

Volume 19 | Issue 2

Article 13

EVALUATION OF SIDE RESISTANCE CAPACITY FOR DRILLED SHAFTS

Yit-Jin Chen Department of Civil Engineering, Chung Yuan Christian University ChungLi 32023, Taiwan, R.O.C., ycj@cycu.edu.tw

Shiu-Shin Lin Department of Civil Engineering, Chung Yuan Christian University ChungLi 32023, Taiwan, R.O.C.

Hsin-Wen Chang Department of Civil Engineering, Chung Yuan Christian University ChungLi 32023, Taiwan, R.O.C.

Maria Cecilia Marcos Department of Civil Engineering, Chung Yuan Christian University ChungLi 32023, Taiwan, R.O.C.

Follow this and additional works at: https://jmstt.ntou.edu.tw/journal

Part of the Civil and Environmental Engineering Commons

Recommended Citation

Chen, Yit-Jin; Lin, Shiu-Shin; Chang, Hsin-Wen; and Marcos, Maria Cecilia (2011) "EVALUATION OF SIDE RESISTANCE CAPACITY FOR DRILLED SHAFTS," *Journal of Marine Science and Technology*: Vol. 19: Iss. 2, Article 13. DOI: 10.51400/2709-6998.2156

Available at: https://jmstt.ntou.edu.tw/journal/vol19/iss2/13

This Research Article is brought to you for free and open access by Journal of Marine Science and Technology. It has been accepted for inclusion in Journal of Marine Science and Technology by an authorized editor of Journal of Marine Science and Technology.

EVALUATION OF SIDE RESISTANCE CAPACITY FOR DRILLED SHAFTS

Yit-Jin Chen*, Shiu-Shin Lin*, Hsin-Wen Chang*, and Maria Cecilia Marcos*

Key words: drilled shaft, load test, side resistance, case history.

ABSTRACT

This paper presents an extensive evaluation of axial side resistance of drilled shaft foundations. A wide variety of load test data are used and these data are divided into drained and undrained databases. Representative analytical models, including alpha (α), beta (β), and lambda (λ) methods, are examined in detail using both measured and predicted results to assess their relative merits for the drilled shaft design. Based on these analyses, the undrained shear strength (α -s_u) correlations have exhibited better statistics for undrained side resistance prediction, and the undrained strength ratio (α -USR) correlations can be adopted as an alternative analytical method, especially in the case of smaller s_u . For β method, the stress factors (K/K_o) are developed from the back-analysis of field load tests. However, the β method has presented more varying results for short shafts in both drained and undrained loading. Among all analytical methods, the λ method is relatively the less reliable prediction model. Specific design recommendations for side resistance analysis of drilled shaft are suggested.

I. INTRODUCTION

Drilled shafts (also called cast-in-place piles, drilled piers or bored piles) are frequently used as foundation for modern high-rise buildings, bridges, electrical transmission line structures, etc. Side resistance is an important source of drilled shaft capacity under axial loading, especially when the shaft is under the condition of uplift loading or considerably larger depth. Researches about this subject still have progressed during the past five decades. Based on soil conditions, the methods for analyzing side resistance are of two types: total stress analysis and effective stress analysis. These analytical methods can be further specified into the alpha (α), beta (β), and lambda (λ) methods. Table 1 lists the equations and the related factors for each method.

The α method is a conventional total stress analysis for the

side resistance of drilled shaft foundations in cohesive soils. The side resistance capacity is related to the average soil undrained shear strength (s_u) by an empirical coefficient denoted as α , which is the adhesion factor. The original α [14] was based on empirical correlations of mean s_u over the foundation depth, using primarily driven pile data. The research from Stas and Kulhawy [13] showed that α method is meaningful for drilled shafts. They developed the correlation of α versus s_u for the drilled shaft design, however, the s_u values in their analysis were taken from random test types, as shown in Fig. 1.

Moreover, several researchers [7, 11, 12] also demonstrated that α is complexly related to other soil parameters such as the mean effective overburden stress ($\overline{\sigma}_{vm}$), the overconsolidation ratio (OCR), and the effective stress friction angle ($\overline{\phi}$). With these suggestions, Goh *et al.* [4] further carried out parametric studies using the trained neural network model and proposed that $\overline{\sigma}_{vm}$ can directly or indirectly influence α in designing drilled shafts.

The β method is an effective stress analysis which considers the frictional resistance for the soil-shaft interface. In this method, the side resistance is a function of horizontal effective stress ($\overline{\sigma}_{ho}$), effective stress friction angle (δ) for the soil-shaft interface, and shaft geometry. Kulhawy *et al.* [9] examined the available load test data and presented that the stress factor (K/K_o) is generally less than 1 and dependent on the construction method and its influence on the in-situ stress. They also suggested that the ratio of interface friction angle (δ) to soil friction angle ($\overline{\phi}$) is equal to 1 for drilled shafts.

Finally, the lambda (λ) method is a combination of total and effective stress analyses that can be used for cohesive soils. In this method, the side resistance is related to s_u and $\overline{\sigma}_{vm}$ by an empirical factor λ . The original empirical factor λ [15] was developed based on the database of driven pile data and is a function of the total depth of the pile. However, no further effort has been done in detail to examine its validity in the design of drilled shafts.

Although some of these analytical methods have been examined previously, it is reasonable to completely reassess these methods for the side resistance analysis of drilled shaft design, because new approaches have been developed, and more consistent procedures for assessing interpreted failure

Paper submitted 11/30/09; revised 03/27/10; accepted 04/04/10. Author for correspondence: Yit-Jin Chen (e-mail: ycj@cycu.edu.tw).

^{*}Department of Civil Engineering, Chung Yuan Christian University Chung-Li 32023, Taiwan, R.O.C.

ta	ance for drilled shafts.
	Definition of factors

	v i		
Method	Equation ^a		Definition of factors
α	$Q_{s}(\alpha) = \pi B \sum_{n=1}^{N} \alpha_{n} s_{un} t_{n}$	(1)	α : empirical adhesion factor s_u : undrained shear strength
β	$Q_{s}(\beta) = \pi B\left(\frac{K}{K_{o}}\right) \sum_{n=1}^{N} \overline{\sigma}_{vn} K_{on} \tan\left[\overline{\phi}_{n} \cdot \frac{\delta}{\overline{\phi}}\right] t_{n}$	(2)	K: coefficient of horizontal soil stress K_0 : in-situ K $\overline{\sigma_v}$: vertical effective stress $\overline{\phi}$: effective stress friction angle δ : interface friction angle for soil-shaft $\beta = K \tan \delta$
λ	$Q_{s}(\lambda) = \pi B \sum_{n=1}^{N} \lambda_{n} \left[\overline{\sigma}_{vn} + 2 s_{un} \right] t_{n}$	(3)	λ: empirical factor

Table 1. Analysis equations of side resistance for drilled shafts.

 ${}^{a}Q_{s}$ = capacity of side resistance; B = shaft diameter; N = number of soil layers; t = thickness.

load have been improved, additionally, numerous updated load test data have existed since those earlier studies. In this paper, a broad database is used to assess the relative merits and suitability of each analytical model using the most updated data and approaches. The results are compared statistically and graphically. After which, specific design recommendations for the use of side resistance in drilled shaft design are presented.

II. DATABASE OF LOAD TESTS

The database developed for this study is consisted of 222 field axial load tests conducted at 105 sites with a wide variety of soil profiles. All load test data were collected from published literature or load test reports. Based on primarily dominant soil conditions along the shaft length, axial load test data are grouped into drained or undrained loading. Among these load test data, 74 tests at 40 sites are grouped into drained loading and 148 tests at 65 sites are grouped into undrained

loading. Load tests are divided into two groups, each based on the overall data quality, completing a total of eight-sub groups as follows: Group 1 in compression (denoted DC1 and UC1 for drained and undrained soils, respectively), Group 2 in compression (DC2 and UC2), Group 1 in uplift (DU1 and UU1), and Group 2 in uplift (DU2 and UU2). Group 1 includes those cases in which the complete load-displacement curve and geotechnical parameters were reported. Group 2 consists of all remaining cases, such as the groundwater table was not reported, the load test was stopped before interpreted failure load, or the geotechnical parameters were not measured over the entire depth, and therefore they have to be inferred from other tests. All of the selected tests were conducted on straight-sided drilled shafts. Based on the case history descriptions, it appears that the shaft constructions and test performances were of high quality. Consequently, these field data should reflect real situations and the results of the analyses could be representative for subsequent applications in engineering practice.

Tables 2 and 3 show the interpreted parameters and result of the analyses for the load tests with drained and undrained soils, respectively. The values of α , β_m , and λ are back-calculated using Eqs. (1)-(3) from the field load test results. The L_1 - L_2 method [5, 6], which is a graphical construction method, is adopted to define the capacity in both uplift and compression. As shown in Fig. 2, the load-displacement curves can generally be simplified into three distinct regions: initial linear, curve transition, and final linear. Point L₁ (elastic limit) corresponds to the load (Q_{L1}) and butt displacement (ρ_{L1}) at the end of the initial linear region, while L₂ (failure threshold) corresponds to the load (Q_{L2}) and butt displacement (ρ_{L2}) at the initiation of the final linear region. QL2 is defined as the "interpreted failure load or capacity" because beyond QL2, a small increase in load gives a significant increase in displacement. The updated research studies by Chen et al. [1] and Chen and Fang [2] defined that QL2 occurs on average, at 10.6 mm (for drained loading) and 12.1 mm (for undrained loading) under uplift loading, while it occurs at 4%B for both drained and undrained compression

Site/Case	O _s	$\overline{\sigma}_{vm}^{a}$	$\overline{\phi}_{tc}^{b}$	*F C	o d	0.6	S	ite/case	O _s	$\overline{\sigma}_{vm}^{a}$	$\overline{\phi}_{tc}^{b}$	*7 C	o d	0.0
No.	(kN)	(1-1)/2)	(dag)	Kou	β_m^{u}	β_p^c		No.	(kN)	(1-1)/2)	(dag)	Kou	β_m^{u}	β_p^c
	()	(KIN/M)	(ueg)						()	(KIN/M)	(ueg)			
DU1	334	27	36	1.4	1.42	1.05	D	U21-2	52	42	36	1.3	0.97	0.59
DU2	58	15	35	1.0	0.76	0.72	D	U21-3	74	76	35	0.9	0.63	1.02
DU3	362	14	36	3.1	2.97	2.43	D	U21-4	90	76	35	0.9	0.63	0.70
DU4	484	42	35	1.1	0.93	0.79	D	C1	488	42	33	0.9	0.60	1.56
DU5-1	24	13	36	3.1	1.36	1.64	D	C2	978	42	36	2.1	1.57	0.69
DU5-2	68	19	37	2.5	1.50	1.38	D	C3-1	1779	106	36	0.5	0.37	1.34
DU5-3	159	25	37	2.0	1.78	1.10	D	C3-2	3202	99	37	0.7	0.54	1.61
DU6-1	650	32	36	2.1	0.94	1.11	D	C4	548	50	30	1.8	1.07	0.93
DU6-2	650	32	36	2.1	0.94	1.11	D	C5	1246	89	40	0.8	0.49	0.96
DU7-1	390	42	44	1.0	0.66	0.99	D	C6	5907	96	34	0.7	0.44	-
DU7-2	498	42	44	1.0	0.77	0.99	D	C7	4270	86	38	11	0.89	_
DU8-1	261	56	35	0.4	0.32	0.31	D	C8-1	2755	89	40	0.7	0.59	1.00
DU8 2	201	56	35	0.4	0.32	0.31	ם מ	C8 2	3528	80	40	0.7	0.59	0.07
DU0-2	1029	20	40	2.6	2.02	2.02	ם ח	C0-2	144	50	40	0.7	0.39	1.02
DU9-1	1028	29	40	5.0	3.03	2.95	ם ת	C9	144	127	35	1.1	0.75	1.02
DU9-2	1225	35	30	3.0	2.50	2.54	D D	C10-1	1440	127	30	0.5	0.37	0.92
DU10-1	605	20	44	-	6.08	-	D	C10-2	1504	127	36	0.5	0.37	0.96
DU10-2	894	29	44	-	4.35	-	D	C10-3	1280	118	36	0.5	0.37	0.96
DU11-1	205	38	35	-	0.83	-	D	C10-4	1520	135	36	0.5	0.37	0.80
DU11-2	273	26	45	-	2.42	-	D	C10-5	1696	127	36	0.5	0.37	1.08
DU11-3	180	25	40	-	1.73	-	D	C11	4000	210	35	0.4	0.27	0.97
DU11-4	372	21	51	-	5.03	-	D	C12	9963	108	43	1.1	0.75	1.72
DU11-5	115	30	31	-	0.87	-	D	C13	1637	94	-	-	-	-
DU11-6	54	30	31	-	0.38	-	D	C14	2562	50	38	2.2	1.77	0.98
DU11-7	67	30	31	-	0.48	-	D	C15	6832	83	34	-	-	-
DU11-8	108	30	31	-	0.77	-	D	C16-1	4494	61	-	-	-	-
DU11-9	141	44	31	-	0.45	-	D	C16-2	2092	61			-	-
DU11-10	135	44	31	-	0.44	-	D	C17-1	5160	90	_	-	-	-
DU11-11	211	44	31	-	0.68	-	D	C17-2	5898	102	-	-	-	-
DU11-12	222	43	31	-	0.77	-	D	C18	5696	254	43	15	1.02	1.02
DU11-13	47	25	33	_	0.40	_	D	C19-1	1552	212	42	0.9	0.83	1.02
DU11-14	21	25	33	_	0.18	_	D	$C19_{-2}$	3465	230	42	0.9	0.83	1.02
DU11 15	21	25	33	-	0.10	-	ם ח	C10-2	1357	250	44	2.0	1 00	0.02
DU11-15	27	25	22	-	0.21	-		C10-3	2050	86	44	2.0	1.00	0.72
DU11-10	2070	23	33 27	-	0.75	- 12	ם ת	C19-4	4520	177	44 27	2.0	0.20	1.02
DU12 DU12 1	2870	99 42	37	0.5	0.78	0.42	U D	C20	4520	177	5/	0.5	0.39	1.02
DU13-1	129	42	43	1.3	1.74	1.25	D	C21	6808	1/3	45	0.4	0.46	1.24
DU13-2	334	29	43	1.8	1.//	1.81	D	C22-1	8838	311	35	0.4	0.22	0.79
DUI4-I	564	49	35	1.5	1.67	1.08	D	C22-2	7745	311	35	0.4	0.22	0.69
DU14-2	613	58	35	1.3	1.23	0.94	D	C22-3	7935	311	35	0.4	0.22	0.71
DU14-3	522	70	35	1.0	0.72	0.72	D	C23	24400	210	38	0.5	0.40	1.15
DU14-4	598	74	35	0.9	0.67	0.65	D	C24	5600	113	45	0.5	-	-
DU14-5	683	77	35	0.8	0.64	0.58	D	C25	9252	233	35	0.4	0.21	0.86
DU15-1	193	21	33	2.3	1.32	1.54	D	C26	1067	70	-	-	-	-
DU15-2	362	27	34	1.9	1.52	1.32	D	C27-1	2206	118	-	-	-	-
DU15-3	407	28	44	2.7	3.11	2.69	D	C27-2	2170	118	-	-	-	-
DU16	974	35	-	-	2.66	-	D	C28-1	676	66	39	0.7	0.58	1.20
DU17-1	2369	288	45	0.3	0.24	0.27	D	C28-2	1210	100	43	0.6	0.58	0.94
DU17-2	2668	265	45	0.3	0.20	0.27	D	C29	124	45	28	0.6	0.33	1.35
DU18-1	92	27	-	-	0.79	-	D	C30	427	47	37	0.9	0.70	1.18
DU18-2	111	29	-	-	0.81	-	D	C31	1370	85	45	0.7	0.72	0.87
DU18-3	113	31	-	-	0.71	-	n	C32-1	9550	207	33	0.5	0.31	0.86
DU18-4	99	34	_	_	0.53	_	ם ח	C32-2	9128	207	33	0.5	0.31	0.83
DU18 5	112	27 27	-	-	0.55	-	ם ח	C33	7570	115	/1	0.5	0.76	1.07
DU10-5	101	27	-	-	0.90	-	ם ד	C34 1	106	00	+1 20	0.0	0.40	0.67
DU10-0	101	21	-	-	6 40	- 5 5 2		C24-1	170	20	20	0.5	0.50	0.07
DU19	1930	30	44	3.5	0.40	5.52	D	C34-2	233	90	20	0.5	0.30	0.09
DU20-1	305	90	3U 20	0.5	0.37	0.31	D	C34-3	350	90	30	0.5	0.30	0.83
DU20-2	435	90	30	0.5	0.38	0.31	D	C35	4500	135	-	-	-	-
DU20-3	431	90	30	0.5	0.30	0.31	D	C36-1	2215	65	-	-	-	-

Table 2. Summary of analysis data for drained loading.

 ${}^{a}\overline{\sigma}_{vm}$ = mean effective overburden stress along shaft. ${}^{b}\overline{\phi}_{tc}$ = effective stress friction angle ($\overline{\phi}$) for triaxial compression test. ${}^{c}K_{o} = (1 - \sin \overline{\phi}_{tc})OCR^{\sin \overline{\phi}_{tc}}$, based on Mayne and Kulhawy [10]. ${}^{d}\beta_{m}$ was calculated using Eq. (10). ${}^{c}\beta_{p}$ was calculated using Eq. (9) and the suggested K/K_o values of this study.

DC36-2

2680

94

DU21-1

42

82

36

1.3

0.89

0.97

Table 3. Summary of analysis data for undrained loading.

Site/Case No.	Qs (kN)	$\frac{\overline{\sigma}_{_{V\!m}}{}^a}{(kN\!/\!m^2)}$	s _u (CIUC) (kN/m ²)	K _o ^b	α_{CIUC}	$\beta_m{}^c$	$\beta_{p}{}^{d}$	λ	Site/Case No.	Qs (kN)	$\overline{\sigma}_{vm}^{a}$ (kN/m^2)	s _u (CIUC) (kN/m ²)	K _o ^b	α_{CIUC}	$\beta_m{}^c$	$\beta_p{}^d$	λ
UU1	525	37	102	2.76	0.61	1.71	1.71	0.26	UC1	395	55	147	1.19	0.34	0.92	0.74	0.14
UU2-1	334	19	307	5.11	0.23	2.98	2.89	0.11	UC2	1516	54	90	0.93	0.56	0.95	0.53	0.22
UU2-2	356	19	307	5.11	0.25	3.65	2.89	0.12	UC3	8162	148	100	0.41	0.50	0.34	0.35	0.14
UU3-1	301	25	68	3.67	0.63	1.75	2.37	0.27	UC4	19706	236	120	0.50	0.50	0.25	0.25	0.13
UU3-2	319	25	68	3.67	0.67	1.87	2.37	0.28	UC5	13406	296	120	0.53	0.52	0.21	0.24	0.12
UU4	290	40	59	-	0.56	3.09	-	0.21	UC6	9528	197	120	0.89	0.45	0.31	0.38	0.12
UU5	1177	343	285	1.04	0.32	0.33	0.47	0.10	UC7	11521	231	120	0.49	0.40	0.21	0.26	0.10
UU6	220	29	100	3.10	0.35	1.22	1.85	0.15	UC8	4448	90	100	0.79	0.40	0.45	0.37	0.14
UU7	125	23	112	2.52	0.37	2.05	1.76	0.17	UC9	290	39	24	0.74	0.88	0.54	0.44	0.11
UU8	270	16	95	4.71	0.61	3.12	3.43	0.28	UC10-1	178	30	132	2.14	0.27	1.19	1.38	0.10
UU9-1	402	63	56	-	0.81	0.74	-	0.26		178	30	137	-	0.26	-	-	0.10
UU9-2	451	59	57	-	0.69	0.69	-	0.23	UC10-2	383	45	118	1.74	0.35	0.91	1.13	0.13
UU9-3	323	40	57	-	0.66	0.95	-	0.24		383	45	109		0.38	-	-	0.14
UU10-1	194	34	26	0.61	0.87	0.67	0.40	0.26	UC10-2	890	67	136	1.45	0.45	0.91	1.01	0.17
	194	34	32	0.61	0.71	-	-	0.23		890	67	123	-	0.50	-	-	0.18
UU10-2	182	34	26	0.61	0.88	0.68	0.40	0.27	UC11-1	636	107	291	1.59	0.32	0.86	1.05	0.03
	182	34	32	0.61	0.72	-	-	0.23	UC11-2	2500	119	303	1.40	0.41	1.04	0.93	0.10
UU11	616	80	96	1.22	0.32	0.39	0.65	0.11	UC11-3	2400	110	297	1.39	0.27	0.74	0.92	0.07
UU12-1	618	43	21	0.84	0.84	0.31	0.50	0.21	UC11-4	1180	105	340	1.40	0.29	0.89	0.93	0.04
UU13-1	480	29	74	2.42	0.56	1.42	1.44	0.23	UC11-5	1400	97	302	1.42	0.23	0.71	0.94	0.04
	480	29	178	-	0.26	-	-	0.11	UC12-1	946	70	119	1.37	0.40	0.69	0.92	0.18
	480	29	165	-	0.27	-	-	0.11		946	70	94	-	0.51	-	-	0.22
UU13-2	943	34	86	2.32	0.63	1.59	1.38	0.26	UC12-2	1067	70	119	1.37	0.54	0.91	0.92	0.21
	943	34	180	-	0.30	-	-	0.14		1067	70	94	-	0.68	-	-	0.25
	943	34	166	-	0.33	-	-	0.15	UC12-3	2130	105	137	1.27	0.37	0.48	0.63	0.18
UU13-3	147	26	68	2.55	0.62	1.62	1.51	0.26		2130	105	120	-	0.42	-	-	0.20
	147	26	179	-	0.25	-	-	0.11	UC13-1	41	28	48	2.00	0.63	1.07	1.29	0.24
	147	26	165	-	0.26	-	-	0.12	UC13-2	74	36	50	1.85	0.71	0.99	1.15	0.26
UU14-1	2044	57	58	0.90	0.64	0.65	0.68	0.21	UC13-3	122	40	57	1.83	0.80	1.15	1.09	0.30
UU14-2	2044	57	45	-	0.82	-	-	0.25	UC13-4	129	41	68	1.83	0.68	1.14	1.09	0.26
UU14-3	2044	57	53	-	0.70	-	-	0.23	UC14-1	2355	83	192	1.56	0.45	1.04	1.32	0.18
UU15-1	448	29	182	1.80	0.40	2.48	1.41	0.18		2355	83	208	-	0.41	-	-	0.17
UU15-2	723	44	182	1.41	0.42	1.73	1.11	0.19		2355	83	193	-	0.45	-	-	0.18
UU16	8896	296	120	0.53	0.56	0.23	0.24	0.13	UC14-2	2028	83	192	1.56	0.37	0.86	1.32	0.15
UU17	6316	285	120	0.50	0.40	0.19	0.25	0.09		2028	83	208	-	0.34	-	-	0.14
UU18	11565	142	100	0.88	0.51	0.36	0.40	0.15		2028	83	193	-	0.37	-	-	0.15
UU19	3558	75	90	0.88	0.40	0.47	0.38	0.14	UC15-1	329	60	140	1.11	0.31	0.70	0.72	0.12
UU20-1	614	51	94	1.01	0.42	0.77	0.60	0.16		329	60	186	-	0.25	-	-	0.10
UU20-2	667	51	94	1.01	0.45	0.83	0.60	0.18	UC15-2	3053	160	260	0.99	0.40	0.71	0.67	0.17

^a $\bar{\sigma}_{vn}$ = mean effective overburden stress along shaft. ^b $K_o = (1 - \sin \phi_{tc}) OCR$ calculated using Eq. (9) and the suggested K/K_o values of this study.

Fig. 2. Regions of load-displacement curve.

 ${}^{a}\overline{\sigma}_{vm}$ = mean effective overburden stress along shaft. ${}^{b}K_{\sigma} = (1 - \sin \overline{\phi}_{tc}) OCR^{\sin \overline{\phi}_{tc}}$, based on Mayne and Kulhawy [10]. ${}^{c}\beta_{m}$ was calculated using Eq. (10). ${}^{d}\beta_{p}$ was

loading. They also developed the relationships between L_2 and other interpretation criteria from lower bound to higher bound. Therefore, these interrelationships among interpretation criteria are also used to infer the required L_2 if the load test data are insufficient or are terminated prematurely.

Table 4 lists the reference sources and soil strength test types of all load test case histories in Tables 2 and 3. These load tests were conducted on various types of soil around the world and at different times. For convenience, Table 5 lists the ranges of foundation geometry and the interpreted capacities from the database, along with the data standard deviation (SD) and the coefficient of variation (COV), which is the standard deviation divided by the mean. As can be seen, the ranges are broad, but the results for drained and undrained analyses are roughly comparable.

Sita No.	Test	type	- Deference courses						
Site No.	su ^a	₫ ^b	Kelerence sources						
DU1, 15; UU2, 3	UC	SPT-N	Harza Engineering Co. (1978)"Foundation uplift tests – Missouri Basin Power Project East Transmission",						
DU2	-	SPT-N	Ohio Edison Co. (early 1960s) "Test program proves feasibility of concrete cylinder anchors for steel trans-						
DU3	-	SPT-N	Mission towers for Onto Edison Co., Akron, 8 p. Virginia Electric and Power Co. (1967) "Tests on piles and caissons, slurry-Hopewell 230 KV; Bacons Castle,						
DU4; DC1	-	SPT-N	Virginia", 15 p. Florida Testing Laboratories (1965) "Combined section test pile, tension and compression", for Florida Power						
DU5	-	SPT-N	Corp., St. Petersburg, 9 p. Florida Testing Laboratories (1966) "Piles research for design parameters", for Florida Power Corp., St.						
DU6; DC2	-	SPT-N	Petersburg, 69 p. Ismael, NF and Klym, TW (1979) "Uplift and bearing capacity of short piers in sand", J. Geotechnical Eng.						
DU7	-	SPT-N	Div., ASCE, 105(GT5), 579-594. Stern, LI, Bose, SK and King, RD (1976) "Uplift capacity of poured-in-place cylindrical caissons", Paper A						
DU8; UU11	UC	SPT-N	76 153-9, IEEE PES Winter Meeting, New York, 9 p. Sowa, VA (1970) "Pulling capacity of concrete cast-in-situ bored piles", Canadian Geotechnical J., 7(4),						
DU9	-	SPT-N	482-493. Stone and Webster Engineering Corp. (1969) "Report on pull test on auger piles, Branchburg to Ramapo						
DU10; UU15	CIUC	СРТ	Line", Public Service Electric and Gas Co., Newark, 18 p. Briaud, J-L, Pacal, AJ and Shively, AW (1984) "Power line foundation design using the pressuremeter", Proc.,						
DU11; UU9	DSS	СРТ	1 ^a Intl. Cont. on Case Histories in Geotechnical Eng. (1), Rolla, 279-283. Tucker, KD (1987) "Uplift capacity of drilled shafts and driven piles in granular materials", Foundations for						
DU12; DC3	-	SPT-N	HDR Infrastructure (1986) "Preliminary foundation report and summary of load test program", I-275, How-						
DU13	-	СРТ	Konstantinidis, B, Pacal, AJ and Shively, AW (1987) "Uplift capacity of drilled piers in desert soils: a case history". Foundations for Transmission Line Toward (CSD 8). Ed. LL Drived ASCE, New York, 128, 141						
DU14	-	SPT-N	Marsico, R, Retallack, RL and Tedesco, PA, (1976) "Report on pile testing for AEP transmission lines – Part I and II" Transactions on Power Appearatus and Systems (EEE						
DU16	-	SPT-N	Pacific Power and Light Co. (1980) "Pier uplift test". Portland. 20 p.						
DU17	-	SPT-N	Sacre, AS (1977) "Study of pullout resistance of drilled shafts", MS Thesis, Univ. of Texas, Austin, 164 p.						
DU18; UU7, 8	UU	-	Paterson, G and Urie, RL (1964) "Uplift resistance tests on full sizes transmission tower foundations", Proc., CIGRE (1), Paper 203, Paris, 19 p.						
DU19	-	SPT-N	Woodward-Clyde Consultants (1980) "Geotechnical investigation for the Miguel-Imperial valley 500 KV transmission line (Tower sites 25 through 213)", for San Diego Gas and Electric Co., San Diego, 62 p.						
DU20; DC34	-	СРТ	Chambon, P., Corté J-F (1991) Étude sur modèles réduits centrifugés. Application aux tunnels à faible profondeur en terrain meuble pulvérulent, Études et Recherches des Laboratoires des Ponts et Chaussées, série Géotechnique, GT 48, 163.						
			Neves, M, Mestat, P, Frank, R and Degny, E (2001) "Research on the behavior of bored piles - I. in situ and laboratory experiments", CESAR-LCPC, 231, 39-54.						
DU21	-	СРТ	Sven, K, Johan, C and Lars, D (2006) "Tension test on bored piles in sand", Symp. Intl. ELU/ULS, Paris, 87-94.						
DC4	-	SPT-N	Jain, GS and Gupta, SP (1968) "Comparative study of multi-underreamed pile with large diameter pile in sandy soil", Proc., 3 rd Budapest Conf. on Soil Mechanics and Foundation Eng., Budapest, 563-570.						
DC5	-	SPT-N	O'Neill, MW and Reese, LC (1978) "Load transfer in a slender drilled pier in sand", Preprint 3141, ASCE Spring Convention, Pittsburgh, 30 p.						
DC6, 7	-	SPT-N	Reese, LG and O'Neill, MW (1988) "Field load tests of drilled shafts", Proc., 1st Intl. Geotechnical Seminar on Deep Foundations on Bored and Auger Piles,						
DC8	-	СРТ	Brusey, WG and York, DL (1991) "Pile test program at John F. Kennedy International Airport", Foundations Profondes, Ecole Nationale des Ponts et Chausses, Paris, 379-387.						
DC9	-	СРТ	Stuckrath, L and Descoeudres, F (1991) "Large-scale pile tests in an instrumented test pit", Foundations Profondes, Ecole Nationale des Ponts et Chausses, Paris, 301-308,						
DC10	-	CPT	Roscoe, GH (1983) "Behavior of flight auger bored piles in sand", Proc., Intl. Conf. on Advances in Piling and Ground Treatment for Foundations, ICE, London, 241-250.						
DC11	-	SPT-N	Azevedo, N, Jr. (1991) "Load transfer in bored pile in residual soil", Proc., 9 th Pan-American Conf. on Soil Mechanics and Foundation Eng. (2), 569-576.						
DC12	-	SPT-N	Farr, S, and Aurora, RP (1981) "Behavior of instrumented pier in gravelly sand", Drilled Piers and Caissons, Ed. MW. O'Neill, ASCE. New York, 53-65.						
DC13	-	-	Reese, LC (1982) "Analysis of instrumented drilled shafts subjected to axial load, Sunshine Skyway Bridge", Renort GR81 20. Gentesbaical Eng. Center Univ. of Taxos, Austin, 69 p.						
DC14	-	СРТ	Fujita, K (1986) "Pile construction and related problems", Proc., Intl. Conf. on Deep Foundations (2), Beijing, 137-155.						

|--|

Table 4. (Coi	ntinued)
---------------	----------

Site No.	Test	type	Reference sources					
Site No.	Su ^a	₫ ^b	- Kelelence sources					
DC15	-	CPT	Long, JH and Reese, LC (1983) "Analysis of field tests of drilled shafts", Report to Farr Foundation Co.,					
DC16	-	-	Cernak, B (1976) "Time effect of suspension on behavior of piers", Proc., 6 th European Conf. on Soil Me- chanics and Foundation Eng. (11) Vienna 111-114					
DC17	-	-	Schmertmann and Crapps, Inc. (1985) "I-595 Viaduct Load Test Program", Job 86095-3406, for Florida Dept.					
DC18	-	SPT-N	Baker, CN, Jr. (1991) "Prediction and performance of drilled shafts constructed under slurry", 16 th Annual					
DC19	-	SPT-N	Franke, E and Garbrecht, D (1977) "Test loading on 8 large bored piles in sand", Proc., 9 th Intl. Conf. on Soil					
DC20	-	СРТ	Caputo, V and Viggiani, C (1988) "Some experiences with bored and auger piles in Naples area", Proc., 1 st					
DC21	-	SPT-N	Frank, R, Kalteziotis, N, Bustamante, M, Christoulas, S and Zervogiannis, H (1991) "Evaluation of per- formance of two pilos using pressurements method". I Costophnical Eng. ASCE, 117(5), 605,713					
DC22	-	SPT-N	Chang, MF and Lo, SS (1990) "Behavior of some axially loaded cast-in-place piles", Proc., 10 th Southeast Asian Geotechnical Conf (1) Taipei 327-332					
DC23	-	SPT-N	Hirayama, H (1990) "Load-settlement analysis for bored piles using hyperbolic transfer functions", Soils and Exampletions 20(1) 55.64					
DC24	-	CPT	Brandl, H (1985) "Bearing capacity of piers and piles with large diameters", Proc., 11 th Intl. Conf. on Soil Machanics and Foundation Eng. (3) San Francisco, 1525 1530					
DC25	-	CPT	Wang, YZ (1986) "Design and construction of large bored piles over Yellow River", Proc., Intl. Conf. on Deep Foundations (2) Beijing 124-129					
DC26	-	CPT	Martins, FF and Martins, JB (1989) "CPT and pile tests in granitic residual soils", Proc., 12 th Intl. Conf. on Soil Mechanics and Foundation Eng. (1). Big de Janeiro, 529-531					
DC27	-	-	Maertens, J (1985) "Comparative tests on bored and driven piles at Kallo", Belgian Geotechnical Volume, Published for the 1985 Golden Jubilee ISSMEE 31-38					
DC28, 29, 30, 31	-	СРТ	Burch, SB, Parra, F, Townsend, FC and McVay, MC (1988) "Design guidelines for drilled shaft foundations", Ilniv of Florida Gainesville 141 n					
DC32	-	SPT-N	Diagnostic Engineering Consultants, Ltd. (2001). "Report on compression load test of bored piles for Taiwan high speed rail project," Taiwan					
DC33	-	SPT-N	Hai Tain Engeering Ltd. (2002). "Report on compression load test of bored piles at Daja township", Tai-Chung County Taiwan					
DC35, 36	-	-	Thasnanipan, N, Maung, AW, Ganeshan, B and Teparaksa W (1998). "Design, construction and behavior of bored cast-in-situ concrete piles in Bangkok subsoils", Proc., 4th Intl. Conf. on Case Histories in Geotechnical Eng. Louis Miscouri 281 287.					
UU1	UC	TC	Mckenzie, RJ (1971). "Uplift testing of prototype transmission tower footings", Proc., 1 st Australia-New Zealand Conf on Geomechanics (1). Melbourne, 283-290					
UU4	UC	TC	Los Angeles Department of Water and Power (1967) "Footing tests for Pacific Intertie D-C system trans- mission line" Los Angeles 37					
UU5	UU	TC	Pearce, RA and Brassow, CL (1979). "Pull-out load test of a drilled pier in very stiff Beaumont clay", Symp. on Deen Foundation Ed FM Fuller ASCE New York 331-342					
UU6	UU	SPT-N	Wichita 36. Wichita 36.					
UU10	UU, UC	CPT	Tang, NC, Shen, HR and Liu, SG (1983). "Static uplift capacity of bored piles", Proc., Intl. Conf. on Advances in Piling and Ground Treatment. ICE. London. 197-202.					
UU12; UC9	CIUC	TC	Radhakrishna, HS, Cragg, CBH, Tsang, R and Bozozuk, M (1986), "Uplift and compression behavior of drilled piers in Leda clav". Proc., 39 th Canadian Geotechnical Conf., Ottawa, 123-130.					
UU13	UU, UC	TC	Adams, JI and Radhakrishna, HS (1970). "Uplift resistance of augered footings in fissured clay", Ontario Hydro Research Quarterly, 22(1), 10-16.					
UU14	CIUC UU, UC	TC	Ismael, NF and Klym, TW (1978). "Behavior of rigid piers in layered cohesive soils", J. Geotechnical Eng. Div., ASCE, 104(GT8), 1061-1074.					
UU16; UC5	UU, UC	SPT-N	Diagnostic Engineering Consultants, Ltd. (2002). "Report on uplift and compression load test of bored piles for Makoto bank", Taiwan, Taipei.					
UU17;UC6	UU	SPT-N	Fubon Bank Corp. (1996). "Report on uplift and compression load test of bored piles for Fubon bank", Taiwan, Taipei.					
UU18	UU	SPT-N	Diagnostic Engineering Consultants, Ltd. (2002). "Report on uplift load test of bored piles for Hung-Sheng Debao", Taiwan, Taipei.					
UU19; UC8	UC, UU	SPT-N	Diagnostic Engineering Consultants, Ltd. (2002). "Report on uplift load test of bored piles for Shin Kong Insurance Co.", Taiwan, Taipei.					
UU20	UU	TC	Yajima, J, Aoki, Y, and Shibasaki, F (1993). "Uplift capacity of piles under cyclic load", Proc., 11th Southeast Asian Geotechnical Conf., Singapore, 601-604.					

C:4- N-	Test type		Pafaranaa souraas					
Site No.	s _u ^a	$\overline{\varphi} \ ^{b}$	Keterence sources					
UU21	UC	SPT-N	Reference not available for publication. Summary is given as Case No. 25 (1983). "Transmission line structure foundation for uplift-compression loading: load test summaries", Report EL-3160, EPRI, Palo Alto, 731 p.					
UC1	UU, UC	SPT-N	Diagnostic Engineering Consultants, Ltd. (2002). "Report on compression load test of bored piles for Taipei Area", Taipei, Taiwan.					
UC2	UU	SPT-N	Taiwan Keelung District Court (1995). "Report of compression load test of bored piles for new court build- ing", Keelung, Taiwan.					
UC3	UU	SPT-N	Diagnostic Engineering Consultants, Ltd. (1997). "Report on compression load test of bored piles for Yungho Sanshing new construction", Taipei, Taiwan.					
UC4	UU	SPT-N	Diagnostic Engineering Consultants, Ltd. (2000). "Report on compression load test of bored piles for Taipei Ta-Chi Bridge", Taipei, Taiwan.					
UC7	UC	SPT-N	Tzuchi Culture Center (2002). "Report on compression load test of bored piles for building of Tzuchi Culture Center", Taipei, Taiwan.					
UC10	DSS, VST	TC	Watt, WG, Kurfurst, PJ and Zeman, ZP (1969). "Comparison of pile load test – skin friction values and laboratory strength tests", Canadian Geotechnical J., 6(3), 339-352.					
UC11	UC	TC	Jelinek, R, Koreck, HW and Stocker, M (1977). "Load test on 5 large diameter bored piles in clay", Proc., 9 th Intl. Conf. on Soil Mechanics and Foundation Eng. (1), Tokyo, 571-576.					
UC12	UU,UC	TC	O'Neill, MW and Reese, LC (1970). "Behavior of axially loaded drilled shafts in Beaumont clay", Research Report 89-8, Univ. of Texas, Austin, 775. O'Neill, MW and Reese, LC (1972). "Behavior of bored piles in Beaumont clay", J. Soil Mechanics and Ecundritian Dir. ASCE 09(SM2) 105 213					
UC13	UC	TC	DuBose LA (1955) "Load studies on drilled shaff" Proc. Highway Research Board (34) 152-162					
UC14	CIUC UU, UC	TC	Holtz, RD and Baker, CN (1972). "Some load transfer data on caissons in hard Chicago clay", Proc., ASCE Conf. on Performance of Earth and Earth Supported Structures (1), Purdue Univ., Lafavette, 1223-1242.					
UC15	UU, UC	TC	Bhanot, KL (1968). "Behavior of scaled and full-length cast-in-place concrete piles", Ph.D. Thesis, Univ. of Alberta Edmonton 336					

 a UC = unconfined compression test; CIUC = consolidated-isotropically undrained triaxial compression test; DSS = direct simple shear test; UU = unconsolidated-undrained triaxial compression test; PSC = plane strain compression test; VST = vane shear test. b TC = triaxial compression test; CPT = cone penetration test; SPT-N = standard penetration test.

Table 5.	Range of	geometry	and tes	st number	• of drilled	shafts f	or analysis.
		H • • • • • • • • •					

Soil trmo ^a	No tosta		Shaft geor	metry (m)	D/D	Interpreted $Q_s^{b}(kN)$	
Son type	INO. IESIS		Depth, D	Dia., B	D/B		
		Range	1.4-62.0	0.14-2.0	2.5-70.5	21-24400	
D	74	Mean	11.5	0.73	16.6	2061	
D	/4	SD	11.3	0.36	13.4	3254	
		COV	0.99	0.49	0.80	1.58	
		Range	1.6-77.0	0.18-1.8	1.6-64.2	41-21503	
TT	140	Mean	14.9	0.82	17.3	2702	
U	146	SD	16.6	0.38	13.4	3983	
		COV	1.11	0.46	0.78	1.47	

^aD = drained; U = undrained. ^bQ_s was interpreted from L_1 - L_2 method.

III. EVALUATION OF SIDE RESISTANCE

$$\alpha = Q_s(L_2) / [\pi B D s_u]$$
⁽⁴⁾

1. α Method

1) α -s_u Correlations

The value of α can be back-calculated from the field load test results using Eq. (1) and is simplified as follows:

where $Q_s(L_2)$ = interpreted side resistance using the L_2 method, s_u = mean undrained shear strength over shaft depth (D), and B = shaft diameter. To standardize the α -s_u relationship, a unique test type of undrained shear strength from consolidated-isotropically undrained triaxial compression (CIUC)

			-		
s _u test type	Loading type Regression equation	Democrice emotion	Statistics		
		n	r ²	SD	
CIUC	Compression	$\alpha_{CIUC} = 0.29 + 0.19/[s_u(CIUC)/p_a]$	104	0.61	0.08
	Uplift	$\alpha_{CIUC} = 0.32 + 0.16/[s_u(CIUC)/p_a]$	44	0.65	0.12
	All data	$\alpha_{CIUC} = 0.30 + 0.17/[s_u(CIUC)/p_a]$	148	0.66	0.09
	Compression	$\alpha_{UU} = 0.32 + 0.17/[s_u(UU)/p_a]$	104	0.43	0.14
UU	Uplift	$\alpha_{UU} = 0.30 + 0.17/[s_u(UU)/p_a]$	44	0.69	0.15
	All data	$\alpha_{UU} = 0.32 + 0.16/[s_u(UU)/p_a]$	148	0.56	0.14
	Compression	$\alpha_{UC} = 0.34 + 0.17/[s_u(UC)/p_a]$	104	0.42	0.15
UC	Uplift	$\alpha_{UC} = 0.30 + 0.17/[s_u(UC)/p_a]$	44	0.57	0.16
	All data	$\alpha_{UC} = 0.34 + 0.16/[s_u(UC)/p_a]$	148	0.56	0.15

Table 6. α-s_u correlations for different test and loading types.

test [denoted $s_u(CIUC)$] is selected as the appropriate reference test, because it is quite common and of good quality test. To obtain $s_u(CIUC)$, s_u values from all other test types are converted to "equivalent" $s_u(CIUC)$ values. The procedures to convert are based on the conclusions from a research study done by Chen and Kulhawy [3] for unconsolidated-undrained triaxial (UU) and unconfined compression (UC) tests. They developed the strength interrelationships using theoretical base and laboratory test data from all over the world, so these correlations can be applied to general cohesive soils. The representative equations are as follows:

$$s_u(UU)/s_u(CIUC) = 0.911 + 0.499 \log [s_u(UU)/\overline{\sigma}_{vo}]$$
 (5)

$$s_u(UC)/s_u(CIUC) = 0.893 + 0.513 \log [s_u(UC)/\overline{\sigma}_{vo}]$$
 (6)

For consolidated-anisotropically undrained triaxial, plane strain, and direct simple shear tests, Kulhawy and Mayne [8] established the equation as follows:

$$s_u(CT)/\overline{\sigma}_{vo} = a_{TEST} a_{RATE} a_{OCR} s_u(CIUC)/\overline{\sigma}_{vo}$$
 (7)

in which $\overline{\sigma}_{vo}$ = effective vertical overburden stress, $s_u(CT) = s_u$ for converted test type, and a = coefficients of correction factors for test type, strain rate during testing, and OCR.

Using the above analytical procedures, Fig. 3 illustrates the updated undrained shear strength correlation producing a regression equation as follows:

$$\label{eq:active} \begin{split} \alpha_{CIUC} &= 0.30 + 0.17/[s_u(CIUC)/p_a] \\ (n &= 148, \, r^2 = 0.66, \, \text{and} \, \, \text{SD} = 0.09) \end{split} \tag{8}$$

where s_u is normalized by one atmospheric stress (p_a = 101.3 kN/m²). It is apparent that the data distribution of updated α -s_u correlation is superior to the previous result in Fig. 1.

Although the α_{CIUC} -s_u(CIUC) equation in Fig. 3 is developed using regression analysis, it can be clearly observed that the α value in the regression line is conservative for

Fig. 3. α_{CIUC}-s_u(CIUC)/p_a correlation.

 $s_u(CIUC)/p_a < 1$, since most data points are seen above the regression line. In addition, Fig. 3 also shows that the α value presents a considerably steep slope in small value of $s_u(CIUC)/p_a$. Therefore, the use of α_{CIUC} - $s_u(CIUC)$ correlation for design may tend to be conservative and sensitive in the area of smaller s_u .

Table 6 lists the comparisons of different loadings and test types of undrained shear strength. Comparing uplift and compression, the results show that the values are quite similar. Although a small difference exists, it is not significant enough to warrant differentiation. For convenience, both UU test, denoted α_{UU} versus $s_u(UU)$, and UC test, denoted α_{UC} versus $s_u(UC)$, are also shown in Table 6. As can be seen, α_{UU} and α_{UC} are somehow greater than α_{CIUC} because the test result from $s_u(CIUC)$ is typically greater than $s_u(UU)$ or $s_u(UC)$ for general clays [3]. Furthermore, the α values from the UU or UC test present larger standard deviations (SD) and are less reliable than those from the CIUC test. This observation is consistent with the common supposition since the quality of the CIUC test is generally better than UU and UC tests.

UCD		Statistics	
USK	n	r ²	SD
< 1.0	41	0.69	0.09
1.0-2.0	39	0.56	0.09
2.0-3.0	39	0.71	0.08
3.0-4.0	13	0.63	0.08
4.0-5.0	14	0.30	0.09
> 5.0	18	0.29	0.13

 Table 7. Summary of statistical data for Fig. 4.

Fig. 4. α_{CIUC} -s_u(CIUC)/ $\overline{\sigma}_{vm}$ - $\overline{\sigma}_{vm}$ correlations.

2) α - $s_u/\overline{\sigma}_{vm}$ - $\overline{\sigma}_{vm}$ Correlations

Fig. 4 shows the results of undrained strength ratio correlation, α_{CIUC} -s_u(CIUC)/ $\overline{\sigma}_{vm}$ - $\overline{\sigma}_{vm}$. Meanwhile, Table 7 lists the statistical data for all individual curves in Fig. 4. These correlations are developed directly from the field load test database. Several points can be observed from Fig. 4 and Table 7. First, the coefficients of determination r^2 are large when USRs are small. The values of r^2 become smaller when USR is greater than 4, this may be due to the limited data distribution in the α_{CIUC} -s_u(CIUC)/ $\overline{\sigma}_{vm}$ - $\overline{\sigma}_{vm}$ correlation. Second, the difference of regression lines is minimal when USR is greater than 3. Furthermore, the regression lines are very close when USR is greater than 4. Third, the trend of α_{CIUC} decreases with increasing $s_u(CIUC)/\overline{\sigma}_{vm}$ and $\overline{\sigma}_{vm}$. In addition, it can be noted that these data points present more consistent results for small $\overline{\sigma}_{vm}$. On the other hand, the data points are scattered or lacking when the value of $\overline{\sigma}_{vm}$ increases. By visual observation, some regression lines are also somehow conservative for small $\overline{\sigma}_{vm}.$ The phenomenon is comparable with the result in Fig. 3.

Table 8. Statistical results of back-calculated K/K₀

Mode ^a	Construction method	n	Mean	SD	COV
	slurry	12	0.73	0.24	0.34
D	casing	10	0.97	0.12	0.12
	dry	52	1.03	0.36	0.35
	slurry	16	0.79	0.28	0.35
U	casing	25	0.88	0.31	0.35
	dry	63	1.12	0.29	0.26

 $^{a}D = drained; U = undrained.$

The α_{CIUC} -s_u(CIUC)/ $\overline{\sigma}_{vm}$ - $\overline{\sigma}_{vm}$ correlations can be regarded as an alternative analysis for traditional α -s_u correlations, especially in the condition of having a small s_u. The α value on the α_{CIUC} -s_u(CIUC)/ $\overline{\sigma}_{vm}$ - $\overline{\sigma}_{vm}$ correlations is more precisely distinguished than using the conventional α_{CIUC} -s_u(CIUC) correlations. Therefore, the required α value can be more reasonably selected. It can be seen from the distribution of data in Fig. 4 and Table 7, that the suggested ranges of alternative values are (1) $\overline{\sigma}_{vm} < 200$ kN/m² for USR < 3 and (2) $\overline{\sigma}_{vm} < 100$ kN/m² for USR > 3, because the α_{CIUC} -s_u(CIUC)/ $\overline{\sigma}_{vm}$ - $\overline{\sigma}_{vm}$ correlations in these ranges have shown better statistical results.

2. β Method

1) Drained Load Tests

The approximate β (β_p) can be predicted from Eq. (2) and given as:

$$\beta_{\rm p} = K_{\rm o} \left(K/K_{\rm o} \right) \tan\left(\overline{\phi} \cdot \delta/\overline{\phi} \right) \tag{9}$$

Meanwhile, the measured β (β_m) is also back-calculated from the field load test results using Eq. (2), as follows:

$$\beta_{\rm m} = Q_{\rm s}(L_2) / \left[\pi \, B \, D \, \overline{\sigma}_{\rm vm} \right] \tag{10}$$

where K = the operative horizontal stress coefficient, which depends on the original in-situ coefficient of horizontal soil stress (K_o), and the other terms have been defined previously. With assumptions of $\beta_m = \beta_p$ and $\delta/\overline{\phi} = 1$ for drilled shafts, the stress factor K/K_o for overall foundation depth can be back-calculated from Eqs. (9) and (10). Table 8 shows the statistical results of K/K_o for the different construction methods. For drained tests, the mean values of K/K_o are 0.73, 0.97, and 1.03 for slurry, casing, and dry construction, respectively. The results are obviously larger than in the previous study by Kulhawy *et al.* [9], which showed K/K_o = 2/3 for slurry, 1 for dry construction, and intermediate values between these ranges for casing construction under water.

Fig. 5 shows the comparison of measured and predicted drained β based on the suggested K/K_o values of this study and

Table 9. Comparison of β analysis using various K/K₀ suggestions.

Reseachers ^a	Mode ^b	Regression analysis	Mean analysis
Kulhawy et al.	D	$\beta_m = 1.13 \ \beta_p \ (n = 71, \ r^2 = 0.95, \ SD = 0.20)$	Mean $\beta_m/\beta_p = 1.13$ (n = 74, SD = 0.26, COV = 0.23)
This study	D	$\beta_m = 1.01 \ \beta_p \ (n = 71, \ r^2 = 0.95, \ SD = 0.21)$	Mean $\beta_m/\beta_p = 1.03$ (n = 74, SD = 0.24, COV = 0.24)
Kulhawy et al.	U	$\beta_{\rm m} = 1.19 \ \beta_{\rm p} \ ({\rm n} = 104, \ {\rm r}^2 = 0.96, \ {\rm SD} = 0.25)$	Mean $\beta_m/\beta_p = 1.13$ (n = 104, SD = 0.27, COV = 0.24)
This study	U	$\beta_m = 1.00 \ \beta_p \ (n = 104, r^2 = 0.95, SD = 0.29)$	Mean $\beta_m/\beta_p = 1.01$ (n = 104, SD = 0.27, COV = 0.26)

^aKulhawy *et al*. [9].

 $^{b}D = drained; U = undrained.$

Fig. 5. Comparison of measured and predicted drained β .

Fig. 6. Drained β_m/β_p versus depth.

previous research works. Table 9 summarizes the statistical data for both regression and mean analyses. It can be seen in Fig. 5 and Table 9, that the overall measured and predicted results of this study are more consistent than the previous study. From the result of mean $\beta_m/\beta_p = 1.13$, it is clear that the suggested K/K_o values by Kulhawy *et al.* [9] are underestimated. In this study, the predicted and measured drained β values are much closer. Therefore, the updated analysis for K/K_o is suggested because it has shown superiority over the previous study.

The relation of drained β_m/β_p versus depth is presented in Fig. 6. It can be seen that there is a wide range of β_m/β_p from 0.5 to 1.9 at shallow depths (D < 20 m); however, the data distribution becomes narrow (0.7-1.2) when shaft length is greater than 20 m. On average, for shaft length < 20 m, mean $\beta_m/\beta_p = 1.06$ with n = 59, SD = 0.25, and COV = 0.24, while for shafts longer than 20 m, mean $\beta_m/\beta_p = 0.91$ with n = 15, SD = 0.16, and COV = 0.18. Therefore, it can be observed that the predicted drained β method may be more reliable for shafts greater than 20 m in length based on these available load test case histories.

2) Undrained Load Tests

A similar evaluation is done for undrained β analysis. Table

8 also shows the statistical results of back-calculated K/K_o for the different construction methods of the undrained tests. The mean values of K/K_o are 0.79, 0.88, and 1.12 for slurry, casing, and dry construction, respectively. These results are larger than those in the previous study [9].

Table 9 also summarizes the statistics using different suggested values of K/K_o for the undrained tests. It can be seen that the measured and predicted results from this study present more consistent results as well. The reasons for the improvement in the prediction are the same as in the drained tests. Figs. 7 and 8 present the results of the comparison of the measured and predicted β and the relation of undrained β_m/β_p versus depth, respectively. On average, the mean undrained β_m/β_p is 1.01 and $\beta_m = 1.00 \beta_p$ for the regression analysis. The average predicted undrained β is consistent with the measured undrained β .

The relation of undrained β_m/β_p versus depth also presents a wide range of values (0.6 -1.8) at shallow depths (D < 20 m), but the data distribution becomes narrow (0.7-1.3) when shaft length is greater than 20 m. On average, for short shafts, mean $\beta_m/\beta_p = 1.02$ with n = 78, SD = 0.29, and COV = 0.29, while for long shafts, mean $\beta_m/\beta_p = 0.98$ with n = 26, SD = 0.17, and COV = 0.17. Therefore, as in drained tests, the predicted

Fig. 7. Comparison of measured and predicted undrained β .

undrained β method is also somehow more reliable for shafts greater than 20 m in length based on these available load test case histories.

3. λ Method

The measured λ can be computed from Eq. (3) and given as:

$$\lambda = Q_s(L_2) / \left[\pi B D \left(\overline{\sigma}_{vm} + 2 s_u\right)\right]$$
(11)

in which all terms have been defined previously. Fig. 9 shows the results of λ versus shaft depth. It can be seen that the range of data points is very wide (0.05-0.35) for short shafts (D < 30 m) with mean $\lambda = 0.19$, n = 131, SD = 0.07, and COV = 0.36. For long shafts, (D > 30 m), the statistical results are mean $\lambda =$ 0.11, n = 17, SD = 0.02, and COV = 0.20. Based on the

Fig. 9. λ versus depth.

available data points, the λ value seems convergent to a consistent value when the shaft depth is greater than 30 m. However, more load tests data are needed to examine whether this phenomenon is a significant issue or just a database issue. According to these statistics, it is obvious that the COV of the λ method is larger than that of the β method. Therefore, the prediction of side resistance of the λ method is generally less reliable than α and β methods.

IV. DESIGN RECOMMENDATIONS

For undrained loading, both α and β methods present more reasonable results based on the data analyses. The traditional α -s_u correlations in Table 6 are proposed for the prediction of undrained side resistance. The new α_{CIUC} -s_u(CIUC)/ $\overline{\sigma}_{vm}$ - $\overline{\sigma}_{vm}$ correlations can be used as an alternative analytical method, especially in the case of smaller s_u. For β analysis, the suggested stress factors K/K_o are 0.79, 0.88, and 1.12 for slurry, casing, and dry construction, respectively, but the predicted β method presents somehow to be more variable for short shafts. However, α method has a more favorable data distribution along the regression line. The prediction of side resistance of the λ method is generally less reliable than α and β methods.

For drained loading, the analysis of the β method is reasonable and the suggested values of K/K_o are 0.73, 0.97, and 1.03 for slurry, casing, and dry construction, respectively. However, the predicted β method presents somehow to be less reliable for short shafts.

V. SUMMARY AND CONCLUSIONS

A wide variety of load test data were used for the evaluation of side resistance of drilled shafts under axial loading. Representative analytical models were examined in detail using both measured data and predicted results. Based on the evaluation, the following design recommendations for engineering practice are proposed.

- (1) For undrained loading, the total stress analysis method, α_{CIUC} -s_u(CIUC) correlation, presents more reliable results.
- (2) The new correlation, α_{CIUC} -s_u(CIUC)/ $\overline{\sigma}_{vm}$ $\overline{\sigma}_{vm}$, which is developed using field load test data, can be regarded as an alternative analysis method for the drilled shaft design, especially in the case of smaller s_u.
- (3) For drained loading, the effective stress β analysis is a suitable method. Based on the analyses of the available database, it is reasonably consistent for long shafts, but has a wide range of results for short shafts. A similar situation is found for undrained loading.
- (4) The suggested stress factors K/K_o can substantially improve the prediction model of β analysis. For drained loading, the suggested values of K/K_o are 0.73, 0.97, and 1.03 for slurry, casing, and dry construction, respectively; for undrained loading, the suggested values of K/K_o are 0.79, 0.88, and 1.12 for slurry, casing, and dry construction, respectively.
- (5) The range of the λ method is wide and COV is large for the analysis of side resistance. Thus, the λ method for cohesive soils presents less reliable results.

ACKNOWLEDGMENTS

This study was supported by the National Science Council, Taiwan, R.O.C., under contract number: NSC 97-2221-E-033-044-MY2.

REFERENCES

 Chen, Y. J., Chang, H. W., and Kulhawy, F. H., "Evaluation of uplift interpretation criteria for drilled shaft capacity," *Journal of Geotechnical and Geoenvironmental Engineering*, ASCE, Vol. 134, No. 10, pp. 1459-1468 (2008).

- Chen, Y. J. and Fang, Y. C., "Critical evaluation of compression interpretation criteria for drilled shafts," *Journal of Geotechnical and Geoenvironmental Engineering*, ASCE, Vol. 135, No. 8, pp. 1056-1069 (2009).
- Chen, Y. J. and Kulhawy, F. H., "Undrained strength interrelationships among CIUC, UU and UC tests," *Journal of Geotechnical Engineering*, ASCE, Vol. 119, No. 11, pp. 1732-1750 (1993).
- Goh, A. T. C., Kulhawy, F. H., and Chua, C. G., "Bayesian neural network analysis of undrained side resistance of drilled shafts," *Journal of Geotechnical Engineering*, ASCE, Vol. 131, No. 1, pp. 4-93 (2005).
- Hirany, A. and Kulhawy, F. H., "Conduct and interpretation of load tests on drilled shaft foundations: Detailed guidelines," *Report EL-5915*, Vol. 1, EPRI, Palo Alto (1988).
- Hirany, A. and Kulhawy, F. H., "On the interpretation of drilled foundation load test results," In: O'Neill, M. W. and Townsend, F. C. (Eds.), *Deep Foundations 2002 (GSP 116)*, ASCE, Reston, pp. 1018-1028 (2002).
- Kulhawy, F. H. and Jackson, C. S., "Some observations on undrained side resistance of drilled shafts," *Proceeding of the Foundation Engineering: Current Principles and Practices*, ASCE, New York, pp. 1011-1025 (1989).
- Kulhawy, F. H. and Mayne, P. W., "Manual on estimating soil properties for foundation design," *Report EL-6800*, EPRI, Palo Alto (1990).
- Kulhawy, F. H., Trautmann, C. H., Beech, J. F., O'Rourke, T. D., McGuire, W., Wood, W. A., and Capano, C., "Transmission line structure foundations for uplift-compression loading," *Report EL-2870*, EPRI, Palo Alto (1983).
- Mayne, P. W. and Kulhawy, F. H., "K₀-OCR relationships in soils," *Journal of Geotechnical Engineering*, ASCE, Vol. 108, No. GT6, pp. 851-872 (1982).
- Randolph, M. F. and Murphy, B. S., "Shaft capacity of driven piles in clay," *Proceeding of the 17th Offshore Technical Conference*, Houston, Texas, Vol. 1, pp. 371-378 (1985).
- 12. Semple, R. M. and Rigden, W. J., "Shaft capacity of driven pipe piles in clay," *Ground Engineering*, Vol. 19, No. 1, pp. 11-17 (1986).
- Stas, C. V. and Kulhawy, F. H., "Critical evaluation of design methods for foundations under axial uplift and compression loading," *Report EL-3771*, EPRI, Palo Alto (1984).
- Tomlinson, M. J., "The adhesion of piles driven in clay soils," *Proceeding* of the 4th International Conference on Soil Mechanics and Foundation Engineering, London, Vol. 2, pp. 66-71 (1957).
- Vijayvergiya, V. N. and Focht, J. A., "A new way to predict capacity of piles in clay," *Proceeding of the 4th Offshore Technology Conference*, Houston, Texas, Vol. 2, pp. 865-874 (1972).