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ABSTRACT 
This paper presents an extensive evaluation of axial side 

resistance of drilled shaft foundations.  A wide variety of load 
test data are used and these data are divided into drained and 
undrained databases.  Representative analytical models, in-
cluding alpha (α), beta (β), and lambda (λ) methods, are ex-
amined in detail using both measured and predicted results to 
assess their relative merits for the drilled shaft design.  Based 
on these analyses, the undrained shear strength (α-su) correla-
tions have exhibited better statistics for undrained side resis-
tance prediction, and the undrained strength ratio (α-USR) 
correlations can be adopted as an alternative analytical method, 
especially in the case of smaller su.  For β method, the stress 
factors (K/Ko) are developed from the back-analysis of field 
load tests.  However, the β method has presented more varying 
results for short shafts in both drained and undrained loading.  
Among all analytical methods, the λ method is relatively the 
less reliable prediction model.  Specific design recommenda-
tions for side resistance analysis of drilled shaft are suggested. 

I. INTRODUCTION 
Drilled shafts (also called cast-in-place piles, drilled piers 

or bored piles) are frequently used as foundation for modern 
high-rise buildings, bridges, electrical transmission line struc- 
tures, etc.  Side resistance is an important source of drilled 
shaft capacity under axial loading, especially when the shaft is 
under the condition of uplift loading or considerably larger 
depth.  Researches about this subject still have progressed 
during the past five decades.  Based on soil conditions, the 
methods for analyzing side resistance are of two types: total 
stress analysis and effective stress analysis.  These analytical 
methods can be further specified into the alpha (α), beta (β), 
and lambda (λ) methods.  Table 1 lists the equations and the 
related factors for each method. 

The α method is a conventional total stress analysis for the 

side resistance of drilled shaft foundations in cohesive soils.  
The side resistance capacity is related to the average soil 
undrained shear strength (su) by an empirical coefficient de-
noted as α, which is the adhesion factor.  The original α [14] 
was based on empirical correlations of mean su over the foun- 
dation depth, using primarily driven pile data.  The research 
from Stas and Kulhawy [13] showed that α method is mean-
ingful for drilled shafts.  They developed the correlation of α 
versus su for the drilled shaft design, however, the su values in 
their analysis were taken from random test types, as shown in 
Fig. 1. 

Moreover, several researchers [7, 11, 12] also demonstrated 
that α is complexly related to other soil parameters such as the 
mean effective overburden stress ( vmσ ), the overconsolidation 
ratio (OCR), and the effective stress friction angle ( φ ).  With 
these suggestions, Goh et al. [4] further carried out parametric 
studies using the trained neural network model and proposed 
that vmσ  can directly or indirectly influence α in designing 
drilled shafts. 

The β method is an effective stress analysis which considers 
the frictional resistance for the soil-shaft interface.  In this 
method, the side resistance is a function of horizontal effective 
stress ( hoσ ), effective stress friction angle (δ) for the soil-shaft 
interface, and shaft geometry.  Kulhawy et al. [9] examined 
the available load test data and presented that the stress factor 
(K/Ko) is generally less than 1 and dependent on the con-
struction method and its influence on the in-situ stress.  They 
also suggested that the ratio of interface friction angle (δ) to 
soil friction angle ( φ ) is equal to 1 for drilled shafts. 

Finally, the lambda (λ) method is a combination of total and 
effective stress analyses that can be used for cohesive soils.  In 
this method, the side resistance is related to su and vmσ  by an 
empirical factor λ.  The original empirical factor λ [15] was 
developed based on the database of driven pile data and is a 
function of the total depth of the pile.  However, no further 
effort has been done in detail to examine its validity in the 
design of drilled shafts. 

Although some of these analytical methods have been 
examined previously, it is reasonable to completely reassess 
these methods for the side resistance analysis of drilled shaft 
design, because new approaches have been developed, and 
more consistent procedures for assessing interpreted failure  
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Table 1.  Analysis equations of side resistance for drilled shafts. 
Method Equationa Definition of factors 

α 
N

s n un n
n 1

Q (α) πB α s t
=

= ∑
 

(1) 
α: empirical adhesion factor 
su: undrained shear strength 

β 
N

s vn on n n
o n 1

KQ ( ) B K tan t
K =

⎛ ⎞ ⎡ ⎤δ
β = π σ φ ⋅⎜ ⎟ ⎢ ⎥φ⎣ ⎦⎝ ⎠

∑
 

(2) 

K: coefficient of horizontal soil stress 
Ko: in-situ K 

vσ : vertical effective stress 
φ : effective stress friction angle 
δ: interface friction angle for soil-shaft 
β = K tanδ 

λ 
N

s n vn un n
n 1

Q ( ) B 2 s t
=

λ = π λ σ +⎡ ⎤⎣ ⎦∑
 

(3) λ: empirical factor 

aQs = capacity of side resistance; B = shaft diameter; N = number of soil layers; t = thickness. 
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Fig. 1.  α-su correlation [13]. 

 
 
load have been improved, additionally, numerous updated load 
test data have existed since those earlier studies.  In this paper, a 
broad database is used to assess the relative merits and suit-
ability of each analytical model using the most updated data 
and approaches.  The results are compared statistically and 
graphically.  After which, specific design recommendations for 
the use of side resistance in drilled shaft design are presented. 

II. DATABASE OF LOAD TESTS 
The database developed for this study is consisted of 222 

field axial load tests conducted at 105 sites with a wide variety 
of soil profiles.  All load test data were collected from pub-
lished literature or load test reports.  Based on primarily domi- 
nant soil conditions along the shaft length, axial load test data 
are grouped into drained or undrained loading.  Among these 
load test data, 74 tests at 40 sites are grouped into drained 
loading and 148 tests at 65 sites are grouped into undrained 

loading.  Load tests are divided into two groups, each based on 
the overall data quality, completing a total of eight-sub groups 
as follows: Group 1 in compression (denoted DC1 and UC1 
for drained and undrained soils, respectively), Group 2 in 
compression (DC2 and UC2), Group 1 in uplift (DU1 and 
UU1), and Group 2 in uplift (DU2 and UU2).  Group 1 in-
cludes those cases in which the complete load-displacement 
curve and geotechnical parameters were reported.  Group 2 
consists of all remaining cases, such as the groundwater table 
was not reported, the load test was stopped before interpreted 
failure load, or the geotechnical parameters were not measured 
over the entire depth, and therefore they have to be inferred 
from other tests.  All of the selected tests were conducted on 
straight-sided drilled shafts.  Based on the case history de-
scriptions, it appears that the shaft constructions and test per-
formances were of high quality.  Consequently, these field data 
should reflect real situations and the results of the analyses 
could be representative for subsequent applications in engi-
neering practice. 

Tables 2 and 3 show the interpreted parameters and result of 
the analyses for the load tests with drained and undrained soils, 
respectively.  The values of α, βm, and λ are back-calculated 
using Eqs. (1)-(3) from the field load test results.  The L1-L2 
method [5, 6], which is a graphical construction method, is 
adopted to define the capacity in both uplift and compression.  
As shown in Fig. 2, the load-displacement curves can generally 
be simplified into three distinct regions: initial linear, curve 
transition, and final linear.  Point L1 (elastic limit) corresponds 
to the load (QL1) and butt displacement (ρL1) at the end of the 
initial linear region, while L2 (failure threshold) corresponds to 
the load (QL2) and butt displacement (ρL2) at the initiation of the 
final linear region.  QL2 is defined as the “interpreted failure load 
or capacity” because beyond QL2, a small increase in load gives 
a significant increase in displacement.  The updated research 
studies by Chen et al. [1] and Chen and Fang [2] defined that 
QL2 occurs on average, at 10.6 mm (for drained loading) and 
12.1 mm (for undrained loading) under uplift loading, while it 
occurs at 4%B for both drained and undrained compression 
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Table 2.  Summary of analysis data for drained loading. 

Site/Case 
No. 

Qs 
(kN) 

vmσ a  

(kN/m2) 
tcφ

b 

(deg) 
Ko

c βm
d βp

e Site/case 
No. 

Qs 
(kN) 

vmσ a  

(kN/m2) 
tcφ

b 

(deg) 
Ko

c βm
d βp

e 

DU1 334  27 36 1.4  1.42 1.05 DU21-2 52 42  36 1.3  0.97 0.59 
DU2 58  15 35 1.0  0.76 0.72 DU21-3 74 76  35 0.9  0.63 1.02 
DU3 362  14 36 3.1  2.97 2.43 DU21-4 90 76  35 0.9  0.63 0.70 
DU4 484  42 35 1.1  0.93 0.79 DC1 488 42 33 0.9 0.60 1.56 
DU5-1 24  13 36 3.1  1.36 1.64 DC2 978 42 36 2.1 1.57 0.69 
DU5-2 68  19 37 2.5  1.50 1.38 DC3-1 1779 106 36 0.5 0.37 1.34 
DU5-3 159  25 37 2.0  1.78 1.10 DC3-2 3202 99 37 0.7 0.54 1.61 
DU6-1 650  32 36 2.1  0.94 1.11 DC4 548 50 30 1.8 1.07 0.93 
DU6-2 650  32 36 2.1  0.94 1.11 DC5 1246 89 40 0.8 0.49 0.96 
DU7-1 390  42 44 1.0  0.66 0.99 DC6 5907 96 34 0.7 0.44 - 
DU7-2 498  42 44 1.0  0.77 0.99 DC7 4270 86 38 1.1 0.89 - 
DU8-1 261  56 35 0.4  0.32 0.31 DC8-1 2755 89 40 0.7 0.59 1.00 
DU8-2 278  56 35 0.4  0.28 0.31 DC8-2 3528 89 40 0.7 0.59 0.97 
DU9-1 1028  29 40 3.6  3.03 2.93 DC9 144 50 35 1.1 0.75 1.02 
DU9-2 1225  35 36 3.6  2.50 2.54 DC10-1 1440 127 36 0.5 0.37 0.92 
DU10-1 605  20 44 - 6.08 - DC10-2 1504 127 36 0.5 0.37 0.96 
DU10-2 894  29 44 - 4.35 - DC10-3 1280 118 36 0.5 0.37 0.96 
DU11-1 205  38 35 - 0.83 - DC10-4 1520 135 36 0.5 0.37 0.80 
DU11-2 273  26 45 - 2.42 - DC10-5 1696 127 36 0.5 0.37 1.08 
DU11-3 180  25 40 - 1.73 - DC11 4000 210 35 0.4 0.27 0.97 
DU11-4 372  21 51 - 5.03 - DC12 9963 108 43 1.1 0.75 1.72 
DU11-5 115  30 31 - 0.87 - DC13 1637 94 - - - - 
DU11-6 54  30 31 - 0.38 - DC14 2562 50 38 2.2 1.77 0.98 
DU11-7 67  30 31 - 0.48 - DC15 6832 83 34 - - - 
DU11-8 108  30 31 - 0.77 - DC16-1 4494 61 - - - - 
DU11-9 141  44 31 - 0.45 - DC16-2 2092 61   - - 
DU11-10 135  44 31 - 0.44 - DC17-1 5160 90 - - - - 
DU11-11 211  44 31 - 0.68 - DC17-2 5898 102 - - - - 
DU11-12 222  43 31 - 0.77 - DC18 5696 254 43 1.5 1.02 1.02 
DU11-13 47  25 33 - 0.40 - DC19-1 1552 212 42 0.9 0.83 1.02 
DU11-14 21  25 33 - 0.18 - DC19-2 3465 230 42 0.9 0.83 1.09 
DU11-15 24  25 33 - 0.21 - DC19-3 1357 86 44 2.0 1.99 0.92 
DU11-16 88  25 33 - 0.75 - DC19-4 3059 86 44 2.0 1.99 - 
DU12 2870  99 37 0.5  0.78 0.42 DC20 4520 177 37 0.5 0.39 1.02 
DU13-1 729  42 43 1.3  1.74 1.25 DC21 6808 173 45 0.4 0.46 1.24 
DU13-2 334  29 43 1.8  1.77 1.81 DC22-1 8838 311 35 0.4 0.22 0.79 
DU14-1 564  49 35 1.5  1.67 1.08 DC22-2 7745 311 35 0.4 0.22 0.69 
DU14-2 613  58 35 1.3  1.23 0.94 DC22-3 7935 311 35 0.4 0.22 0.71 
DU14-3 522  70 35 1.0  0.72 0.72 DC23 24400 210 38 0.5 0.40 1.15 
DU14-4 598  74 35 0.9  0.67 0.65 DC24 5600 113 45 0.5 - - 
DU14-5 683  77 35 0.8  0.64 0.58 DC25 9252 233 35 0.4 0.21 0.86 
DU15-1 193  21 33 2.3  1.32 1.54 DC26 1067 70 - - - - 
DU15-2 362  27 34 1.9  1.52 1.32 DC27-1 2206 118 - - - - 
DU15-3 407  28 44 2.7  3.11 2.69 DC27-2 2170 118 - - - - 
DU16 974  35 - - 2.66 - DC28-1 676 66 39 0.7 0.58 1.20 
DU17-1 2369  288 45 0.3  0.24 0.27 DC28-2 1210 100 43 0.6 0.58 0.94 
DU17-2 2668  265 45 0.3  0.20 0.27 DC29 124 45 28 0.6 0.33 1.35 
DU18-1 92  27 - - 0.79 - DC30 427 47 37 0.9 0.70 1.18 
DU18-2 111  29 - - 0.81 - DC31 1370 85 45 0.7 0.72 0.87 
DU18-3 113  31 - - 0.71 - DC32-1 9550 207  33 0.5 0.31 0.86 
DU18-4 99  34 - - 0.53 - DC32-2 9128 207  33 0.5 0.31 0.83 
DU18-5 112  27 - - 0.96 - DC33 7579 115  41 0.6 0.46 1.07 
DU18-6 101  27 - - 0.86 - DC34-1 196 90  30 0.5 0.30 0.67 
DU19 1950  36 44 5.5  6.40 5.52 DC34-2 233 90  30 0.5 0.30 0.69 
DU20-1 365  90 30 0.5  0.37 0.31 DC34-3 350 90  30 0.5 0.30 0.83 
DU20-2 435  90 30 0.5  0.38 0.31 DC35 4500 135  - - - - 
DU20-3 431  90 30 0.5  0.30 0.31 DC36-1 2215 65  - - - - 
DU21-1 82  42  36 1.3  0.89 0.97 DC36-2 2680 94  - - - - 

a
vmσ  = mean effective overburden stress along shaft.  b tcφ = effective stress friction angle ( φ ) for triaxial compression test.  cKo = tcsin

tc(1 sin )OCR φ− φ , based on 

Mayne and Kulhawy [10].  dβm was calculated using Eq. (10).  eβp was calculated using Eq. (9) and the suggested K/Ko values of this study. 
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Table 3.  Summary of analysis data for undrained loading. 

Site/Case 
No. 

Qs 
(kN) 

vmσ a 
(kN/m2) 

su(CIUC) 
(kN/m2) Ko

b αCIUC βm
c βp

d λ Site/Case 
No. 

Qs 
(kN)

vmσ a 

(kN/m2)
su(CIUC) 
(kN/m2) Ko

b αCIUC βm
c βp

d λ 

UU1 525  37 102  2.76 0.61 1.71 1.71 0.26 UC1 395 55  147 1.19 0.34 0.92 0.74 0.14
UU2-1 334  19  307  5.11 0.23 2.98 2.89 0.11 UC2 1516 54  90 0.93 0.56 0.95 0.53 0.22
UU2-2 356  19  307  5.11 0.25 3.65 2.89 0.12 UC3 8162 148  100 0.41 0.50 0.34 0.35 0.14
UU3-1 301  25  68  3.67 0.63 1.75 2.37 0.27 UC4 19706 236  120 0.50 0.50 0.25 0.25 0.13
UU3-2 319  25  68  3.67 0.67 1.87 2.37 0.28 UC5 13406 296  120 0.53 0.52 0.21 0.24 0.12
UU4 290  40  59  - 0.56 3.09 - 0.21 UC6 9528 197  120 0.89 0.45 0.31 0.38 0.12
UU5 1177  343  285  1.04 0.32 0.33 0.47 0.10 UC7 11521 231  120 0.49 0.40 0.21 0.26 0.10
UU6 220  29  100  3.10 0.35 1.22 1.85 0.15 UC8 4448 90  100 0.79 0.40 0.45 0.37 0.14
UU7 125  23  112  2.52 0.37 2.05 1.76 0.17 UC9 290 39  24 0.74 0.88 0.54 0.44 0.11
UU8 270  16  95  4.71 0.61 3.12 3.43 0.28 UC10-1 178 30  132 2.14 0.27 1.19 1.38 0.10
UU9-1 402  63  56  - 0.81 0.74 - 0.26  178 30  137 - 0.26 - - 0.10
UU9-2 451  59  57  - 0.69 0.69 - 0.23 UC10-2 383 45  118 1.74 0.35 0.91 1.13 0.13
UU9-3 323  40  57  - 0.66 0.95 - 0.24  383 45  109  0.38 - - 0.14
UU10-1 194  34  26  0.61 0.87 0.67 0.40 0.26 UC10-2 890 67  136 1.45 0.45 0.91 1.01 0.17
 194  34  32  0.61 0.71 - - 0.23  890 67  123 - 0.50 - - 0.18
UU10-2 182  34  26  0.61 0.88 0.68 0.40 0.27 UC11-1 636 107  291 1.59 0.32 0.86 1.05 0.03
 182  34  32  0.61 0.72 - - 0.23 UC11-2 2500 119  303 1.40 0.41 1.04 0.93 0.10
UU11 616  80  96  1.22 0.32 0.39 0.65 0.11 UC11-3 2400 110  297 1.39 0.27 0.74 0.92 0.07
UU12-1 618  43  21  0.84 0.84 0.31 0.50 0.21 UC11-4 1180 105  340 1.40 0.29 0.89 0.93 0.04
UU13-1 480  29  74  2.42 0.56 1.42 1.44 0.23 UC11-5 1400 97  302 1.42 0.23 0.71 0.94 0.04
 480  29  178  - 0.26 - - 0.11 UC12-1 946 70  119 1.37 0.40 0.69 0.92 0.18
 480  29  165  - 0.27 - - 0.11  946 70  94 - 0.51 - - 0.22
UU13-2 943  34  86  2.32 0.63 1.59 1.38 0.26 UC12-2 1067 70  119 1.37 0.54 0.91 0.92 0.21
 943  34  180  - 0.30 - - 0.14  1067 70  94 - 0.68 - - 0.25
 943  34  166  - 0.33 - - 0.15 UC12-3 2130 105  137 1.27 0.37 0.48 0.63 0.18
UU13-3 147  26  68  2.55 0.62 1.62 1.51 0.26  2130 105  120 - 0.42 - - 0.20
 147  26  179  - 0.25 - - 0.11 UC13-1 41 28  48  2.00 0.63 1.07 1.29 0.24
 147  26  165  - 0.26 - - 0.12 UC13-2 74 36  50  1.85 0.71 0.99 1.15 0.26
UU14-1 2044  57  58  0.90 0.64 0.65 0.68 0.21 UC13-3 122 40  57 1.83 0.80 1.15 1.09 0.30
UU14-2 2044  57  45  - 0.82 - - 0.25 UC13-4 129 41  68 1.83 0.68 1.14 1.09 0.26
UU14-3 2044  57  53  - 0.70 - - 0.23 UC14-1 2355 83  192 1.56 0.45 1.04 1.32 0.18
UU15-1 448  29  182  1.80 0.40 2.48 1.41 0.18  2355 83  208 - 0.41 - - 0.17
UU15-2 723  44  182  1.41 0.42 1.73 1.11 0.19  2355 83  193 - 0.45 - - 0.18
UU16 8896  296  120  0.53 0.56 0.23 0.24 0.13 UC14-2 2028 83  192 1.56 0.37 0.86 1.32 0.15
UU17 6316  285  120  0.50 0.40 0.19 0.25 0.09  2028 83  208 - 0.34 - - 0.14
UU18 11565  142  100  0.88 0.51 0.36 0.40 0.15  2028 83  193 - 0.37 - - 0.15
UU19 3558  75  90  0.88 0.40 0.47 0.38 0.14 UC15-1 329 60  140 1.11 0.31 0.70 0.72 0.12
UU20-1 614  51  94  1.01 0.42 0.77 0.60 0.16  329 60  186 - 0.25 - - 0.10
UU20-2 667  51  94  1.01 0.45 0.83 0.60 0.18 UC15-2 3053 160  260 0.99 0.40 0.71 0.67 0.17

a
vmσ  = mean effective overburden stress along shaft.  bKo = tcsin

tc(1 sin )OCR φ− φ , based on Mayne and Kulhawy [10].  cβm was calculated using Eq. (10).  dβp was 
calculated using Eq. (9) and the suggested K/Ko values of this study. 
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Fig. 2.  Regions of load-displacement curve. 

loading.  They also developed the relationships between L2 
and other interpretation criteria from lower bound to higher 
bound.  Therefore, these interrelationships among interpreta-
tion criteria are also used to infer the required L2 if the load test 
data are insufficient or are terminated prematurely. 

Table 4 lists the reference sources and soil strength test 
types of all load test case histories in Tables 2 and 3.  These 
load tests were conducted on various types of soil around the 
world and at different times.  For convenience, Table 5 lists the 
ranges of foundation geometry and the interpreted capacities 
from the database, along with the data standard deviation (SD) 
and the coefficient of variation (COV), which is the standard 
deviation divided by the mean.  As can be seen, the ranges are 
broad, but the results for drained and undrained analyses are 
roughly comparable. 
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Table 4.  Reference sources of shaft load tests in Tables 2 and 3. 
Test type 

Site No. 
su

a φ b 
Reference sources 

DU1, 15; UU2, 3 UC SPT-N Harza Engineering Co. (1978)“Foundation uplift tests – Missouri Basin Power Project East Transmission”, 
for Basin Electric Power Coop., Bismarck, 26 p. 

DU2 - SPT-N Ohio Edison Co. (early 1960s) “Test program proves feasibility of concrete cylinder anchors for steel trans-
mission towers for Ohio Edison Co.”, Akron, 8 p. 

DU3 - SPT-N Virginia Electric and Power Co. (1967) “Tests on piles and caissons, slurry-Hopewell 230 KV; Bacons Castle, 
Virginia”, 15 p. 

DU4; DC1 - SPT-N Florida Testing Laboratories (1965) “Combined section test pile, tension and compression”, for Florida Power 
Corp., St. Petersburg, 9 p. 

DU5 - SPT-N Florida Testing Laboratories (1966) “Piles research for design parameters”, for Florida Power Corp., St. 
Petersburg, 69 p. 
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Table 4.  (Continued) 
Test type 

Site No. 
su

a φ b 
Reference sources 
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Table 4.  (Continued) 
Test type 

Site No. 
su

a φ b 
Reference sources 
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Table 5.  Range of geometry and test number of drilled shafts for analysis. 

aD = drained; U = undrained.  bQs was interpreted from L1-L2 method. 

 
 

III. EVALUATION OF SIDE RESISTANCE 

1.  α Method 

1) α-su Correlations 
The value of α can be back-calculated from the field load 

test results using Eq. (1) and is simplified as follows: 

 α = Qs(L2) / [π B D su] (4) 

where Qs(L2) = interpreted side resistance using the L2 method, 
su = mean undrained shear strength over shaft depth (D), and  
B = shaft diameter.  To standardize the α-su relationship, a 
unique test type of undrained shear strength from con- 
solidated-isotropically undrained triaxial compression (CIUC)  

Shaft geometry (m) 
Soil typea No. tests  

Depth, D Dia., B 
D/B Interpreted Qs

b (kN) 

Range 1.4-62.0 0.14-2.0 2.5-70.5 21-24400 
Mean 11.5 0.73 16.6 2061 

SD 11.3 0.36 13.4 3254 
D 74 

COV 0.99 0.49 0.80 1.58 
Range 1.6-77.0 0.18-1.8 1.6-64.2 41-21503 
Mean 14.9 0.82 17.3 2702 

SD 16.6 0.38 13.4 3983 
U 148 

COV 1.11 0.46 0.78 1.47 
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Table 6.  α-su correlations for different test and loading types. 
Statistics 

su test type Loading type Regression equation 
n r2 SD 

 Compression αCIUC = 0.29 + 0.19/[su(CIUC)/pa] 104 0.61 0.08 
CIUC Uplift αCIUC = 0.32 + 0.16/[su(CIUC)/pa]   44 0.65 0.12 

 All data αCIUC = 0.30 + 0.17/[su(CIUC)/pa] 148 0.66 0.09 
 Compression αUU = 0.32 + 0.17/[su(UU)/pa] 104 0.43 0.14 

UU Uplift αUU = 0.30 + 0.17/[su(UU)/pa]   44 0.69 0.15 
 All data αUU = 0.32 + 0.16/[su(UU)/pa] 148 0.56 0.14 
 Compression αUC = 0.34 + 0.17/[su(UC)/pa] 104 0.42 0.15 

UC Uplift αUC = 0.30 + 0.17/[su(UC)/pa]   44 0.57 0.16 
 All data αUC = 0.34 + 0.16/[su(UC)/pa] 148 0.56 0.15 

 
 
 
test [denoted su(CIUC)] is selected as the appropriate ref- 
erence test, because it is quite common and of good quality test.  
To obtain su(CIUC), su values from all other test types are con- 
verted to “equivalent” su(CIUC) values.  The procedures to 
convert are based on the conclusions from a research study 
done by Chen and Kulhawy [3] for unconsolidated-undrained 
triaxial (UU) and unconfined compression (UC) tests.  They 
developed the strength interrelationships using theoretical 
base and laboratory test data from all over the world, so these 
correlations can be applied to general cohesive soils.  The 
representative equations are as follows: 

 su(UU)/su(CIUC) = 0.911 + 0.499 log [su(UU)/ voσ ] (5)  

 su(UC)/su(CIUC) = 0.893 + 0.513 log [su(UC)/ voσ ] (6) 

For consolidated-anisotropically undrained triaxial, plane strain, 
and direct simple shear tests, Kulhawy and Mayne [8] estab-
lished the equation as follows: 

 su(CT)/ voσ  = aTEST aRATE aOCR su(CIUC)/ voσ  (7) 

in which voσ = effective vertical overburden stress, su(CT) = su 
for converted test type, and a = coefficients of correction fac- 
tors for test type, strain rate during testing, and OCR. 

Using the above analytical procedures, Fig. 3 illustrates the 
updated undrained shear strength correlation producing a re- 
gression equation as follows:  

 αCIUC = 0.30 + 0.17/[su(CIUC)/pa] 

 (n = 148, r2 = 0.66, and SD = 0.09) (8) 

where su is normalized by one atmospheric stress (pa= 101.3 
kN/m2).  It is apparent that the data distribution of updated α-su 
correlation is superior to the previous result in Fig. 1. 

Although the αCIUC-su(CIUC) equation in Fig. 3 is devel-
oped using regression analysis, it can be clearly observed  
that the α value in the regression line is conservative for  
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Fig. 3.  αCIUC-su(CIUC)/pa correlation. 

 
 

su(CIUC)/pa < 1, since most data points are seen above the 
regression line.  In addition, Fig. 3 also shows that the α  
value presents a considerably steep slope in small value of 
su(CIUC)/pa.  Therefore, the use of αCIUC-su(CIUC) correlation 
for design may tend to be conservative and sensitive in the 
area of smaller su. 

Table 6 lists the comparisons of different loadings and test 
types of undrained shear strength.  Comparing uplift and com- 
pression, the results show that the values are quite similar.  
Although a small difference exists, it is not significant enough 
to warrant differentiation.  For convenience, both UU test, 
denoted αUU versus su(UU), and UC test, denoted αUC versus 
su(UC), are also shown in Table 6.  As can be seen, αUU and 
αUC are somehow greater than αCIUC because the test result 
from su(CIUC) is typically greater than su(UU) or su(UC) for 
general clays [3].  Furthermore, the α values from the UU or 
UC test present larger standard deviations (SD) and are less 
reliable than those from the CIUC test.  This observation is 
consistent with the common supposition since the quality of 
the CIUC test is generally better than UU and UC tests. 
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Table 7.  Summary of statistical data for Fig. 4. 
Statistics 

USR 

n r2 SD 
< 1.0 41 0.69 0.09 

1.0-2.0 39 0.56 0.09 
2.0-3.0 39 0.71 0.08 
3.0-4.0 13 0.63 0.08 
4.0-5.0 14 0.30 0.09 
> 5.0 18 0.29 0.13 
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Fig. 4.  αCIUC-su(CIUC)/ vm vmσ -σ  correlations. 

 

2) α-su / vm vmσ - σ  Correlations 

Fig. 4 shows the results of undrained strength ratio corre-
lation, αCIUC-su(CIUC)/ vm vmσ -σ .   Meanwhile, Table 7 lists 
the statistical data for all individual curves in Fig. 4.  These 
correlations are developed directly from the field load test 
database.  Several points can be observed from Fig. 4 and 
Table 7.  First, the coefficients of determination r2 are large 
when USRs are small.  The values of r2 become smaller when 
USR is greater than 4, this may be due to the limited data dis- 
tribution in the αCIUC-su(CIUC)/ vm vmσ -σ  correlation.  Second, 
the difference of regression lines is minimal when USR is 
greater than 3.  Furthermore, the regression lines are very close 
when USR is greater than 4.  Third, the trend of αCIUC de- 
creases with increasing su(CIUC)/ vmσ  and vmσ .   In addition, 
it can be noted that these data points present more consistent 
results for small vmσ .   On the other hand, the data points are 
scattered or lacking when the value of vmσ  increases.  By 
visual observation, some regression lines are also somehow 
conservative for small vmσ .   The phenomenon is comparable 
with the result in Fig. 3. 

Table 8.  Statistical results of back-calculated K/Ko. 
Modea Construction method n Mean SD COV

slurry 12 0.73 0.24 0.34
casing 10 0.97 0.12 0.12D 

dry  52 1.03 0.36 0.35
slurry 16 0.79 0.28 0.35
casing 25 0.88 0.31 0.35U 

dry  63 1.12 0.29 0.26
aD = drained; U = undrained. 

 
 
The αCIUC-su(CIUC)/ vm vmσ -σ  correlations can be regarded 

as an alternative analysis for traditional α-su correlations, es- 
pecially in the condition of having a small su.  The α value on 
the αCIUC-su(CIUC)/ vm vmσ -σ  correlations is more precisely 
distinguished than using the conventional αCIUC-su(CIUC) 
correlations.  Therefore, the required α value can be more 
reasonably selected.  It can be seen from the distribution of 
data in Fig. 4 and Table 7, that the suggested ranges of alter-
native values are (1) vmσ  < 200 kN/m2 for USR < 3 and (2) 

vmσ  < 100 kN/m2 for USR > 3, because the αCIUC-su(CIUC)/ 

vm vmσ -σ  correlations in these ranges have shown better sta-
tistical results. 

2. β Method 

1) Drained Load Tests 
The approximate β (βp) can be predicted from Eq. (2) and 

given as: 

 βp = Ko (K/Ko) tan( φ．δ/ φ ) (9) 

Meanwhile, the measured β (βm) is also back-calculated 
from the field load test results using Eq. (2), as follows: 

 βm = Qs(L2) / [π B D vmσ ] (10) 

where K = the operative horizontal stress coefficient, which 
depends on the original in-situ coefficient of horizontal soil 
stress (Ko), and the other terms have been defined previously.  
With assumptions of βm = βp and δ/ φ  = 1 for drilled shafts, the 
stress factor K/Ko for overall foundation depth can be back- 
calculated from Eqs. (9) and (10).  Table 8 shows the statistical 
results of K/Ko for the different construction methods.  For 
drained tests, the mean values of K/Ko are 0.73, 0.97, and 1.03 
for slurry, casing, and dry construction, respectively.  The re- 
sults are obviously larger than in the previous study by Kul-
hawy et al. [9], which showed K/Ko = 2/3 for slurry, 1 for dry 
construction, and intermediate values between these ranges for 
casing construction under water. 

Fig. 5 shows the comparison of measured and predicted 
drained β based on the suggested K/Ko values of this study and  
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Table 9.  Comparison of β analysis using various K/Ko suggestions. 

Reseachersa Modeb Regression analysis Mean analysis 

Kulhawy et al. D βm = 1.13 βp (n = 71, r2 = 0.95, SD = 0.20) Mean βm/βp = 1.13 (n = 74, SD = 0.26, COV = 0.23) 
This study D βm = 1.01 βp (n = 71, r2 = 0.95, SD = 0.21) Mean βm/βp = 1.03 (n = 74, SD = 0.24, COV = 0 .24) 

Kulhawy et al. U βm = 1.19 βp (n = 104, r2 = 0.96, SD = 0.25) Mean βm/βp = 1.13 (n = 104, SD = 0.27, COV = 0.24)
This study U βm = 1.00 βp (n = 104, r2 = 0.95, SD = 0.29) Mean βm/βp = 1.01 (n = 104, SD = 0.27, COV = 0.26) 

aKulhawy et al. [9]. 
bD = drained; U = undrained. 
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Fig. 5.  Comparison of measured and predicted drained β. 

 
 
previous research works.  Table 9 summarizes the statistical 
data for both regression and mean analyses.  It can be seen in 
Fig. 5 and Table 9, that the overall measured and predicted 
results of this study are more consistent than the previous 
study.  From the result of mean βm/βp = 1.13, it is clear that the 
suggested K/Ko values by Kulhawy et al. [9] are underesti- 
mated.  In this study, the predicted and measured drained β 
values are much closer.  Therefore, the updated analysis for 
K/Ko is suggested because it has shown superiority over the 
previous study. 

The relation of drained βm/βp versus depth is presented in 
Fig. 6.  It can be seen that there is a wide range of βm/βp from 
0.5 to 1.9 at shallow depths (D < 20 m); however, the data 
distribution becomes narrow (0.7-1.2) when shaft length is 
greater than 20 m.  On average, for shaft length < 20 m, mean 
βm/βp = 1.06 with n = 59, SD = 0.25, and COV = 0.24, while 
for shafts longer than 20 m, mean βm/βp = 0.91 with n = 15, 
SD = 0.16, and COV = 0.18.  Therefore, it can be observed that 
the predicted drained β method may be more reliable for shafts 
greater than 20 m in length based on these available load test 
case histories. 

2) Undrained Load Tests  
A similar evaluation is done for undrained β analysis.  Table  
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Fig. 6.  Drained βm/βp versus depth. 

 
 

8 also shows the statistical results of back-calculated K/Ko for 
the different construction methods of the undrained tests.  The 
mean values of K/Ko are 0.79, 0.88, and 1.12 for slurry, casing, 
and dry construction, respectively.  These results are larger 
than those in the previous study [9]. 

Table 9 also summarizes the statistics using different sug-
gested values of K/Ko for the undrained tests.  It can be seen 
that the measured and predicted results from this study present 
more consistent results as well.  The reasons for the improve- 
ment in the prediction are the same as in the drained tests.  Figs. 
7 and 8 present the results of the comparison of the measured 
and predicted β and the relation of undrained βm/βp versus 
depth, respectively.  On average, the mean undrained βm/βp is 
1.01 and βm = 1.00 βp for the regression analysis.  The average 
predicted undrained β is consistent with the measured 
undrained β. 

The relation of undrained βm/βp versus depth also presents a 
wide range of values (0.6 -1.8) at shallow depths (D < 20 m), 
but the data distribution becomes narrow (0.7-1.3) when shaft 
length is greater than 20 m.  On average, for short shafts, mean 
βm/βp = 1.02 with n = 78, SD = 0.29, and COV = 0.29, while 
for long shafts, mean βm/βp = 0.98 with n = 26, SD = 0.17, and 
COV = 0.17.  Therefore, as in drained tests, the predicted  
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Fig. 7.  Comparison of measured and predicted undrained β. 
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Fig. 8.  Undrained βm/βp versus depth. 

 
 

undrained β method is also somehow more reliable for shafts 
greater than 20 m in length based on these available load test 
case histories. 

3. λ Method 
The measured λ can be computed from Eq. (3) and given as: 

 λ = Qs(L2) / [π B D ( vmσ  + 2 su)] (11) 

in which all terms have been defined previously.  Fig. 9 shows 
the results of λ versus shaft depth.  It can be seen that the range 
of data points is very wide (0.05-0.35) for short shafts (D < 30 
m) with mean λ = 0.19, n = 131, SD = 0.07, and COV = 0.36.  
For long shafts, (D > 30 m), the statistical results are mean λ = 
0.11, n = 17, SD = 0.02, and COV = 0.20.  Based on the 
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Fig. 9.  λ versus depth. 

 
 

available data points, the λ value seems convergent to a con-
sistent value when the shaft depth is greater than 30 m.  
However, more load tests data are needed to examine whether 
this phenomenon is a significant issue or just a database issue.  
According to these statistics, it is obvious that the COV of the 
λ method is larger than that of the β method.  Therefore, the 
prediction of side resistance of the λ method is generally less 
reliable than α and β methods. 

IV. DESIGN RECOMMENDATIONS 

For undrained loading, both α and β methods present more 
reasonable results based on the data analyses.  The traditional 
α-su correlations in Table 6 are proposed for the prediction of 
undrained side resistance.  The new αCIUC-su(CIUC)/ vm vmσ -σ  
correlations can be used as an alternative analytical method, 
especially in the case of smaller su.  For β analysis, the sug- 
gested stress factors K/Ko are 0.79, 0.88, and 1.12 for slurry, 
casing, and dry construction, respectively, but the predicted β 
method presents somehow to be more variable for short shafts.  
However, α method has a more favorable data distribution 
along the regression line.  The prediction of side resistance of 
the λ method is generally less reliable than α and β methods. 

For drained loading, the analysis of the β method is rea-
sonable and the suggested values of K/Ko are 0.73, 0.97, and 
1.03 for slurry, casing, and dry construction, respectively.  
However, the predicted β method presents somehow to be less 
reliable for short shafts. 

V. SUMMARY AND CONCLUSIONS 
A wide variety of load test data were used for the evaluation 

of side resistance of drilled shafts under axial loading.  Rep-
resentative analytical models were examined in detail using 
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both measured data and predicted results.  Based on the evalua- 
tion, the following design recommendations for engineering 
practice are proposed. 

 
(1) For undrained loading, the total stress analysis method, 

αCIUC-su(CIUC) correlation, presents more reliable results. 
(2) The new correlation, αCIUC-su(CIUC)/ vm vmσ -σ , which is 

developed using field load test data, can be regarded as an 
alternative analysis method for the drilled shaft design, 
especially in the case of smaller su. 

(3) For drained loading, the effective stress β analysis is a 
suitable method.  Based on the analyses of the available 
database, it is reasonably consistent for long shafts, but 
has a wide range of results for short shafts.  A similar 
situation is found for undrained loading. 

(4) The suggested stress factors K/Ko can substantially im-
prove the prediction model of β analysis.  For drained 
loading, the suggested values of K/Ko are 0.73, 0.97, and 
1.03 for slurry, casing, and dry construction, respectively; 
for undrained loading, the suggested values of K/Ko are 
0.79, 0.88, and 1.12 for slurry, casing, and dry construc- 
tion, respectively. 

(5) The range of the λ method is wide and COV is large for 
the analysis of side resistance.  Thus, the λ method for 
cohesive soils presents less reliable results. 
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