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ABSTRACT 

Multi-scale entropy (MSE) is a measurement of a system’s 
complexity.  It has received a great deal of attention in recent 
years, and its effectiveness has been verified, and applied in a 
number of different fields.  However, the algorithms proposed 
in past studies required O(N2), which represented a degree of 
execution time insufficient for on-line applications, or for ap- 
plications with long-term correlations.  In this study, we 
showed that the probability function in the entropy term could 
be transformed into an orthogonal range search in the field of 
computational geometry.  We then developed an efficient new 
algorithm for computing multi-scale entropy.  The execution 
time in the results of our experiments with electrocardiogram 
(ECG), electroencephalography (EEG), interbeat interval (RR), 
and mechanical and ecological signals showed a significant 
improvement from 10 to 70 times over that of conventional 
methods for N = 80,000.  Because the execution time has been 
significant reduced, the new algorithm could be applied to 
online diagnosis, in the computation of MSE for long-term 
correlation of signal. 

I. INTRODUCTION 

The longstanding problem of deriving useful measurements 
of time series complexity is important for the analysis of 
physiology [2], biology [7], geosciences [9], and mechanical 
signals [20].  Recently Costa et al. [6-8] introduced multi- 
scale entropy (MSE) analysis to measure the complexity of 
finite length time series.  MSE measures complexity by taking 
into account multiple time scales.  This computational meth-
odology can be quite effective for quantifying the complexity 
of a time series.  However, the algorithms for computing the 

complexity proposed in past studies required O(N2), which is 
unrealistic for applications with long data sets, or for online 
monitoring.  To find the statistical meaning of signals, a large 
amount of data [15] and many parameters typically had to be 
collected. 

For observing long period data, it is useful to analyze local 
data using rolling windows to reduce execution time [9].  Here, 
data is first partitioned into number of windows, at which 
MSE is computed separately for each window.  This reduces 
the execution time, but for signals with long-term correlations, 
the size of the window has to be carefully selected to cover the 
largest time scale in the signal.  For example, the time scales in 
an ecosystem may vary from seconds to millennia [10].  One 
window contains at least 1010  data points.  Another example 
measures the complexity of a computer program [7].  An ex-
ecutable computer program exhibits long-term correlations, 
and the largest time scale may be as large as the size of the 
computer program.  In both situations, it is impossible to parti-
tion the data sets into small windows [12]. 

Current computation speed is insufficient for online moni-
toring [2, 19], especially in cases for which a signal gen- 
erates more data points due to a higher sampling rate.  For 
example, EEG (electroencephalography) signal may be sam-
pled at 1 kHz.  Mechanical data may be sampled at 10 kHz or 
higher. 

The work of Manis [14] reduced the execution time for 
computing approximate entropy.  He used bucket-assisted 
techniques similar to bucket-sort to early exclude impossible 
matches of similarities.  That improved the execution time, but 
it was still an O(N2) algorithm.  To make online monitoring 
possible, Sugisaki [19] derived a recursive sample entropy al- 
gorithm for the situation when rolling windows overlapped.  
The algorithm had two drawbacks: Firstly, the computed sam- 
ple entropy was only an approximation.  Secondly, computa-
tional efficiency decayed with a decrease in overlap length, and 
the improvement reduced to zero when overlap length is zero. 

This motivated the authors to develop a more efficient way 
of computing MSE.  First, we viewed the computation of MSE 
from another perspective and showed that the probability 
function was an orthogonal range search problem, in the field 
of computational geometry.  We then developed a new algo-
rithm to reduce the execution time. 

The remainder of the paper is organized as follows: Section 
II provides a review of multi-scale entropy.  In Section III, the 
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probability function in the entropy term is transformed into an 
orthogonal range search problem.  In Section IV, the k-d tree 
algorithm is applied to compute the multi-scale entropy.  In 
Section V, the range tree algorithm is applied to compute the 
multi-scale entropy.  In Section VI, we present numerical 
examples to illustrate the effectiveness of our new algorithm, 
and we conclude the paper in Section VII. 

II. REVIEW OF MULTI-SCALE ENTROPY 

The description of the MSE analysis [7] is given a one- 
dimensional discrete time series; {x1…xi…xN} construct the 
consecutive coarse-grained time series, {yτ} determined by the 
scale factor, τ, according to the equation: 

 
( 1) 1

1 j

j i
i j

y x
τ

τ

ττ = − +

= ∑  (1) 

Where τ represents the scale factor and 1 ≤ j ≤ 
N

τ
.  The 

length of each coarse-grained time series is 
N

τ
.  For a scale of 

one, the coarse-grained time series is simply the original time 
series.  Next, the authors calculate the sample entropy for each 
scale using the following method.  Let  

 {F} = { f1…fi…fN} (2) 

be a time series of length N, and um(i) = {fi, fi+1, … fi+m–1} be 
vectors of length m. 

For finite length N, the approximation entropy (AE) [16] is: 
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In addition, the sample entropy (SE) [18] is: 
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In Eq. (4), m
in  stands for the number of vectors that satisfy 

d[um(i), um( j)] ≤ r, where d is the Euclidean distance. 

 d[um(i), um( j)] = max{| f (i + k) – f ( j + k)|: 0 ≤ k ≤ m – 1} 

Where j ranges from 1 to (N – m) and i ≠ j to exclude 
self-matches.  SE requires much shorter data sets than AE [18].  
As far as computation is concerned, sample entropy and ap-
proximate entropy are very similar.  The authors focus on 
computing SE, the algorithms can be easily modified to com-
pute AE too. 

The algorithm proposed in [7] is repeated here, and the 
authors refer to the algorithm as Algorithm 1.  From Algo-
rithm 1, the time complexity of the original MSE algorithm is 
O(N2) for each scale since two loops (i, j) is required, and the 
total execution times for all scales is: 

 
2

2 2( )s
s s

n
n O N

s
 = = 
 

∑ ∑  (5) 

Unless otherwise specified, the values of the parameters 
used to calculate SE are m = 2, and r = 0.15 × SD (SD is the 
standard deviation of the original time series). 
 
Algorithm 1: Brute force method 
For scale=1: max Scale { 
 Find coarse scale f, which is the geometric mean of the input 
signal. 
 for i=1:N { 
  for j=i+1:N { 

if (| fi – fj) < ε and | fi + 1 – fj + 1| < ε) 
    nn = nn + 1 /* compute numerator in (4) */ 

if (| fi + 2 – fj + 2| < ε) { 
nd = nd + 1; /* compute denominator in (4) */ 

} // if 
} // if 

} // j 
    } // i 
    Compute entropy [scale] = -log (nn / nd); // from (3) 
} // s 

III. MATHEMATICAL TRANSFORMATIONS 

To compute the sample entropy SE(m, r, N) in Eq. (4), it is 
necessary to compute the distance vectors (probability) nn and 
nd for each scale.  

The time series in Eq. (2), {F} = {f1…fi…fN}, can be trans-
formed into d (where d = m + 1) dimensional point set by 
setting: 

 xi = fi,  yi = fi+1,  zi = fi+2 (6) 

The term nn in Eq. (3) is equivalent to the number of points 
that satisfy the following constraint: 

 fi – ε < fj < fi + ε; fi+1 – ε < fj+1 < fi+1 + ε; 

fi+2 – ε < fj+2 < fi+2 + ε (7) 

Define 

 x1 = fj – ε  x2 = fj + ε; y1 = fj+1 – ε  y2 = fj+1 + ε; 

z1 = fj+2 – ε  z2 = fj+2 + ε (8) 

From Eq. (6) and Eq. (8), nn is equivalent to the number of  
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Fig. 1. A demonstration of two-dimensional orthogonal range search.  

Given the point set {P}, query the number of points inside the 
query Box B. 

 

 
points that satisfy the following constraint: 

 xi1 < xj < xi2; yi1 < yj < yi2; zi1 < zj < zi2 (9) 

In other words, for each point i, Pi = (Xi, Yi, Zi) 1 ≤ i ≤ N, 
find the number of points inside the bounding box 

 [x1:x2] × [y1:y2] × [z1:z2] (10) 

This is an orthogonal range search problem in the field of 
computational geometry.  The computations of nn are equiva-
lent to the m – 1 dimensional orthogonal range counting prob- 
lem and the computations of nd  are equivalent to the m di-
mensional orthogonal range counting problem.  Once nn and nd 
are computed, SE can be calculated directly.  The computation 
of MSE is equivalent to a d and d – 1 dimensional orthogonal 
range search problem (d = m + 1).  For computing MSE, there 
is no need to report points in the rectangle range, only point 
counting is required. 

Figurg 1 is the geometric view of Eq. (10) for m = 1 (two- 
dimension).  In this view, Algorithm 1 is summarized as fol-
lows: given a query box B, identify whether each point in the 
domain is inside the box or not.  One needs to query N times 
for each point (box), and there are N query boxes.  It then re- 
quires N2 = O(N2) time to finish all queries.  In a sense, Algo-
rithm 1 may be interpreted as a brute force method. 

Orthogonal range search is used to design a data structure to 
store the point sets for rapid query times.  The k-d tree [3] is 
the earliest and probably the simplest one. 

As far as query time is concerned, the best-known data 
structure is the range tree [4] combined with fractional cas-
cading; e.g. algorithms [13, 20] can be applied to orthogonal 
range search problems.  Brief reviews are found in [1, 5], and 
the results are summarized in Table 1. 

From Table 1, there is tradeoff between time and strategic  

Table 1. Comparison of different (d > 2) orthogonal range 
search algorithms. 

 k-d-tree range tree + fractional cascading 

Construct Time O(N log(N)) O(N log N)d–1 

Search Time 
1

1
( )dO N

−
 O((log N) d–1 

Memory Cost O(N) O(N (log N) d–1) 
 
 

complexity.  Though a range tree is faster, it requires more 
storage.  

Both k-d tree and range tree are well-known orthogonal 
range search algorithms.  The pseudo code for applying k-d 
tree and range tree to compute Eq. (4) are described in Sec IV 
and Sec. V. 

IV. k-d TREE ALGORITHM 

The k-d tree, proposed by Bentley in 1975, is a binary tree, 
each of whose nodes v is associated with a rectangle Bv.  If Bv 
does not contain any point in its interior, v will be a leaf.  
Otherwise, Bv is partitioned into two rectangles by drawing a 
horizontal or vertical line such that each rectangle contains, at 
most, half of the points; the splitting lines are alternately 
horizontal and vertical.  A k-d tree can be extended to higher 
dimensions in an obvious manner.  

The steps of applying k-d tree algorithm to compute SE are 
as follows: 

 
(a) For each scale, find the coarse scale of the discrete time 

series by Eq. (1). 
(b) Transform the discrete time series into discrete space 

point sets by Eq. (6). 
(c) k = m – 1, Build the k-d tree using the space points. 
(d) For each space point, calculate the query box by Eq. (8). 

(e) Query the number of points inside this box ( )m
in by the 

k-d tree query algorithm. 
(f) Compute nn by Eq. (4) 
(g) Set k = m, repeat step (b) through (f) to compute nd 
(h) Compute SE by Eq. (4) 

 
To apply an orthogonal range search (counting) algorithm 

to compute SE, one needs two computer functions (libraries): a 
building tree function, and a query function.  The other steps 
are straightforward.  The pseudo-code is summarized in Al-
gorithm 2. 

 
Algorithm 2: k-d tree algorithm 
Given time signal from Eq. (2) and specify r 
For scale=1: maxScale { 

Find coarse scale f, which is the geometric mean of the input 
signal. 

Point Array = Transform time signal to space points set using 
Eq. (6) 
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for(k=m-1:m)  
d = m+1; 
Build up d dimensional k-d tree = build KD Tree (point

Array) 
for i=1:N-m { 
count = count + kd Search(point Array[i],tree);  

} // i 
if (k==m-1) { 

nn = count; 
} 
else if (k==m) { 

nd = count 
} 

} // k 
Compute sample entropy from Eq. (4):  

SE(m, r, Ns) = ln( n

d

n

n
) 

} // scale 

Time and Memory Complexity 

In Eq. (5), the computation of scale one was the bottleneck, 
and the authors focused on scale one in the analysis.  Also, it 
was necessary to perform a d dimensional k-d tree search and a 
d−1 dimensional k-d tree search.  The cost for the latter could 
be overlooked, since it was much smaller than the first. 

 
Step 1. Transform the original discrete time series to a spaced 

point set from Eq. (2): The time cost is O(N) and the 
memory cost is O(N). 

Step 2. Construct the k-d tree: The d dimensional k-d tree is 
constructed by using all N-m points.  The time cost is 
O(N log N) and the memory cost is O(N). 

Step 3. Range query: For the d dimensional k-d search, the 

time cost is 
1

1
( )dN O N

−
⋅  for N queries, and the mem- 

ory cost is O(N).  
 
To summarize, from the description, the preparation time is 

O(N log N) (Steps 1 and 2), and the total query time is 
1

1
( )dN O N

−
⋅  for N queries.  The total time of the three steps is 

O(N) + O(N log N) + N · O
1

1
( )dN

−
 = O(N ·

1
1

dN
−

).  Typically, 

m = 2, then the time cost is reduced from O(N 2) to O(N 5/3), and 
the memory cost is O(N). 

V. RANGE TREE ALGORITHM 

A two-dimensional range tree for a set point P is an aug-
mented tree.  The main tree is a leaf-oriented balanced binary 
search tree on the x-coordinates of the points in P.  The data 
structure associated with a node v is a leaf-oriented balanced 
binary search tree on the y-coordinates of the canonical subset 
of v.  A range tree can be extended to higher dimensions in an 

obvious manner. 
A range tree is often combined with fractional cascading 

technique to further reduce the query time by O(log N), as seen 
from Table 1. 

The range tree has a superior query time over that of k-d 
tree, but requires more storage.  From Table 1, the building 
tree time is O(N(log N)d–1), total query time is O(N(log N)d–1, 
and the memory requirement is O(N(log N)d–1) where d = m + 
1.  Notice that the range tree requires a shorter execution time 
from order analysis, but the memory requirement is not linear.  
Applying range tree algorithms to compute multi-scale en-
tropy is straightforward.  One needs to replace buildKDTree 
(point array) and k-dSearch (point array, tree) in Algorithm 2 
with buildRangeTree and rangeSearch respectively.  Range 
tree is a mature technology, which can be found in many 
computational geometry textbooks [5], and computer pro-
grams can be found in public domain.  

The authors found that the execution time for computing 
MSE by range search was longer than that of k-d tree for data 
of interested length (within a hundred thousand).  The ration-

ale is as follows: Firstly, O((log N)d–1) < 
1

1
( )dO N

−
 is true only 

when N is greater than a given threshold.  Order analysis only 
holds when N approaches infinity.  In practice, the data length 
is finite.  Secondly, building range trees takes much longer 
than building k-d trees, and the memory consumption for 
range trees is not linear.  Therefore, it is not practical to apply 
range search trees to compute SE for data with a practical 
length. 

VI. EXPERIMENTS 

Although range trees require a shorter execution time, the 
memory requirement is not linear, and is impractical due to 
DRAM limitations in personal computers and hardware de-
vices when handling large-scale data.  Therefore, a k-d tree 
algorithm was used to demonstrate the effectiveness of the 
new algorithm in this section.  All tests were applied with r = 
0.15, match Point (m) = 2, and scale = 1 to 20.  The numerical 
experiment was performed on a 1.5 G Hz Intel CPU with 1.5 G 
RAM.  The code is written in C language. 

Test 1: To test the performance of k-d tree compared with 
algorithms proposed in other studies 

The authors compare the performance of the new algo-
rithm to the recent bucket-assisted algorithm [14].  This 
measures the factor of execution time improvement for both 
algorithms over the brute force algorithm.  In [14], the author 
computes AE instead of SE.  Computing SE  and AE consumes 
approximately the same computational resources as seen from 
Eq. (3) and Eq. (4).  RR (vardiac interbeat interval) time series 
(Fig. 2), ECG signal (Fig. 3), and EEG signal (Fig. 4) are 
tested in this experiment.  ECG and EEG data are both meas- 
ured from hardware with 256 resolutions (8 bits).  RR time 
series are extracted from the ECG signal.  The parameters  
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Fig. 2. (a) Execution times versus N for RR interval.  Red circle line 

represents execution times of the brute force algorithm, blue cross 
line represents the corresponding values for the k-d tree algorithm.  
(b) Execution time versus N for RR interval for the k-d tree algo-
rithm. 

 
 

ECG Signal

Brute

kd

10000 15000 20000 25000 30000 35000 40000 45000 50000 55000 60000 65000 70000 75000
N

(a)

0

10

20

30

40

50

Ex
cu

tio
n t

im
e (

se
c.)

ECG Signal

kd

10000 15000 20000 25000 30000 35000 40000 45000 50000 55000 60000 65000 70000 75000
N

(b)

0

0.5

1

1.5

Ex
cu

tio
n t

im
e (

se
c.)

Test 1.2 ECG signal

 
Fig. 3. (a) Execution times versus N for ECG signal.  Red circle line repre-

sents the execution time of the brute force algorithm, blue cross line 
represents the corresponding values for the k-d tree algorithm.  (b) 
Execution time versus N for ECG signal for the k-d tree algorithm. 
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Fig. 4. (a) Execution time versus N for EEG signal.  The red curved line 

represents the execution time of the brute force algorithm, and the 
blue cross line represents the corresponding values for the k-d tree 
algorithm.  (b) Execution time versus N for EEG signal for the k-d 
tree algorithm. 

 

 
used in this experiment were m = 2 and scale = 1.  The exe-
cution time versus N is plotted in Fig. 2 for RR interval.  It is 
obvious from Fig. 2(a), the execution time of k-d tree was 
much better than that of brute force algorithm.  To focus on 
the execution time of k-d tree, the execution times of k-d tree 
algorithms were enlarged in Fig. 2(b).  As seen from [14], the 
bucket-assisted algorithm improved the brute force algo-
rithm by a factor of less than 5 times, while k-d tree improved 
the brute force algorithm by a factor of 20 times for N = 
80,000.  Figure 2(b) shows that the k-d tree algorithm per-
formed much better than O(N 5/3), and it performed like O(N).  
This was probably because the execution time depended on 
the nature of the signal, and time complexity analysis only 
predicted the worst case.  Similar results were obtained for 
ECG signal and EEG signal.  The k-d tree algorithm im-
proved the brute force algorithm by a factor of 30 times for 
ECG signal for N = 80,000, and a factor of 70 times for EEG 
signal for N = 80,000 as shown in Fig. 3(a) and Fig. 4(a). 

Test 2: Pink Noise (1/f) 

To study the long-term correlations in environmental time 
series [10, 13, 18] and other applications, 1/f noise was tested 
in this example.  Data lengths ranging from 100 to 1.6 million 
were used to test SE versus N.  Figure 5 shows SE oscillating  
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Table 2.  Time cost list for pink noise. 

Number of Points Brute Force (s) 3D k-d Tree (s) 

1,000 0.020 0.05  

2,000 0.060 0.05 

4,000 0.290 0.13 

8,000 0.921 0.29 

20,000 5.390 1.01 

50,000 32.400 4.18 

105 128.400 15.16 

2×105 501.000 51.30 

4×105 2063.000 176.70 

8×105 8716.000 655.00 

16×105 too long 2263.00 

 
 

Table 3. Comparison of brute force and k-d tree algorithm 
used to test an overnight EEG signal. 

Case Length Brute Force (s) 3D k-d Tree (s) 

1 7.8 × 106 ~10 days 14529.7 

(Courtesy of Computer Science and Information Engineering, Na-
tional Cheng Kung University, Taiwan) 
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Fig. 5.  SE vs. scale for different N. 

 
 

between different scales for small N.  The computational result 
converged with the analytical results as N increased, as de-
scribed in [7].  The execution time for k-d tree and brute force 
algorithm are listed in Table 2. 

Test 3: EEG signal 

The purpose of this experiment was to test the performance 
of the k-d tree algorithm in handling large N.  MSE for scale 
from 1 to 20, and m = 2, was applied to overnight EEG signals.  
The signals were partitioned into windows for practicality 
sake.  The execution time for the two algorithms is shown in 
Table 3.  A significant improvement for k-d tree algorithm is 
clearly seen in Table 3. 
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Fig. 6.  Cutting process: raw data. 
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Fig. 7.  MSE result of the cutting process. 

 

Test 4: Mechanical Problem 

MSE was applied to monitor tool life in machines.  Entropy, 
which was superior to RMS or Kurtosis [21], was used as an 
indicator for monitoring tool life.  In this example, MSE with a 
rolling window monitored the tool life.  The experiment setup 
was a sampling rate of 10 kHz, the recorded data is 400,000 
points.  The window size is 0.2 seconds (2,000 points) with 
50% overlap, m = 2 and scale = 1 to 20 is used in this experi- 
ment.  The entire machine process was measured by micro-
phone.  Raw data is shown in Fig. 6 and the results of MSE 
with a rolling window during 0~4.6 second are shown in  
Fig. 7.  It shows the machine started at S6 (where S6 stands  
for 0.1 × 6 = 0.6 second), and the tool wore out during S6~S36.  
The lowest value of MSE appeared at time S36, and the tool 
broke at time S36. 

Online monitor of machining was achieved by applying the 
k-d tree algorithm.  From the numerical experiments given 
above, the k-d tree algorithm showed the greatly improved 
computation time. 

VII. SUMMARY 

In this section, the execution time and the performance of 
the newly developed k-d tree algorithm was tested.  For all 
testing, the k-d tree algorithm improved the execution time 
from 10 to 70 times faster compared to conventional brute 
force method for N = 80,000.  Tests 2 and 3 showed that im-
provement increased with N.  

The time complexity of the newly developed k-d tree algo-
rithm was O(N 5/3), which represented an improvement over 
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the brute force algorithm by O(N 1/6).  From the Fig. 2(b), Fig. 
3(b), and Fig. 4(b), it appears that the execution time was 
proportional to N, which was linear and performed much 
better than predicted in the order analysis.  At present, the 
authors do not understand the reason.  It is possible that order 
analysis only predicted the worst case. 

Long data is often partitioned into windows, as in Test 4, 
and the execution time was reduced.  The length of the win-
dow depended on sample frequency, and the nature of the 
signal.  However, the execution time for the conventional 
brute force algorithm was still too slow for application with 
real world data such as long-term correlation 1/f noise, as in 
Test 2; or high sample rated mechanical applications, as in Test 
4.  Since the execution time was significantly reduced by the 
newly developed k-d tree algorithm, one could compute the 
MSE with a much longer data set.  By collecting additional 
data and parameters, the statistical meanings of the signal, 
could be determined. 

On-line monitoring of the health of a system has been made 
possible.  Real time computation was achieved in Test 4, where 
the sample rate was 10 kHz and window size was 2,000 points.  
For higher sample rates, it would be necessary to limit the size 
of the window to achieve real time application using the same 
hardware.  This will require further research. 

VIII. CONCLUSION 

Multi-scale entropy (MSE) is measurement of complexity 
used to analyze signals in many fields.  The time complexity of 
the algorithms proposed in previous studies required O(N 2), 
which is too slow for many applications.  This research first 
showed that the probability function in entropy could be 
transformed into an orthogonal range search problem.  A pro-
posed new algorithm was then developed to reduce the com-
putational time to O(N log2 N) using O(N log2 N) memory, or 
O(N 5/3) using linear memory for a typical value, m = 2.  Ex-
periments using k-d tree algorithm showed significant im-
provement in execution time from 10 to 70 times faster com-
pared with conventional brute force methods for N = 80,000.  
Because the execution time has been significantly reduced, the 
new algorithm could be applied to online diagnosis, to com-
pute the MSE for long-term correlated signal efficiently.  
Future research would focus on further improvements in 
execution time, using linear memory. 
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