
Volume 19 Issue 1 Article 13

COMPUTING MULTISCALE ENTROPY WITH ORTHOGONAL RANGE COMPUTING MULTISCALE ENTROPY WITH ORTHOGONAL RANGE
SEARCH SEARCH

Yu-Hsiang Pan
Department of Environmental Biology and Fisheries Science, National Taiwan Ocean University, Keelung, Taiwan,
R.O.C., D95310001@mail.ntou.edu.tw

Wei-Yen Lin
Department of Mechanical Engineering, National Taiwan University, Taipei, Taiwan, R.O.C.

Yung-Hung Wang
Yung-Hung Wang, Society of Streams, R.O.C., Taiwan, R.O.C

Kuo-Tien Lee
Department of Environmental Biology and Fisheries Science, National Taiwan Ocean University, Keelung, Taiwan,
R.O.C.

Follow this and additional works at: https://jmstt.ntou.edu.tw/journal

 Part of the Engineering Commons

Recommended Citation Recommended Citation
Pan, Yu-Hsiang; Lin, Wei-Yen; Wang, Yung-Hung; and Lee, Kuo-Tien (2011) "COMPUTING MULTISCALE ENTROPY
WITH ORTHOGONAL RANGE SEARCH," Journal of Marine Science and Technology: Vol. 19: Iss. 1, Article 13.
DOI: 10.51400/2709-6998.2143
Available at: https://jmstt.ntou.edu.tw/journal/vol19/iss1/13

This Research Article is brought to you for free and open access by Journal of Marine Science and Technology. It has been
accepted for inclusion in Journal of Marine Science and Technology by an authorized editor of Journal of Marine Science and
Technology.

https://jmstt.ntou.edu.tw/journal/
https://jmstt.ntou.edu.tw/journal/
https://jmstt.ntou.edu.tw/journal/vol19
https://jmstt.ntou.edu.tw/journal/vol19/iss1
https://jmstt.ntou.edu.tw/journal/vol19/iss1/13
https://jmstt.ntou.edu.tw/journal?utm_source=jmstt.ntou.edu.tw%2Fjournal%2Fvol19%2Fiss1%2F13&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/217?utm_source=jmstt.ntou.edu.tw%2Fjournal%2Fvol19%2Fiss1%2F13&utm_medium=PDF&utm_campaign=PDFCoverPages
https://jmstt.ntou.edu.tw/journal/vol19/iss1/13?utm_source=jmstt.ntou.edu.tw%2Fjournal%2Fvol19%2Fiss1%2F13&utm_medium=PDF&utm_campaign=PDFCoverPages

COMPUTING MULTISCALE ENTROPY WITH ORTHOGONAL RANGE SEARCH COMPUTING MULTISCALE ENTROPY WITH ORTHOGONAL RANGE SEARCH

Acknowledgements Acknowledgements
The authors would like to thank professor Sheng-Fu Liang in National Cheng Kung University for providing
the EEG data. This work was funded in part by the Industrial Development Bureau Ministry of Economic
Affairs, Taiwan (ROC).

This research article is available in Journal of Marine Science and Technology: https://jmstt.ntou.edu.tw/journal/
vol19/iss1/13

https://jmstt.ntou.edu.tw/journal/vol19/iss1/13
https://jmstt.ntou.edu.tw/journal/vol19/iss1/13

Journal of Marine Science and Technology, Vol. 19, No. 1, pp. 107-113 (2011) 107

COMPUTING MULTISCALE ENTROPY WITH
ORTHOGONAL RANGE SEARCH

Yu-Hsiang Pan*, Wei-Yen Lin**, Yung-Hung Wang***, and Kuo-Tien Lee*

Key words: computational geometry, k-d tree, multi-scale entropy,
signal processing.

ABSTRACT

Multi-scale entropy (MSE) is a measurement of a system’s
complexity. It has received a great deal of attention in recent
years, and its effectiveness has been verified, and applied in a
number of different fields. However, the algorithms proposed
in past studies required O(N2), which represented a degree of
execution time insufficient for on-line applications, or for ap-
plications with long-term correlations. In this study, we
showed that the probability function in the entropy term could
be transformed into an orthogonal range search in the field of
computational geometry. We then developed an efficient new
algorithm for computing multi-scale entropy. The execution
time in the results of our experiments with electrocardiogram
(ECG), electroencephalography (EEG), interbeat interval (RR),
and mechanical and ecological signals showed a significant
improvement from 10 to 70 times over that of conventional
methods for N = 80,000. Because the execution time has been
significant reduced, the new algorithm could be applied to
online diagnosis, in the computation of MSE for long-term
correlation of signal.

I. INTRODUCTION

The longstanding problem of deriving useful measurements
of time series complexity is important for the analysis of
physiology [2], biology [7], geosciences [9], and mechanical
signals [20]. Recently Costa et al. [6-8] introduced multi-
scale entropy (MSE) analysis to measure the complexity of
finite length time series. MSE measures complexity by taking
into account multiple time scales. This computational meth-
odology can be quite effective for quantifying the complexity
of a time series. However, the algorithms for computing the

complexity proposed in past studies required O(N2), which is
unrealistic for applications with long data sets, or for online
monitoring. To find the statistical meaning of signals, a large
amount of data [15] and many parameters typically had to be
collected.

For observing long period data, it is useful to analyze local
data using rolling windows to reduce execution time [9]. Here,
data is first partitioned into number of windows, at which
MSE is computed separately for each window. This reduces
the execution time, but for signals with long-term correlations,
the size of the window has to be carefully selected to cover the
largest time scale in the signal. For example, the time scales in
an ecosystem may vary from seconds to millennia [10]. One
window contains at least 1010 data points. Another example
measures the complexity of a computer program [7]. An ex-
ecutable computer program exhibits long-term correlations,
and the largest time scale may be as large as the size of the
computer program. In both situations, it is impossible to parti-
tion the data sets into small windows [12].

Current computation speed is insufficient for online moni-
toring [2, 19], especially in cases for which a signal gen-
erates more data points due to a higher sampling rate. For
example, EEG (electroencephalography) signal may be sam-
pled at 1 kHz. Mechanical data may be sampled at 10 kHz or
higher.

The work of Manis [14] reduced the execution time for
computing approximate entropy. He used bucket-assisted
techniques similar to bucket-sort to early exclude impossible
matches of similarities. That improved the execution time, but
it was still an O(N2) algorithm. To make online monitoring
possible, Sugisaki [19] derived a recursive sample entropy al-
gorithm for the situation when rolling windows overlapped.
The algorithm had two drawbacks: Firstly, the computed sam-
ple entropy was only an approximation. Secondly, computa-
tional efficiency decayed with a decrease in overlap length, and
the improvement reduced to zero when overlap length is zero.

This motivated the authors to develop a more efficient way
of computing MSE. First, we viewed the computation of MSE
from another perspective and showed that the probability
function was an orthogonal range search problem, in the field
of computational geometry. We then developed a new algo-
rithm to reduce the execution time.

The remainder of the paper is organized as follows: Section
II provides a review of multi-scale entropy. In Section III, the

Paper submitted 01/19/10; revised 06/03/10; accepted 07/20/10. Author for
correspondence: Yu-Hsiang Pan (e-mail: D95310001@mail.ntou.edu.tw).
*Department of Environmental Biology and Fisheries Science, National Tai-
wan Ocean University, Keelung, Taiwan, R.O.C.
**Department of Mechanical Engineering, National Taiwan University, Taipei,
Taiwan, R.O.C.
***Yung-Hung Wang, Society of Streams, R.O.C., Taiwan, R.O.C.

108 Journal of Marine Science and Technology, Vol. 19, No. 1 (2011)

probability function in the entropy term is transformed into an
orthogonal range search problem. In Section IV, the k-d tree
algorithm is applied to compute the multi-scale entropy. In
Section V, the range tree algorithm is applied to compute the
multi-scale entropy. In Section VI, we present numerical
examples to illustrate the effectiveness of our new algorithm,
and we conclude the paper in Section VII.

II. REVIEW OF MULTI-SCALE ENTROPY

The description of the MSE analysis [7] is given a one-
dimensional discrete time series; {x1…xi…xN} construct the
consecutive coarse-grained time series, {yτ} determined by the
scale factor, τ, according to the equation:

(1) 1

1 j

j i
i j

y x
τ

τ

ττ = − +

= ∑ (1)

Where τ represents the scale factor and 1 ≤ j ≤
N

τ
. The

length of each coarse-grained time series is
N

τ
. For a scale of

one, the coarse-grained time series is simply the original time
series. Next, the authors calculate the sample entropy for each
scale using the following method. Let

 {F} = { f1…fi…fN} (2)

be a time series of length N, and um(i) = {fi, fi+1, … fi+m–1} be
vectors of length m.

For finite length N, the approximation entropy (AE) [16] is:

 1
1

ln()1
(, ,)

ln()

mN m
i

E m
i i

n
A m r N

N m n

−

+
=

=
− ∑ (3)

In addition, the sample entropy (SE) [18] is:

 1

1

1

(, ,) ln() ln()

N m
m
i

i n
E N m

m d
i

i

n
n

S m r N
n

n

−

=
−

+

=

= =
∑

∑
 (4)

In Eq. (4), m
in stands for the number of vectors that satisfy

d[um(i), um(j)] ≤ r, where d is the Euclidean distance.

 d[um(i), um(j)] = max{| f (i + k) – f (j + k)|: 0 ≤ k ≤ m – 1}

Where j ranges from 1 to (N – m) and i ≠ j to exclude
self-matches. SE requires much shorter data sets than AE [18].
As far as computation is concerned, sample entropy and ap-
proximate entropy are very similar. The authors focus on
computing SE, the algorithms can be easily modified to com-
pute AE too.

The algorithm proposed in [7] is repeated here, and the
authors refer to the algorithm as Algorithm 1. From Algo-
rithm 1, the time complexity of the original MSE algorithm is
O(N2) for each scale since two loops (i, j) is required, and the
total execution times for all scales is:

2

2 2()s
s s

n
n O N

s
 = =

∑ ∑ (5)

Unless otherwise specified, the values of the parameters
used to calculate SE are m = 2, and r = 0.15 × SD (SD is the
standard deviation of the original time series).

Algorithm 1: Brute force method
For scale=1: max Scale {
 Find coarse scale f, which is the geometric mean of the input
signal.
 for i=1:N {
 for j=i+1:N {

if (| fi – fj) < ε and | fi + 1 – fj + 1| < ε)
 nn = nn + 1 /* compute numerator in (4) */

if (| fi + 2 – fj + 2| < ε) {
nd = nd + 1; /* compute denominator in (4) */

} // if
} // if

} // j
 } // i
 Compute entropy [scale] = -log (nn / nd); // from (3)
} // s

III. MATHEMATICAL TRANSFORMATIONS

To compute the sample entropy SE(m, r, N) in Eq. (4), it is
necessary to compute the distance vectors (probability) nn and
nd for each scale.

The time series in Eq. (2), {F} = {f1…fi…fN}, can be trans-
formed into d (where d = m + 1) dimensional point set by
setting:

 xi = fi, yi = fi+1, zi = fi+2 (6)

The term nn in Eq. (3) is equivalent to the number of points
that satisfy the following constraint:

 fi – ε < fj < fi + ε; fi+1 – ε < fj+1 < fi+1 + ε;

fi+2 – ε < fj+2 < fi+2 + ε (7)

Define

 x1 = fj – ε x2 = fj + ε; y1 = fj+1 – ε y2 = fj+1 + ε;

z1 = fj+2 – ε z2 = fj+2 + ε (8)

From Eq. (6) and Eq. (8), nn is equivalent to the number of

 Y.-H. Pan et al.: Computing Multiscale Entropy with Orthogonal Range Search 109

35

30

25

20

15

10

5

0
0 5 10 15 20

Box

Pi

Fig. 1. A demonstration of two-dimensional orthogonal range search.

Given the point set {P}, query the number of points inside the
query Box B.

points that satisfy the following constraint:

 xi1 < xj < xi2; yi1 < yj < yi2; zi1 < zj < zi2 (9)

In other words, for each point i, Pi = (Xi, Yi, Zi) 1 ≤ i ≤ N,
find the number of points inside the bounding box

 [x1:x2] × [y1:y2] × [z1:z2] (10)

This is an orthogonal range search problem in the field of
computational geometry. The computations of nn are equiva-
lent to the m – 1 dimensional orthogonal range counting prob-
lem and the computations of nd are equivalent to the m di-
mensional orthogonal range counting problem. Once nn and nd
are computed, SE can be calculated directly. The computation
of MSE is equivalent to a d and d – 1 dimensional orthogonal
range search problem (d = m + 1). For computing MSE, there
is no need to report points in the rectangle range, only point
counting is required.

Figurg 1 is the geometric view of Eq. (10) for m = 1 (two-
dimension). In this view, Algorithm 1 is summarized as fol-
lows: given a query box B, identify whether each point in the
domain is inside the box or not. One needs to query N times
for each point (box), and there are N query boxes. It then re-
quires N2 = O(N2) time to finish all queries. In a sense, Algo-
rithm 1 may be interpreted as a brute force method.

Orthogonal range search is used to design a data structure to
store the point sets for rapid query times. The k-d tree [3] is
the earliest and probably the simplest one.

As far as query time is concerned, the best-known data
structure is the range tree [4] combined with fractional cas-
cading; e.g. algorithms [13, 20] can be applied to orthogonal
range search problems. Brief reviews are found in [1, 5], and
the results are summarized in Table 1.

From Table 1, there is tradeoff between time and strategic

Table 1. Comparison of different (d > 2) orthogonal range
search algorithms.

 k-d-tree range tree + fractional cascading

Construct Time O(N log(N)) O(N log N)d–1

Search Time
1

1
()dO N

−
 O((log N) d–1

Memory Cost O(N) O(N (log N) d–1)

complexity. Though a range tree is faster, it requires more
storage.

Both k-d tree and range tree are well-known orthogonal
range search algorithms. The pseudo code for applying k-d
tree and range tree to compute Eq. (4) are described in Sec IV
and Sec. V.

IV. k-d TREE ALGORITHM

The k-d tree, proposed by Bentley in 1975, is a binary tree,
each of whose nodes v is associated with a rectangle Bv. If Bv
does not contain any point in its interior, v will be a leaf.
Otherwise, Bv is partitioned into two rectangles by drawing a
horizontal or vertical line such that each rectangle contains, at
most, half of the points; the splitting lines are alternately
horizontal and vertical. A k-d tree can be extended to higher
dimensions in an obvious manner.

The steps of applying k-d tree algorithm to compute SE are
as follows:

(a) For each scale, find the coarse scale of the discrete time

series by Eq. (1).
(b) Transform the discrete time series into discrete space

point sets by Eq. (6).
(c) k = m – 1, Build the k-d tree using the space points.
(d) For each space point, calculate the query box by Eq. (8).

(e) Query the number of points inside this box ()m
in by the

k-d tree query algorithm.
(f) Compute nn by Eq. (4)
(g) Set k = m, repeat step (b) through (f) to compute nd
(h) Compute SE by Eq. (4)

To apply an orthogonal range search (counting) algorithm

to compute SE, one needs two computer functions (libraries): a
building tree function, and a query function. The other steps
are straightforward. The pseudo-code is summarized in Al-
gorithm 2.

Algorithm 2: k-d tree algorithm
Given time signal from Eq. (2) and specify r
For scale=1: maxScale {

Find coarse scale f, which is the geometric mean of the input
signal.

Point Array = Transform time signal to space points set using
Eq. (6)

110 Journal of Marine Science and Technology, Vol. 19, No. 1 (2011)

for(k=m-1:m)
d = m+1;
Build up d dimensional k-d tree = build KD Tree (point

Array)
for i=1:N-m {
count = count + kd Search(point Array[i],tree);

} // i
if (k==m-1) {

nn = count;
}
else if (k==m) {

nd = count
}

} // k
Compute sample entropy from Eq. (4):

SE(m, r, Ns) = ln(n

d

n

n
)

} // scale

Time and Memory Complexity

In Eq. (5), the computation of scale one was the bottleneck,
and the authors focused on scale one in the analysis. Also, it
was necessary to perform a d dimensional k-d tree search and a
d−1 dimensional k-d tree search. The cost for the latter could
be overlooked, since it was much smaller than the first.

Step 1. Transform the original discrete time series to a spaced

point set from Eq. (2): The time cost is O(N) and the
memory cost is O(N).

Step 2. Construct the k-d tree: The d dimensional k-d tree is
constructed by using all N-m points. The time cost is
O(N log N) and the memory cost is O(N).

Step 3. Range query: For the d dimensional k-d search, the

time cost is
1

1
()dN O N

−
⋅ for N queries, and the mem-

ory cost is O(N).

To summarize, from the description, the preparation time is

O(N log N) (Steps 1 and 2), and the total query time is
1

1
()dN O N

−
⋅ for N queries. The total time of the three steps is

O(N) + O(N log N) + N · O
1

1
()dN

−
 = O(N ·

1
1

dN
−

). Typically,

m = 2, then the time cost is reduced from O(N 2) to O(N 5/3), and
the memory cost is O(N).

V. RANGE TREE ALGORITHM

A two-dimensional range tree for a set point P is an aug-
mented tree. The main tree is a leaf-oriented balanced binary
search tree on the x-coordinates of the points in P. The data
structure associated with a node v is a leaf-oriented balanced
binary search tree on the y-coordinates of the canonical subset
of v. A range tree can be extended to higher dimensions in an

obvious manner.
A range tree is often combined with fractional cascading

technique to further reduce the query time by O(log N), as seen
from Table 1.

The range tree has a superior query time over that of k-d
tree, but requires more storage. From Table 1, the building
tree time is O(N(log N)d–1), total query time is O(N(log N)d–1,
and the memory requirement is O(N(log N)d–1) where d = m +
1. Notice that the range tree requires a shorter execution time
from order analysis, but the memory requirement is not linear.
Applying range tree algorithms to compute multi-scale en-
tropy is straightforward. One needs to replace buildKDTree
(point array) and k-dSearch (point array, tree) in Algorithm 2
with buildRangeTree and rangeSearch respectively. Range
tree is a mature technology, which can be found in many
computational geometry textbooks [5], and computer pro-
grams can be found in public domain.

The authors found that the execution time for computing
MSE by range search was longer than that of k-d tree for data
of interested length (within a hundred thousand). The ration-

ale is as follows: Firstly, O((log N)d–1) <
1

1
()dO N

−
 is true only

when N is greater than a given threshold. Order analysis only
holds when N approaches infinity. In practice, the data length
is finite. Secondly, building range trees takes much longer
than building k-d trees, and the memory consumption for
range trees is not linear. Therefore, it is not practical to apply
range search trees to compute SE for data with a practical
length.

VI. EXPERIMENTS

Although range trees require a shorter execution time, the
memory requirement is not linear, and is impractical due to
DRAM limitations in personal computers and hardware de-
vices when handling large-scale data. Therefore, a k-d tree
algorithm was used to demonstrate the effectiveness of the
new algorithm in this section. All tests were applied with r =
0.15, match Point (m) = 2, and scale = 1 to 20. The numerical
experiment was performed on a 1.5 G Hz Intel CPU with 1.5 G
RAM. The code is written in C language.

Test 1: To test the performance of k-d tree compared with
algorithms proposed in other studies

The authors compare the performance of the new algo-
rithm to the recent bucket-assisted algorithm [14]. This
measures the factor of execution time improvement for both
algorithms over the brute force algorithm. In [14], the author
computes AE instead of SE. Computing SE and AE consumes
approximately the same computational resources as seen from
Eq. (3) and Eq. (4). RR (vardiac interbeat interval) time series
(Fig. 2), ECG signal (Fig. 3), and EEG signal (Fig. 4) are
tested in this experiment. ECG and EEG data are both meas-
ured from hardware with 256 resolutions (8 bits). RR time
series are extracted from the ECG signal. The parameters

 Y.-H. Pan et al.: Computing Multiscale Entropy with Orthogonal Range Search 111

RR

Brute

kd

10000 20000 30000 40000 50000 60000 70000 80000
N
(a)

0
10
20
30
40
50
60

Ex
cu

tio
n

tim
e

(s
ec

.)

RR

kd

10000 20000 30000 40000 50000 60000 70000 80000
N
(b)

0

0.5

1

1.5

2

Test 1.1 RR time series

Ex
cu

tio
n

tim
e

(s
ec

.)

Fig. 2. (a) Execution times versus N for RR interval. Red circle line

represents execution times of the brute force algorithm, blue cross
line represents the corresponding values for the k-d tree algorithm.
(b) Execution time versus N for RR interval for the k-d tree algo-
rithm.

ECG Signal

Brute

kd

10000 15000 20000 25000 30000 35000 40000 45000 50000 55000 60000 65000 70000 75000
N

(a)

0

10

20

30

40

50

Ex
cu

tio
n t

im
e (

se
c.)

ECG Signal

kd

10000 15000 20000 25000 30000 35000 40000 45000 50000 55000 60000 65000 70000 75000
N

(b)

0

0.5

1

1.5

Ex
cu

tio
n t

im
e (

se
c.)

Test 1.2 ECG signal

Fig. 3. (a) Execution times versus N for ECG signal. Red circle line repre-

sents the execution time of the brute force algorithm, blue cross line
represents the corresponding values for the k-d tree algorithm. (b)
Execution time versus N for ECG signal for the k-d tree algorithm.

EEG Signal

Brute

kd

10000 20000 30000 40000 50000 60000 70000 80000 90000 1e+05 1.1e+05 1.2e+05
N

(a)

0

20

40

60

80

100

120

Ex
cu

tio
n t

im
e (

se
c.)

EEG Signal

kd

10000 20000 30000 40000 50000 60000 70000 80000 90000 1e+05 1.1e+05 1.2e+05
N

(b)

0

0.2

0.4

0.6

0.8

1

1.2

Ex
cu

tio
n t

im
e (

se
c.)

Test 1.3 EEG signal

Fig. 4. (a) Execution time versus N for EEG signal. The red curved line

represents the execution time of the brute force algorithm, and the
blue cross line represents the corresponding values for the k-d tree
algorithm. (b) Execution time versus N for EEG signal for the k-d
tree algorithm.

used in this experiment were m = 2 and scale = 1. The exe-
cution time versus N is plotted in Fig. 2 for RR interval. It is
obvious from Fig. 2(a), the execution time of k-d tree was
much better than that of brute force algorithm. To focus on
the execution time of k-d tree, the execution times of k-d tree
algorithms were enlarged in Fig. 2(b). As seen from [14], the
bucket-assisted algorithm improved the brute force algo-
rithm by a factor of less than 5 times, while k-d tree improved
the brute force algorithm by a factor of 20 times for N =
80,000. Figure 2(b) shows that the k-d tree algorithm per-
formed much better than O(N 5/3), and it performed like O(N).
This was probably because the execution time depended on
the nature of the signal, and time complexity analysis only
predicted the worst case. Similar results were obtained for
ECG signal and EEG signal. The k-d tree algorithm im-
proved the brute force algorithm by a factor of 30 times for
ECG signal for N = 80,000, and a factor of 70 times for EEG
signal for N = 80,000 as shown in Fig. 3(a) and Fig. 4(a).

Test 2: Pink Noise (1/f)

To study the long-term correlations in environmental time
series [10, 13, 18] and other applications, 1/f noise was tested
in this example. Data lengths ranging from 100 to 1.6 million
were used to test SE versus N. Figure 5 shows SE oscillating

112 Journal of Marine Science and Technology, Vol. 19, No. 1 (2011)

Table 2. Time cost list for pink noise.

Number of Points Brute Force (s) 3D k-d Tree (s)

1,000 0.020 0.05

2,000 0.060 0.05

4,000 0.290 0.13

8,000 0.921 0.29

20,000 5.390 1.01

50,000 32.400 4.18

105 128.400 15.16

2×105 501.000 51.30

4×105 2063.000 176.70

8×105 8716.000 655.00

16×105 too long 2263.00

Table 3. Comparison of brute force and k-d tree algorithm
used to test an overnight EEG signal.

Case Length Brute Force (s) 3D k-d Tree (s)

1 7.8 × 106 ~10 days 14529.7

(Courtesy of Computer Science and Information Engineering, Na-
tional Cheng Kung University, Taiwan)

MSE of pink noise

MSE2000:CH1
MSE8000:CH1
MSE50000:CH1
MSE400000:CH1
MSE800000:CH1
MSE1600000:CH1

2 4 6 8 10 12 14 16 18 20
Scale

0.5

1

1.5

2

2.5

En
tro

py

Fig. 5. SE vs. scale for different N.

between different scales for small N. The computational result
converged with the analytical results as N increased, as de-
scribed in [7]. The execution time for k-d tree and brute force
algorithm are listed in Table 2.

Test 3: EEG signal

The purpose of this experiment was to test the performance
of the k-d tree algorithm in handling large N. MSE for scale
from 1 to 20, and m = 2, was applied to overnight EEG signals.
The signals were partitioned into windows for practicality
sake. The execution time for the two algorithms is shown in
Table 3. A significant improvement for k-d tree algorithm is
clearly seen in Table 3.

20
10
0

-10
-20

A
m

pl
itu

de

0 2 4 6 8 10
Time (sec)

DAQNI02

12 14 16 18

Fig. 6. Cutting process: raw data.

Scale
1

14
S1 S6 S1

1
S1

6
S2

1
S2

6
S3

1
S3

6
S4

1
S4

6

Time

2.5

2

1.5

1

0.5

0

Entropy

2-2.5
1.5-2
1-1.5
0.5-1
0-0.5

Fig. 7. MSE result of the cutting process.

Test 4: Mechanical Problem

MSE was applied to monitor tool life in machines. Entropy,
which was superior to RMS or Kurtosis [21], was used as an
indicator for monitoring tool life. In this example, MSE with a
rolling window monitored the tool life. The experiment setup
was a sampling rate of 10 kHz, the recorded data is 400,000
points. The window size is 0.2 seconds (2,000 points) with
50% overlap, m = 2 and scale = 1 to 20 is used in this experi-
ment. The entire machine process was measured by micro-
phone. Raw data is shown in Fig. 6 and the results of MSE
with a rolling window during 0~4.6 second are shown in
Fig. 7. It shows the machine started at S6 (where S6 stands
for 0.1 × 6 = 0.6 second), and the tool wore out during S6~S36.
The lowest value of MSE appeared at time S36, and the tool
broke at time S36.

Online monitor of machining was achieved by applying the
k-d tree algorithm. From the numerical experiments given
above, the k-d tree algorithm showed the greatly improved
computation time.

VII. SUMMARY

In this section, the execution time and the performance of
the newly developed k-d tree algorithm was tested. For all
testing, the k-d tree algorithm improved the execution time
from 10 to 70 times faster compared to conventional brute
force method for N = 80,000. Tests 2 and 3 showed that im-
provement increased with N.

The time complexity of the newly developed k-d tree algo-
rithm was O(N 5/3), which represented an improvement over

 Y.-H. Pan et al.: Computing Multiscale Entropy with Orthogonal Range Search 113

the brute force algorithm by O(N 1/6). From the Fig. 2(b), Fig.
3(b), and Fig. 4(b), it appears that the execution time was
proportional to N, which was linear and performed much
better than predicted in the order analysis. At present, the
authors do not understand the reason. It is possible that order
analysis only predicted the worst case.

Long data is often partitioned into windows, as in Test 4,
and the execution time was reduced. The length of the win-
dow depended on sample frequency, and the nature of the
signal. However, the execution time for the conventional
brute force algorithm was still too slow for application with
real world data such as long-term correlation 1/f noise, as in
Test 2; or high sample rated mechanical applications, as in Test
4. Since the execution time was significantly reduced by the
newly developed k-d tree algorithm, one could compute the
MSE with a much longer data set. By collecting additional
data and parameters, the statistical meanings of the signal,
could be determined.

On-line monitoring of the health of a system has been made
possible. Real time computation was achieved in Test 4, where
the sample rate was 10 kHz and window size was 2,000 points.
For higher sample rates, it would be necessary to limit the size
of the window to achieve real time application using the same
hardware. This will require further research.

VIII. CONCLUSION

Multi-scale entropy (MSE) is measurement of complexity
used to analyze signals in many fields. The time complexity of
the algorithms proposed in previous studies required O(N 2),
which is too slow for many applications. This research first
showed that the probability function in entropy could be
transformed into an orthogonal range search problem. A pro-
posed new algorithm was then developed to reduce the com-
putational time to O(N log2 N) using O(N log2 N) memory, or
O(N 5/3) using linear memory for a typical value, m = 2. Ex-
periments using k-d tree algorithm showed significant im-
provement in execution time from 10 to 70 times faster com-
pared with conventional brute force methods for N = 80,000.
Because the execution time has been significantly reduced, the
new algorithm could be applied to online diagnosis, to com-
pute the MSE for long-term correlated signal efficiently.
Future research would focus on further improvements in
execution time, using linear memory.

ACKNOWLEDGMENTS
The authors would like to thank professor Sheng-Fu Liang

in National Cheng Kung University for providing the EEG
data. This work was funded in part by the Industrial Devel-
opment Bureau Ministry of Economic Affairs, Taiwan (ROC).

REFERENCES

1. Agarwal, P. K. and Erickson, J., “Geometric range searching and its
relatives,” Advances in Discrete and Computational Geometry, Vol. 23,
pp. 1-56 (1999).

2. Angelini, L., Maestri, R., Marinazzo, D., Nitti, L., Pellicoro, M., Pinna,
G., Stramaglia, S., and Tupputi, S. A., “Multiscale analysis of short term
heart beat interval, arterial blood pressure, and instantaneous lung volume
time series,” Artificial Intelligence in Medicine, Vol. 41, pp. 237-250
(2007).

3. Bentley, J. L., “Multidimensional binary search trees used for associative
searching,” Communications of the ACM, Vol. 18, No. 9, pp. 509-517
(1975).

4. Bentley, J. L., “Decomposable Searching Problems,” Information Proc-
essing Letter, Vol. 8, pp. 244-251 (1979).

5. Berg, M. de, Krefeld, M. van, Overmars, M., and Schwarzkopf, O., “Or-
thogonal range searching,” Computational Geometry: Algorithms and
Applications, 3rd ed., Springer-Verlag, Berlin (2008).

6. Costa, M., Goldberger, A. L., and Peng, C. K., “Multiscale entropy anal-
ysis of complex physiologic time series,” Physical Review Letters, Vol.
89, p. 068102 (2002).

7. Costa, M., Goldberger, A. L., and Peng, C. K., “Multiscale entropy anal-
ysis of biological signals,” Physical Review E, Vol. 71, p. 021906 (2005).

8. Costa, M., Peng, C. K., Goldberger, A. L., and Hausdorff, J. M., “Mul-
tiscale entropy analysis of human gait dynamics,” Physica A, Vol. 330,
pp. 53-60 (2003).

9. Guzmán-Vargas, L., Ramírez-Rojas, A., and Angulo-Brown, F., “Mul-
tiscale entropy analysis of electroseismic time series,” Natural Hazards
and Earth System Sciences, Vol. 8, pp. 855-860 (2008).

10. Halley, J. M., “Ecology, evolution and l/f noise,” Trends in Ecology and
Evolution, Vol. 11, pp. 33-37 (1996).

11. Halley, J. M. and Kunin, W. E., “Extinction risk and the 1/f family of noise
models,” Theoretical Population Biology, Vol. 56, pp. 215-230 (1999).

12. Kang, X., Jia, X., Geocadin, R. G., Thakor, N. V., and Maybhate, A.,
“Multiscale entropy analysis of EEG for assessment of post-cardiac arrest
neurological recovery under hypothermia in rats,” IEEE Transactions on
Biomedical Engineering, Vol. 56, No. 4, pp. 1023-1030 (2009).

13. Lueker, G. S., “A data structure for orthogonal range queries,” Proceed-
ings of the 19th Annual IEEE Symposium on Foundations of Computer
Science, New York, pp. 28-34 (1978).

14. Manis, G., “Fast computation of approximate entropy,” Computer Me-
thods and Programs in Biomedicine, Vol. 91, pp. 48-54 (2008).

15. Norris, P. R., Anderson, S. M., Jenkins, J. M., Williams, A. E., and Morris,
Jr, J. A.” Heart rate multiscale entropy at three hours predicts hospital
mortality in 3154 trauma patients,” Shock, Vol. 30, No. 1, pp. 17-22, (2008).

16. Pincus, S. M., “Approximate entropy as a measure of system complex-
ity,” Proceedings of the National Academy of Sciences, USA, Vol. 88, pp.
2297-2301 (1991).

17. Reed, D. H., O’Grady, J. J., Brook, B. W., Ballou, J. D., and Frankham, R.,
“Estimates of minimum viable population sizes for vertebrates and factors
influencing those estimates,” Biological Conservation, Vol. 113, pp. 23-34
(2003).

18. Richman, J. S. and Moorman, J. R., “Physiological time series analysis
using approximate entropy and sample entropy,” American Journal of
Physiology, Vol. 278, No. 6, pp. H2039-H2049 (2000).

19. Sugisaki, K. and Ohmori, H., “Online estimation of complexity using
variable forgetting factor,” SICE Annual Conference, pp. 1-6 (2007)

20. Willard, D. E., Predicate-Oriented Database Search Algorithms, Harvard
University Aiken Laboratory, Harvard, TR-20-78 (1978).

21. Yan, R. and Gao, R. X., “Approximate entropy as a diagnostic tool for
machine health monitoring,” Mechanical Systems and Signal Processing,
Vol. 21, pp. 824-839 (2007).

	COMPUTING MULTISCALE ENTROPY WITH ORTHOGONAL RANGE SEARCH
	Recommended Citation

	COMPUTING MULTISCALE ENTROPY WITH ORTHOGONAL RANGE SEARCH
	Acknowledgements

	tmp.1629232563.pdf.dPyF2

