)

(d) Buy

r

c

l

 
Fig. 8.  Investment strategies.  

 
the same method to fuzzify every node and combine them with 
the same value, to get 15 nodes on t = 3.  The results are shown 
in Fig. 8.  For the future research, the volatility can be treated 
as a time series.  In this case, fuzzy time series model (Huarng, 
[41]; Song and Chissom, [77]) can be applied to forecast the 
volatility.  Fuzzy time series models have been applied to 
different problem domains, such as enrollment (Huarng, [41]; 
Song and Chissom, [77]; Song and Chissom, [78]), stock 
index (Huarng, [41]; Huarng and Yu, [42]; Huarng, Yu, and 
Hsu, [43]), tourism (Huarng, Yu, and Parellada, [44]), etc.  
And some of these models have been shown to outperform 
their counterparts in forecasting (Song and Chissom, [77]; 
Song and Chissom, [78]).  Hence, the application of fuzzy 
time series models to forecast the volatility and then to fore-
cast the market price would be one of the interesting research 
topics. 
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