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ABSTRACT 
Recently, research on new techniques of single-chamber 

mufflers equipped with perforated tubes has been addressed.  
However, research work on shape optimization of multi- 
chamber silencers hybridized with perforated plug/non-plug 
tubes along with work on the maximal allowable back pres-
sure of mufflers has been neglected.  Therefore, we will not 
only analyze the sound transmission loss (STL) of a space- 
constrained two-chamber muffler hybridized with perforated 
plug/non-plug tubes but also optimize the best design shape 
under a specified pressure drop.  In this paper, both the nu-
merical decoupling technique and simulated annealing (SA) 
for solving the coupled acoustical problem of perforated plug/ 
non-plug tubes are used.  A numerical case in eliminating a 
broadband fan noise is also introduced.  To verify the reli-
ability of SA optimization, optimal noise abatements for the 
pure tone (500 Hz) are exemplified.  However, before the SA 
operation can be carried out, the accuracy of the mathematical 
model must be checked using the experimental data.  Results 
indicate that the maximum STL is precisely located at the 
desired target tones.  The optimal result of one case study for 
eliminating broadband noise also revealed that the overall 
noise reductions with respect to the muffler, which are under 
various maximum allowable pressure drops (100, 200, 300, 
400, 500 (Pa), and infinity) can reach 68.4, 52.7, 45.4, 40.4, 
36.0, and 33.2 dB.  Furthermore, both the pressure drop and 
the acoustical performance increase when the diameters (at 

inlet tubes as well as perforated holes), the perforated ratio, 
and the length of perforated tube decrease.  Consequently, a 
successful approach used for the optimal design of the two- 
chamber mufflers equipped with perforated plug/non-plug 
tubes under space and back pressure constrained conditions 
has been demonstrated. 

I. INTRODUCTION 
In the past three decades, to increase acoustical perform-

ance, an assessment of a new acoustical element, an internal 
perforated tube which is an essential acoustical element used 
to depress low frequency sound energy, was introduced and 
discussed by Sullivan and Crocker in 1978 [23].  Based on the 
coupled equations derived by Sullivan and Crocker, a series of 
theories and numerical techniques in decoupling the acoustical 
problems have been proposed [6, 14, 21, 22, 24].  Concerning 
the flow effect, Munjal [12] and Peat [16] published the gen-
eralized decoupling and numerical decoupling methods.  
Munjal et al. [13] investigated the acoustical effect and the 
system’s back pressure with respect to several design pa-
rameters for perforated plug and cross-flow perforated muf-
flers.  However, the assessment of the muffler’s optimal shape 
design within a constrained space has been neglected.  Kar and 
Munjal [7] widen the assessment on a muffler hybridized by 
multiple interacting perforated ducts using a generalized 
analysis.  Nishimura et al. [20] established a mathematical 
model for an elliptical muffler that was equipped with a per-
forated pipe within a higher-order mode in a zero speed flow- 
ing field.  Finally, Lee and Selamet [10] expanded the BEM 
(Boundary Element Method) numerical assessment on a 
resonator with/without a fiber filled inner cavity.  The above 
researches have provided various solutions for solving the 
complicated acoustical field problem for perforated mufflers.  
However, the assessment of a multi-chamber plug-muffler’s 
optimal shape design within a constrained space as well as a 
pressure-drop limit was rarely tackled.  In previous work [2-4], 
the shape optimization of multi-chamber mufflers equipped 
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with perforated/non-perforated tubes within a constrained 
situation has been discussed.  However, the effect of the sys-
tem’s back pressure, which may cause the decrement of the 
flow rate in the system, has been neglected. 

The application of a single-chamber perforated plug muf-
fler in reducing a venting noise has prevailed in modern in-
dustries.  Yet, on the basis of experimental trial the muffler 
design was shown to be time-consuming and the acoustical 
performance to be insufficient.  Additionally, mufflers equipped 
with multiple perforated plug tubes have higher back-pressure 
even though their acoustical performance is superior to muf-
fler equipped with perforated non-plug tubes.  In order to 
improve the performance of the noise control device and re-
duce the back-pressure, a hybrid muffler (a two-chamber 
muffler conjugated with a single perforated plug and a single 
non-plug tube) is investigated.  Moreover, to overcome the 
drawback of a possible overload pressure drop in the mufflers, 
the specified allowable pressure drop in a muffler has been 
considered along with the process of SA optimization.  By 
using a simulated annealing (SA) method, the muffler’s per-
formance is improved.  Additionally, to investigate the acous-
tical effect with respect to ∆pmax, the shape optimization of 
mufflers at various ∆pmax (100 Pa, 200 Pa, 300 Pa, 400 Pa, 500 
Pa, and infinite Pa) has also been discussed.  In this paper, the 
numerical decoupling methods used in forming a four-pole 
system matrix are in line with the above SA method.  These, in 
turn, are responsible for developing a new muffler shape by 
adjusting the two-chamber muffler equipped with perforated 
plug/non-plug tubes within certain space constraints and back- 
pressure constraints. 

II. MATHEMATICAL MODELS 

1. System Matrix 
In this paper, two-chamber mufflers hybridized with per-

forated plug/non-plug tubes were adopted for noise elimina-
tion as shown in Fig. 1.  The outline of the mufflers selected as 
the noise-reduction device is shown in Fig. 2.  The recognition 
of acoustical elements is shown in Fig. 3.  As indicated in Fig. 
3, four kinds of muffler components, including straight duct, 
perforated duct, expanded/perforated plug duct, and contracted/ 
perforated plug duct, are recognized and symbolized as I, II, 
III, and IV. 

Consequently, the related acoustic pressure p and acoustic 
particle velocity u in the acoustical field are represented by 
seven nodes and shown in Fig. 4.  As derived in the Appen-
dices A, B, and C, individual transfer matrixes with respect to 
a straight ducts [27], a perforated duct (Appendices A), an 
expanded/perforated plug duct (Appendices B), and a con-
tracted/perforated plug duct (Appendices C) are described as 
follows: 
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Fig. 1.  The space-constrained fan room. 
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Fig. 2. The outline of a two-chamber muffler hybridized with a perfo-

rated plug/non plug tube. 
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Fig. 3. The acoustical elements for a two-chamber muffler hybridized 

with a perforated plug/non plug tube. 
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Fig. 4. The acoustical field in a two-chamber muffler hybridized with a 

perforated plug/non plug tube. 
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The total transfer matrix assembled by multiplication is  
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A simplified form of a matrix is expressed as 
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The sound transmission loss (STL) of a muffler is defined as 
[14] 

1 2 3 4 5 6 7 8 9 10( , , , , , , , , , , , ,STL Q f RT RT RT RT RT RT RT RT RT RT  
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where 

RT1 = LZ/Lo; RT2 = LZ1/LZ; RT3 = LZ2/(LZ − LZ1); 

RT4 = LC1/LZ1; RT5 = LC2/LZ2; RT6 = LC3/LZ3; RT7 = D1/Do; 

RT8 = η1; RT9 = dh1; RT10 = η2; RT11 = dh2; RT12 = η3; T13 = dh3; 

LA1 = (LZ1 – LC1)/2 = LB1; L1 = L2 = (Lo – LZ)/2 (9b) 

According to the experimental investigation of back pres-
sure for a perforated-tube muffler and a one-chamber plug 
muffler by Munjal et al. [16], the individual mean pressure 
drops (∆p1, ∆p2) are 

 ∆p1 = H1 * (0.87 + 0.06x1) (10a) 

 ∆p2 = H1 * (5.6e-0.23x2 + 67.3e-3.05x2) (10b) 

To meet the system requirement of allowable maximal pres- 
sure drop (∆pmax), the total mean pressure drop (∆p = ∆p1 + 
∆p2) should be governed as 

 (∆pmax) ≥ ∆p (11) 

2. Overall Sound Power Level 
The overall SWLT silenced by the muffler at the outlet is 
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  (12) 

where (1) SWLOi is the original SWL at the inlet of the muffler 
(or pipe outlet), and i is the index of the octave band 
frequency. 

 (2) STLi is the muffler’s STL with respect to the relative 
octave band frequency. 

3. Objective Function 
By using the formulas of Eqs. (9), (11) and (12), the objec-

tive function used in the SA optimization with respect to each 
type of muffler was established. 

The objective function in maximizing the STL at the pure 
tone (f ) is 

1 1 2 3 4 5 6 7 8 9( , , , , , , , , , ,OBJ STL f RT RT RT RT RT RT RT RT RT=  

10 11 12 13 max, , , , )RT RT RT RT pΔ  (13) 

The objective function in eliminating overall SWLT is 

2 1 2 3 4 5 6 7 8 9( , , , , , , , , ,OBJ SWL RT RT RT RT RT RT RT RT RTΤ=  

10 11 12 13 max, , , , )RT RT RT RT pΔ  (14) 

III. MODEL CHECK 
Before performing the SA optimal simulation on mufflers, 

an accuracy check of the mathematical model on the acousti-
cal elements of a one-chamber perforated muffler and a one- 
chamber perforated plug muffler are performed using the 
experimental data from Sullivan et al. and Munjal [14, 21-23].  
As depicted in Figs. 5 and 6, accuracies between the theo- 
retical and experiment data are in agreement.  Therefore, the 
proposed fundamental mathematical models are acceptable.  
Consequently, the model linked with the numerical method is 
applied to the shape optimization in the following section.  
Therefore, the proposed fundamental mathematical model is 
applicable. 
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Fig. 5. Performance of a one-chamber perforated plug muffler with the 

mean flow [M1 = M2 = 0.05, D1 = 0.0493 (m), Do = 0.1016 (m), LC1 = 
LC2 = 0.1286 (m), L1 = L2 = 0.1 (m), LA1 = LB2 = 0.0 (m), t = 0.0081 
(m), dh1 = dh2 = 0.00249 (m), η1 = η2 = 0.037] [Experimental data is 
from Sullivan and Munjal [14, 21, 22]]. 
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Fig. 6. Performance of a single-chamber perforated muffler without the 

mean flow [D1 = 0.058 (m), Do = 0.0762 (m), Lc = 0.0667 (m), t = 
0.0081 (m), dh = 0.00249 (m), η = 0.037] [Experiment data is from 
Sullivan and Crocker [23]]. 

IV. CASE STUDY 
In this paper, a muffler confined inside a fan room is shown 

in Fig. 1.  The octave band of the fan’s sound power level 
inside the pipe outlet (muffler’s inlet) is listed in Table 1.  To 
efficiently depress the sound energy, a muffler with a one- 
chamber perforated tube as well as a one-chamber perforated  

Table 1. The spectrum of an exhausted sound power level 
(SWL). 

f(Hz) 125 250 500 1k 2k Overall
(a) SWLO-dB 110 125 120 105 100 126.3 

 
 

Table 2. Range of design parameters for a two-chamber 
muffler with perforated plug/non-plug tubes. 

 Range of design parameters 
A two-chamber 
muffler with 
perforated 
plug/non-plug 
tubes 

Targeted f = 500 (Hz); Q = 0.01 (m3/s); Lo = 1.8 (m);
Do = 0.6 (m); RT1: [0.2, 0.8]; RT2: [0.3, 0.7]; 
RT3: [0.3, 0.7]; RT4: [0.2, 0.8]; RT5: [0.2, 0.8]; 
RT6: [0.2, 0.8]; RT7: [0.2, 0.8]; RT8: [0.03, 0.1]; 
RT9: [0.00175, 0.007]; RT10: [0.03, 0.1]; 
RT11: [0.00175, 0.007]; RT12: [0.03, 0.1]; 
RT13: [0.00175, 0.007]; ∆pmax: 100~500 (Pa) 

 
 

plug tube is adopted.  As shown in Fig. 1, the available space 
for a muffler is 0.6 m in width, 0.6 m in height, and 1.8 m in 
length.  The allowable pressure drop for the muffler is between 
100-500 Pa.  To simplify the optimization, the flow rate (Q = 
0.01 (m3/s)) and thickness of the perforated tube (t = 0.0015 
(m)) are preset in advance.  The corresponding space con-
straints and the ranges of design parameters are summarized in 
Table 2.  Before the minimization of the broadband noise is 
performed, the maximization of the STL at the targeted pure 
tone (500 Hz) has been performed for the purpose of an ac-
curacy check on the SA method. 

V. OPTIMIZATION 
Various methods used for solving optimization problems 

can be classified into three categories ― enumerative, deter-
ministic and stochastic.  The first techniques are best applied 
to problems that are defined with a few discrete decision vari- 
ables only [9, 18].  The second techniques mainly incorporate 
problem domain knowledge to reduce the size of the search 
space.  However, during the optimization process [19, 25, 26], 
the gradient methods, one of the deterministic techniques, 
requires a starting point or a mathematical derivation that is 
calculated in advance.  Evolutionary Algorithms (EAs) belong 
to the group of stochastic search methods, also referred to as 
random search.  Evolutionary Algorithms have been widely 
developed for two decades.  Many good EAs have been es-
tablished.  Simulated Annealing [5] is one of the best sto-
chastic search methods.  Here, sensitivity analyses is not 
necessary for choosing the starting design data, which is re-
quired in classical gradient methods of EPFM, IPFM and 
FDM [1].  Therefore, SA is adopted as an optimizer and used 
in the muffler’s shape optimization. 

The basic concept behind SA was first introduced by Me-
tropolis et al. [11] and developed by Kirkpatrick et al. [8].  As 
indicated in Fig. 7, for a simulated annealing (SA) method,  
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Fig. 7.  SA algorithm from a physical viewpoint. 
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Fig. 8.  New random solution in a perturbed zone. 

 
 

each point X of the search space is compared to a state of some 
physical system, and the function F(X) to be minimized is inter- 
preted as the internal energy of the system in that state.  
Therefore, the goal is to bring the system from an arbitrary 
initial state to a state with the minimum possible energy.  
Annealing is the process of heating and keeping a metal at a 
stabilized temperature while cooling it slowly.  Slow cooling 
allows the particles to keep their state close to the minimal 
energy state.  The algorithm starts by generating a random 
initial solution.  The scheme of SA is a variation of the hill- 
climbing algorithm.  All downhill movements for improve-
ment are accepted for the decrement of the system’s energy.  In 
order to escape from the local optimum, SA also allows move- 
ment resulting in solutions that are worse (uphill moves) than 
the current solution.  To imitate the evolution of the SA algo-
rithm, a new random solution (X') shown in Fig. 8 is chosen 
from the neighborhood of the current solution (X). 

If the change in the objective function (or energy) is nega-
tive (∆F ≤ 0), the new solution will be acknowledged as the 
new current solution with the transition property (pb(X')) of 1.  
If the change is not negative (∆F > 0), the probability of 
making the transition to the new state X' will be a function 
pb(∆F/CT) of the energy difference ∆F = F(X') – F(X ) be-
tween the two states and a function of the global time-varying 
parameter T.  The new transition property (pb(X')) varies from 
0~1 will be calculated by the Boltzmann’s factor (pb(X') = 
exp(∆F/CT)) as shown in Eq. (15) 

 
1, 0

( ')
exp( ), 0

F
pb X F f

CT

Δ ≤⎛
⎜= −Δ⎜ Δ >⎜
⎝

 (15a) 

 ( ') ( )F F X F XΔ = −  (15b) 

Table 3. The pseudo-code implementing the simulated an- 
nealing heuristic. 

T := To 
X := Xo 
F := F(X) 
k := 0 
while n < Iter  
  Xn’ := neighbour(Xn) 
  if ∆Pmax < ∆P1 then F(Xn’) := F(Xn’)*wi ; ∆F=F(Xn’)-F(Xn) 
     else 

∆F=F(Xn’)-F(Xn) 
  if ∆F ≤ ∆P1 then Xn’= Xn ; T’n=kk*Tn ; n := n + 1 
     elseif random() < pb(∆F/C*Tn) then 
          Xn’= Xn ; T’n=kk*Tn ; n := n + 1 
return 
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Select Random
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Fig. 9.  Flow diagram of a SA optimization. 

 
 
where C and T are the Boltzmann constant and the current 
temperature.  Moreover, compared with the new random prob- 
ability of rand (0,1), if the transition property (pb(X')) is 
greater than a random number of rand (0,1), the new solution 
(worse solution) which results in a higher energy condition 
will then be accepted; otherwise, it is rejected.  Each suc-
cessful substitution of the new current solution leads to the 
decay of the current temperature as 

 Tnew = kk * Told  

where kk is the cooling rate. 
The flow diagram of the SA optimization is described and 

shown in Fig. 9.  In addition, the pseudo-code implementing 
the simulated annealing heuristic is listed in Table 3.  The 
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Table 4.  Optimal design data for a muffler with perforated plug/ non-plug tubes (targeted tone at 500 Hz). 
SA parameter Performance 
Iter kk 

Design parameters 
STL (dB) ∆pmax (Pa)

RT1 RT2 RT3 RT4 RT5 RT6 RT7   
0.7262 0.6508 0.6508 0.7262 0.7262 0.7262 0.7262 

RT8 RT9 RT10 RT11 RT12 RT13 
50 0.91 

0.09138 0.0063 0.09138 0.00635 0.0913 0.006354 
 34.4 2.4 

RT1 RT2 RT3 RT4 RT5 RT6 RT7 
0.3653 0.4102 0.4102 0.3653 0.3653 0.3653 0.3653 

RT8 RT9 RT10 RT11 RT12 RT13 
50 0.93 

0.09138 0.0063 0.09138 0.00635 0.0913 0.006354 
 

61.4 54.7 

RT1 RT2 RT3 RT4 RT5 RT6 RT7 
0.2752 0.3501 0.3501 0.2752 0.2752 0.2752 0.2752 

RT8 RT9 RT10 RT11 RT12 RT13 
50 0.95 

0.03878 0.0024 0.03878 0.00240 0.0387 0.002408 
 

73.3 191.6 

RT1 RT2 RT3 RT4 RT5 RT6 RT7 
0.5011 0.5007 0.5007 0.5011 0.5011 0.5011 0.5011 

RT8 RT9 RT10 RT11 RT12 RT13 
50 0.97 

0.06513 0.0043 0.06513 0.00438 0.0651 0.004385 
 

90.8 12.8 

RT1 RT2 RT3 RT4 RT5 RT6 RT7 
0.4811 0.4874 0.4874 0.4811 0.4811 0.4811 0.4811 

RT8 RT9 RT10 RT11 RT12 RT13 
50 0.99 

0.06279 0.0042 0.06279 0.00420 0.0627 0.004209 
 

87.2 15.5 

RT1 RT2 RT3 RT4 RT5 RT6 RT7 
0.5381 0.5254 0.5254 0.5381 0.5381 0.5381 0.5381 

RT8 RT9 RT10 RT11 RT12 RT13 
200 0.97 

0.06944 0.0047 0.06944 0.00470 0.0694 0.004708 
 

97.1 9.3 

RT1 RT2 RT3 RT4 RT5 RT6 RT7 
0.2406 0.3271 0.3271 0.2406 0.2406 0.2406 0.2406 

RT8 RT9 RT10 RT11 RT12 RT13 
400 0.97 

0.03474 0.0021 0.03474 0.00210 0.0347 0.002106 
 

104 342.5 

RT1 RT2 RT3 RT4 RT5 RT6 RT7 
0.2303 0.3202 0.3202 0.2303 0.2303 0.2303 0.2303 

RT8 RT9 RT10 RT11 RT12 RT13 
800 0.97 

0.2303 0.0335 0.00201 0.03353 0.0020 0.03353 
 

133 413.1 

Notes: RT1 = LZ/Lo; RT2 = LZ1/LZ; RT3 = LZ2/(LZ − LZ1); RT4 = LC1/LZ1; RT5 = LC2/LZ2; RT6 = LC3/LZ3; RT7 = D1/Do; RT8 = η1; RT9 = dh1;
RT10  = η2 ; RT11` = dh2; RT12 = η3; RT13 = dh3. 

 
 

process is repeated until the pre-determined number (Iter) of 
the outer loop is reached.  Obviously, the effect of the state 
energies on the system's evolution depends on the temperature.  
The evolution is sensitive only to coarser energy variations 
when T is large and to finer variations when T is small. 

During the optimization process, the back pressure (∆p) 
will be also calculated and compared with a limit of Δpmax.  If 

∆p is smaller than ∆pmax, the current solution will be valid and 
used for further iteration.  If this is not the case, the value of 
the objective function will be weighted by wi to discard the 
current solution.  The algorithm repeats the perturbation of the 
current solution and the measurement of the change in the OBJ.  
To reach an initial transition probability of 0.5, the initial tem- 
perature (To) is selected as 0.2 [15]. 
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Table 5. Optimal design data for a muffler with perforated plug/non-plug tubes at various maximal back pressures 
(broadband noise) (Iter = 800; kk = 0.97). 

Cases Performance 
Max. Back 

Pressure (Pa) 
Design parameters SWLT 

(dB) 
∆pmax 
(Pa) 

RT1 RT2 RT3 RT4 RT5 RT6 RT7 
0.3202 0.3801 0.3801 0.3202 0.3202 0.3202 0.3202 

RT8 RT9 RT10 RT11 RT12 RT13 
100 

0.04402 0.0028 0.04402 0.002801 0.0440 0.002801
 

68.4 98.6 

RT1 RT2 RT3 RT4 RT5 RT6 RT7 
0.2727 0.3485 0.3485 0.2727 0.2727 0.2727 0.2727 

RT8 RT9 RT10 RT11 RT12 RT13 
200 

0.03849 0.0023 0.03849 0.002386 0.0384 0.002386
 

52.7 199.4 

RT1 RT2 RT3 RT4 RT5 RT6 RT7 
0.2520 0.3347 0.3347 0.2525 0.2525 0.2525 0.2525 

RT8 RT9 RT10 RT11 RT12 RT13 
300 

0.03607 0.0022 0.03607 0.002205 0.0360 0.002205
 

45.4 280.6 

RT1 RT2 RT3 RT4 RT5 RT6 RT7 
0.2370 0.3246 0.3246 0.2370 0.2370 0.2370 0.2370 

RT8 RT9 RT10 RT11 RT12 RT13 
400 

0.03431 0.0020 0.03431 0.002073 0.0343 0.002073
 

40.4 365.4 

RT1 RT2 RT3 RT4 RT5 RT6 RT7 
0.2245 0.3163 0.3163 0.2245 0.2245 0.2245 0.2245 

RT8 RT9 RT10 RT11 RT12 RT13 
500 

0.03286 0.0019 0.03286 0.001964 0.0328 0.001964
 

36.0 460.6 

RT1 RT2 RT3 RT4 RT5 RT6 RT7 
0.2168 0.3112 0.3112 0.2168 0.2168 0.2168 0.2168 

RT8 RT9 RT10 RT11 RT12 RT13 
- 

0.03196 0.0018 0.03196 0.001897 0.0319 0.001897
 

33.2 534.3 

Notes: RT1 = LZ/Lo; RT2 = LZ1/LZ; RT3 = LZ2/(LZ − LZ1); RT4 = LC1/LZ1; RT5 = LC2/LZ2; RT6 = LC3/LZ3; RT7 = D1/Do; RT8 = η1; RT9 = dh1; RT10 = 
η2; RT11` = dh2; RT12 = η3; RT13 = dh3  

 
VI. RESULTS AND DISCUSSION 

1. Results 
The accuracy of the SA optimization depends on the cooling 

rate (kk) and the number of iterations (Iter).  To achieve good 
optimization, both the cooling rate (kk) and the number of 
iterations (Iter) are varied step by step  

kk = (0.91, 0.93, 0.95, 0.97, 0.99); Iter = (50, 200, 400, 800) 

The results of two kinds of optimizations (one, a pure tone 
noise; the other, a broadband noise) are described as follows: 

1) Pure Tone Noise Optimization 
By using Eq. (13), the maximization of the STL with re-

spect to a two-chamber muffler hybridized with plug/non-plug 
tubes at the specified pure tone (500 Hz) was performed first.  

As indicated in Table 4, eight sets of SA parameters are tried in 
the muffler’s optimization.  Obviously, the optimal design data 
can be obtained from the last set of SA parameters at (kk,  
Iter) = (0.97, 800).  Using the optimal design data in a theo-
retical calculation, the resultant curves of the STL with respect 
to various SA parameters (kk, Iter) is depicted in Fig. 10.  As 
revealed in Fig. 10, the STL is precisely maximized at the 
desired frequency. 

2) Broadband Noise Optimization 
By using the formulas of Eqs. (14) and the SA parameters of 

(kk = 0.97, Iter = 800), the optimization process for minimize- 
ing the sound power level at the muffler’s outlet under limited 
back pressure is performed.  Six kinds of ∆pmax situations (100 
Pa, 200 Pa, 300 Pa, 400 Pa, 500 Pa, and infinite Pa) have been 
considered.  The optimal result at various ∆pmax is obtained 
and summarized in Table 5.  Using these optimal design data  
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Fig. 10. The STL with respect to frequencies at various SA parameters 

(targeted tone: 500 Hz).  
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Fig. 11. Optimal STL for mufflers designed at various maximal back 

pressures (broadband noise).  
 

in a theoretical calculation, the resultant curves of the SWL 
with respect to various ∆pmax are plotted in Fig. 11.  As illus-
trated in Table 5, the acoustical performance will be improved 
when the allowable system back pressure (∆pmax) is increased.  
Ignoring the back pressure constraint, i.e., ∆pmax is infinite, the 
resultant silenced SWL will reach the lowest value of 33.6 dB.  
However, its pressure drop reaches 534.3 Pa which exceeds 
the allowable maximal back pressure of 500 Pa by 34.3 Pa.  To 
meet the back pressure criteria, a fifth set (∆pmax = 500 Pa) in 
which the resultant pressure drop and silenced SWL reach 
460.6 Pa and 36.0 dB is selected. 

2. Discussion 
To achieve a sufficient optimization, the selection of the ap- 

propriate SA parameter set is essential.  As indicated in Table 4 
and Fig. 10, the best SA set with respect to a two-chamber 
muffler hybridized with perforated plug/non-plug tubes at the 
targeted pure tone noise of 500 Hz has been shown.  Fig. 10 

reveals the predicted maximal value of the STL is precisely 
located at the desired frequency.  Therefore, the usage of the 
SA optimization in finding a better design solution is reliable; 
moreover, all the pressure drops calculated in mufflers can 
meet the maximal allowable back pressure of 500 (Pa).  Ad-
ditionally, in dealing with the broadband noise using two- 
chamber mufflers hybridized with perforated plug/non-plug 
tubes, the investigations into the influence of acoustical per-
formance with respect to the system’s back pressure (∆pmax = 
100 Pa, 200 Pa, 300 Pa, 400 Pa, 500 Pa, and infinite Pa) are 
shown in Table 5 and Fig. 11.  As indicated in Table 4, the 
pressure drop and the acoustical performance will increase 
simultaneously when the diameters (at the inner tubes and the 
perforated holes), the perforated ratio, and the length of per-
forated tube decrease.  In addition, the acoustical performance 
of the muffler will also increase when the ∆pmax allowed in the 
venting system is enlarged.  As shown in Fig. 11, the acous-
tical performance will increase when the allowable system 
back pressure (∆pmax) increases. 

VII. CONCLUSION 
It has been shown that the two-chamber plug/non-plug 

mufflers in conjunction with a SA optimizer can be easily and 
efficiently optimized under space and ∆pmax limits by using a 
generalized decoupling technique, plane wave theory, as well 
as a four-pole transfer matrix.  As indicated in Table 4, eight 
kinds of SA parameters (kk, Iter) play essential roles in the 
solution’s accuracy during SA optimization.  As indicated in 
Fig. 10, the STL is precisely maximized at the desired fre-
quency; therefore, the tuning ability established by adjusting 
design parameters of the mufflers is reliable.  In addition, the 
appropriate acoustical performance curve of the mufflers with 
respect to the system’s back pressure (∆pmax = 100 Pa, 200 Pa, 
300 Pa, 400 Pa, 500 Pa, and infinite Pa) in decreasing overall 
broadband noise has been assessed and shown in Table 5 and 
Fig. 11.  Results reveal that the pressure drop and the acous-
tical performance will increase simultaneously when the di-
ameters (at the inner tubes and the perforated holes), the per-
forated ratio, and the length of perforated tube decrease.  
Moreover, the acoustical performance of the muffler will also 
increase when the ∆pmax allowed in the venting system is 
enlarged.  Therefore, to efficiently promote the acoustical 
performance of the two-chamber plug/non-plug muffler, the 
increment of ∆pmax and the decrement of diameter (tubes and 
holes), the perforated ratio, and the length of perforated tube is 
necessary.  Consequently, to meet the requirement of the sys-
tem’s ∆pmax, a compromise between the STL and ∆p is com-
pulsory during SA optimization.  This approach used for the 
optimal design of the STL proposed in this study is easy and 
quite effective. 
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Fig. 12.  Mechanism of a perforated tube. 

 

APPENDIX A - Transfer Matrix of Perforated Duct 
As indicated in Fig. 12, the perforated resonator is composed 

of an inner perforated tube and an outer resonating chamber.  
Based on Sullivan and Crocker’s derivation [23], the continu-
ity equations and momentum equations with respect to inner 
and outer tubes in a concentric resonator are shown below. 

 
Inner tube: 
continuity equation 

 2 2 2

1

4 0o A
o

uV u
x x D t

ρρ ρρ∂ ∂ ∂
+ + + =
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 (A1) 

momentum equation 

 2
2 0o

pV u
t x x

ρ ∂∂ ∂⎛ ⎞+ + =⎜ ⎟∂ ∂ ∂⎝ ⎠
 (A2) 

Outer tube:  
continuity equation 

 12 2
2 2

1

4 0oA A
o

o

Du u
x tD D

ρ ρρ ∂ ∂
− + =

∂ ∂−
 (A3) 

momentum equation 

 2 2 0A A
o

u
t x

ρρ ∂ ∂
+ =

∂ ∂
 (A4) 

Assuming that the perforation along the inner tube is uni-
form (dξ1/dx = 0), the acoustic impedance of the perforation 
(ρo co ξ1) is 

 2 2
1

( ) ( )
( )

A
o o

p x p xc
u x

ρ ξ −
=  (A5) 

where ξ1 is the specific acoustical impedance of the perforated 
tube.  According to the formula ξ1 developed by Sullivan and 
Rao [17], the empirical formulations for the perforates, with or 
without mean flow, are adopted in this study. 

By substituting Eq. (A5) into Eqs. (A1)~(A4), eliminating 
u2 and u2A, and expressing in a matrix form, we have 

 
2
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2
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0
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 (A6) 

Developing Eq. (A6), we have 

 '' ' '
2 1 2 2 2 3 2 4 2 0A Ap p p p pα α α α+ + + + =  (A7a) 

 ' '' '
5 2 6 2 2 7 2 8 2 0A A Ap p p p pα α α α+ + + + =  (A7b) 

Let 

 ' '2 2
2 1 2 2 2 3 2 4, , ,A

A A
dp dpp y p y p y p y
dx dx

= = = = = =  (A8) 

According to Eqs. (A7) and (A8), the new matrix between 
{y'} and {y} is 
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which can be briefly expressed as 

 '{ } [ ]{ }y N y=  (A9b) 

Let 

 { } [ ]{ }y = Ω Γ  (A10a) 

which is 

 

1,1 1,2 1,3 1,42 1
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 (A10b) 

[Ω]4x4 is the model matrix formed by four sets of eigen vectors 
Ω4x1 of [N]4x4. 

Substituting Eq. (A10) into Eq. (A19) and then multiplying 
[Ω]−1 by both sides, we have 

 1 ' 1[ ] [ ]{ } [ ] [ ][ ]{ }− −Ω Ω Γ = Ω Ν Ω Γ  (A11) 

Set 
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where γi is the eigen value of [N]. 
Eq. (A10) can be thus rewritten as 

 '{ } [ ]{ }χΓ = Γ  (A11) 

Obviously, Eq. (A11) is a decoupled equation.  The related 
solution becomes 

 i x
i ik eγΓ =  (A12) 

Using Eqs. (A2), (A4), (A10), and (A12), the relationship 
of acoustic pressure and particle velocity becomes 
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Plugging x = 0 and x = Lc1 into Eq. (A13) yields 
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where 

 1
1[ ] [ (0)][ ( )]CL −Α = Η Η  (A14b) 

To obtain the transform matrix between the inlet (x = 0) and 
the outlet (x = Lc1) of the inner tubes, the two boundary con-
ditions for the outer tube at x = 0 and x = Lc1 are taken into 
calculation and listed below. 
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By substituting Eqs. (A15a, b) into Eq. (A14) and developing 
them, the transfer matrix becomes 
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Fig. 13.  Mechanism of an expanded perforated plug tube. 

 
 
where 

 2 2 2 2 3 2 1 3 2 1(0); (0); ( ); ( )C Cp p u u p p L u u L= = = = (A16b) 

APPENDIX B - Transfer Matrix of Expansion 
Perforated Duct 

As indicated in Fig. 13, the expansion perforated duct is 
composed of an inner perforated tube and an outer one-end 
opened duct.  The continuity equations and momentum equa-
tions with respect to the inner and outer tubes at nodes 4 and 
4A are seen below [23]. 

 
Inner tube: 
continuity equation 
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Outer tube: 
continuity equation 
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Similarly, as derived in Eqs. (A1)~(A9), we have 
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Developing Eq. (B5), we obtain 
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According to Eqs. (B6) and (B7), the new matrix between 
{y'} and {y} is 
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which can be briefly expressed as 
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[ΩΩ]4x4 is the model matrix formed by four sets of eigen 
vectors ΩΩ4x1 of [Ψ]4x4. 

Substituting Eq. (B9) into Eq. (B8) and then multiplying 
[ΩΩ]−1 by both sides, we have 

 1 ' 1[ ] [ ]{ } [ ] [ ][ ][ ]− −ΩΩ ΩΩ ΓΓ = ΩΩ Ψ ΩΩ ΓΓ  (B10) 

Set 

 

1

21

3

4

0 0 0
0 0 0

[ ] [ ] [ ][ ]
0 0 0
0 0 0

λλ
λλ

χχ
λλ

λλ

−

⎡ ⎤
⎢ ⎥
⎢ ⎥= ΩΩ Ψ ΩΩ =
⎢ ⎥
⎢ ⎥
⎣ ⎦

 (B11) 

where λλi is the eigen value of [Ψ]. 
Eq. (B9) can be thus rewritten as 

 '{ } [ ]{ }χχΓΓ = ΓΓ  (B12) 

Obviously, Eq. (B12) is a decoupled equation.  The related 
solution is 

 i x
i if eλ λΓΓ =  (B13) 

Using Eqs. (B2), (B4), (B9) and (B13), the relationship of 
the acoustic pressure and the particle velocity is 

 

1,1 1,2 1,3 1,44 1

2,1 2,2 2,3 2,44 2

3,1 3,2 3,3 3,44 3

4,1 4,2 4,3 4,44 4

( )
( )

( )
( )

A

o o

o o A

p x f
p x f
c u x f
c u x f

ρ
ρ

Κ Κ Κ Κ⎡ ⎤⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥Κ Κ Κ Κ⎢ ⎥⎢ ⎥ ⎢ ⎥= ⎢ ⎥⎢ ⎥ ⎢ ⎥Κ Κ Κ Κ
⎢ ⎥⎢ ⎥ ⎢ ⎥Κ Κ Κ Κ⎢ ⎥ ⎣ ⎦⎣ ⎦ ⎣ ⎦

 (B14a) 

Plugging x = 0 and x = LC2 into Eq. (B14) yields 

 [ ]
4 4 2

4 4 2

4 4 2

4 4 2

(0) ( )
(0) ( )

(0) ( )
(0) ( )

C

A A C

o o o o C

o o A o o A C

p p L
p p L

B
c u c u L
c u c u L

ρ ρ
ρ ρ

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥=
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

 (B15a) 

where 

 1
2[ ] [ (0)][ ( )]CB L −= Κ Κ  (B15b) 

To obtain the transform matrix between inlet (x = 0) and 
outlet (x = LC2) of the inner tubes, two boundary conditions for 
the outer tube at x = 0 and x = LC2 are calculated and listed 
below. 

 4
2

4

(0) cot( )
(0)

A
o o A

A

p j c kL
u

ρ= −
−

 (B16a) 

 4 2

4 2

( ) cot(0)
( )

C
o o

C

p L j c
u L

ρ= −  (B16b) 

By substituting Eq. (B16) for Eq. (B16) and developing 
them, the transfer matrix is  

 1,1 1,24 5

2,1 2,24 5

A

o o o o A

TPE TPEp p
TPE TPEc u c uρ ρ
⎡ ⎤⎡ ⎤ ⎡ ⎤

= ⎢ ⎥⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦⎣ ⎦

 (B17a) 

where 

4 4 4 4 5 4 2 5 4 2(0); (0); ( ); ( )= = = =A A C A A Cp p u u p p L u u L  (B17b) 

APPENDIX C - Transfer Matrix of Contracted 
Perforated Duct 

As indicated in Fig. 14, the contracted perforated duct is 
composed of an inner perforated tube and an outer contracted 
tube.  The continuity equations and momentum equations with  
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Fig. 14.  Mechanism of a contracted perforated plug tube. 

 
 

respect to the inner and outer tubes at nodes 5B and 5A are as 
follows [23]. 

 
Inner tube: 
continuity equation 

 5 5 5

1

4 0B B o A
o

uV u
x x D t
ρ ρ ρρ∂ ∂ ∂

+ + + =
∂ ∂ ∂

 (C1) 

momentum equation 

 5
5 0B

o B
pV u

t x x
ρ ∂∂ ∂⎛ ⎞+ + =⎜ ⎟∂ ∂ ∂⎝ ⎠

 (C2) 

Outer tube: 
continuity equation 

 5 5
2 2

1

4 0A o o A
o

o

u D u
x tD D

ρ ρρ ∂ ∂
− + =

∂ ∂−
 (C3) 

momentum equation 

 5 5 0A A
o

u p
t x

ρ ∂ ∂
+ =

∂ ∂
 (C4) 

Likewise, as derived in Eqs. (A1)~(A8), we have 

 
2

512 22 32 42
2

552 62 72 82

0
0

B

A

pD D D
pD D D

α α α α
α α α α

⎡ ⎤ ⎡ ⎤+ + + ⎡ ⎤
=⎢ ⎥ ⎢ ⎥ ⎢ ⎥+ + + ⎣ ⎦⎣ ⎦⎣ ⎦

 (C5) 

Developing Eq. (C5) becomes 

 '' ' '
5 12 5 22 5 32 5 42 5 0B B B A Ap p p p pα α α α+ + + + =  (C6a) 

 ' '' '
52 5 62 5 5 72 5 82 5 0B B A A Ap p p p pα α α α+ + + + =  (C6b) 

Let 

' '5 5
5 12 5 22 5 32 5 42; ; ;B A

B A B A
dp dpp y p y p y p y
dx dx

= = = = = =  (C7) 

According to Eqs. (C6) and (C7), the new matrix between 
{y'} and {y} is 

 

'
1212 32 22 4212

'
2252 72 62 8222

'
3232

'
4242

1 0 0 0
0 1 0 0

yy
yy
yy
yy

α α α α
α α α α

⎡ ⎤ − − − − ⎡ ⎤⎡ ⎤
⎢ ⎥ ⎢ ⎥⎢ ⎥− − − −⎢ ⎥ ⎢ ⎥⎢ ⎥=⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎣ ⎦ ⎣ ⎦⎣ ⎦

 (C8a) 

which can be briefly expressed as 

 '{ } [ ]{ }= ΨΨy y  (C8b) 

Let 

 { } [ ]{ }y = ΩΩΩ ΓΓΓ  (C9a) 

which is 

1,1 1,2 1,3 1,45 1

2,1 2,2 2,3 2,45 2

3,1 3,2 3,3 3,45 3

4,1 4,2 4,3 4,45 4

/
/

B

A

B

A

dp dx
dp dx

p
p

ΩΩΩ ΩΩΩ ΩΩΩ ΩΩΩ ΓΓΓ⎡ ⎤⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥ΩΩΩ ΩΩΩ ΩΩΩ ΩΩΩ ΓΓΓ⎢ ⎥⎢ ⎥ ⎢ ⎥= ⎢ ⎥⎢ ⎥ ⎢ ⎥ΩΩΩ ΩΩΩ ΩΩΩ ΩΩΩ ΓΓΓ
⎢ ⎥⎢ ⎥ ⎢ ⎥ΩΩΩ ΩΩΩ ΩΩΩ ΩΩΩ ΓΓΓ⎢ ⎥ ⎣ ⎦⎣ ⎦ ⎣ ⎦

 (C9b) 

[ΩΩΩ]4x4 is the model matrix formed by four sets of eigen 
vectors ΩΩΩ4x1 of [ΨΨ]4x4 

Substituting Eq. (C9) for Eq. (C8) and then multiplying 
[ΩΩΩ]−1 by both sides, we have 

1 ' 1[ ] [ ]{ } [ ] [ ][ ]{ }− −ΩΩΩ ΩΩΩ ΓΓΓ = ΩΩΩ ΨΨ ΩΩΩ ΓΓΓ  (C10) 

Set 
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⎢ ⎥
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⎢ ⎥
⎢ ⎥
⎣ ⎦

 

  (C11) 

where λλλi is the eigen value of [ΨΨ]. 
Eq. (C9) can thus be rewritten as 

 '{ } [ ]{ }χχχΓΓΓ = ΓΓΓ  (C12) 

Obviously, Eq. (C12) is a decoupled equation.  The related 
solution becomes 

 i x
i iff eλλλΓΓΓ =  (C13) 

Using Eqs. (C2), (C4), (C7) and (C13), the relationship of 
the acoustic pressure and the particle velocity becomes 
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1,1 1,2 1,3 1,45 1

2,1 2,2 2,3 2,45 2

3,1 3,2 3,3 3,45 3
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 (C14) 

Plugging x = 0 and x = LC3 into Eq. (C14) yields 
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where 

 1
3[ ] [ (0)][ ( )]CBB L −= ΚΚ ΚΚ  (C15b) 

To obtain the transform matrix between inlet (x = 0) and 
outlet (x = LC3) of the inner tubes, two boundary conditions for 
the outer tube at x = 0 and x = LC3 are calculated and listed 
below. 
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B
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ρ= −
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By substituting Eqs. (C16) into Eq. (C15) and developing 
them, the transfer matrix is  

 1,1 1,25 6

2,1 2,25 6

A

o o A o o

TPC TPCp p
TPC TPCc u c uρ ρ
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 (C17a) 

where 

5 5 5 5 6 5 3 6 5 3(0); (0); ( ); ( )= = = =A A A A B C B Cp p u u p p L u u L  
  (C17b) 
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