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ABSTRACT 

In this paper, we present a numerical method for solving 
nonlinear differential algebraic equations (DAE’s) based on 
the backward differential formulas (BDF) and the Pade series.  
Usefulness of the method is then illustrated by a numerical 
example, which is concerned with the derivation of the opti-
mal guidance law for spacecraft.  This kind of problems is 
called trajectory-prescribed path control (TPPC) in the litera-
ture.  We reformulate the problem as a Hamiltonian DAE 
system (usually with a higher index).  After establishing the 
system of spacecraft dynamics, we can derive the optimal guid- 
ance law of the system by the proposed numerical method. 

I. INTRODUCTION 

In system theory, a dynamical system is often considered as 
a set of ordinary differential or difference equations (ODE); 
these equations describe the relations between the system 
variables.  As pointed out in [4], for the most general purpose 
of system analysis, one usually begins by defining the first 
order system 

 ( ( ), ( ), ) 0,t t t =�F y y  (1) 

where F and y are vector-valued functions.  Eq. (1) is termed 
as differential-algebraic equations (DAE), since it contains 
differential equations as well as a set of algebraic constraints.  
For control and systems engineers, it is usually assumed that 

(1) can be rewritten in an explicit form 

 ( ) ( ( ), ).t t t=�y f y  (2) 

An ODE of the form (2) is called a state-variable (state- 
space) description in the systems and control society.  Since 
then, theorems and design techniques being developed are 
largely based on (2).  In fact, the state-variable descriptions 
have been the predominant tool in systems and control theory.  
While the representation (2) will continue to be very important, 
there has been an increasing interest in working directly with 
(1). 

If (1) can, in principle, be rewritten as (2) with the same 
state variables y, then it will be referred to as a system of im-
plicit ODE’s.  In this paper, we are especially interested in 
those problems for which this rewriting is impossible or less 
desirable.  We consider the general nonlinear DAEs which are 
linear in the derivative 

 ( ) ( )( ) ( ) ( ), 0.t t t t+ =A y y f y�  (3) 

Suppose that ( )∂
∂

A y
y  has a constant rank.  Then, in princi-

ple, locally the system (3) can be put in the semi-explicit form 

 1( ) ( ( ), ( ), ),t t t t=�x f x u  

20 ( ( ), ( ), ).t t t= f x u  (4) 

A large class of physical systems can be modeled by this 
kind of DAEs.  The paper of Newcomb et al. [24] gives many 
practical examples, including circuit and system design, ro-
botics, neural network, etc., and presents an excellent review 
on nonlinear DAEs.  Many other applications of DAEs as well 
as numerical treatments can be found in [4].  An existence and 
uniqueness theory for nonlinear DAEs has been well devel-
oped in [26] by exploiting their underlying differential geo-
metric structure.  Recently, Venkatasubramanian et al. [28] 
have extensively studied the bifurcation phenomena of DAEs.  
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They have also thoroughly investigated feasibility regions in 
differential-algebraic systems.  The notion of feasibility regions 
provides a natural gateway to the stability theory of DAEs. 

There are several reasons to consider systems of the form 
(4), rather than try to rewrite it as an ODE.  Of great impor-
tance, we point out that, when physical problems are simulated, 
the model often takes the form of a DAE.  DAEs can be used to 
depict a collection of relationships between variables of in-
terest and some of their derivatives, which may be treated as 
an algebraic constraint between the state variables.  These 
relationships may even be generated automatically by a mod-
eling or simulation program.  In particular, the variables thus 
introduced usually have a physical significance.  Changing the 
model to (2) may produce less meaningful state variables.  If 
the original DAE can be solved directly, then it becomes easier 
for scientists or engineers to explore the effect of modeling 
changes and parameter variations.  These advantages enable 
researchers to focus their attention on the physical problem of 
interest.  On the other hand, although the state-space models 
are very useful, but the state variables thus introduced often  
do not provide a physical meaning [8, 27].  Besides, some 
physical phenomena, like impulse, hysteresis which are im-
portant in circuit theory, cannot be treated properly in the 
state-space models [18, 29].  Differential-algebraic equations 
representation provides a suitable way to handle such prob-
lems.  It has been proven in the literature that DAE systems 
have higher capability in describing a physical system [17, 24, 
29].  In fact, DAE system models appear more convenient and 
natural than state-space models in large scale systems, eco-
nomics, networks, power, neural systems and elsewhere [17, 
20, 24]. 

In this paper, we investigate some of the control problems 
that are well suitable for the DAE system framework.  In par-
ticular, we show that the optimal control problem can be re-
formulated as a Hamiltonian DAE.  The derived DAE can then 
be solved by numerical methods.  The numerical method is 
mainly based on the backward differential formulas (BDF) 
and the Pade series, which can be obtained by using computer 
algebra systems (such as MAPLE, Mathematica, etc.).  Fur-
thermore, we consider a practical design problem, namely the 
trajectory prescribed path control (TPPC) problem.  In the 
simulation of space vehicles, we often encounter the TPPC 
problems.  That is, we usually append a set of path constraints 
to the equations of motion for describing the shape of the tra- 
jectory.  Here the optimal guidance law for aircraft dynamics 
is derived based on a DAE approach.  After establishing the 
system of aircraft dynamics, we can derive the optimal guid-
ance law of the system by solving a Hamiltonian DAE. 

The rest of the paper is organized as follows: In Section 2, 
some of the elementary materials concerning DAE’s are in-
vestigated.  In Section 3, by using the Lagrange multiplier’s 
method, it is shown that the optimal control problem can be 
rewritten as a Hamiltonian DAE.  Simulation results are given 
in Section 4.  Finally, some concluding remarks are given in 
Section 5. 

II. ELEMENTS OF DAES 

In this section we summarize some basic definitions and 
preliminary results that will be needed through-out this paper.  
Most of the treatments are purely algebraic and the definitions 
are fairly standard.  First, the definitions of solvability and 
index for the general nonlinear DAE’s (1) will be given in this 
section.  Suppose that the DAE (1) consists of a system of m 
equations in the (2m + 1)-dimensional variable ( ( ), ( ), ).t t t�y y   
A function y(t) is said to be a solution of the DAE (1) on a 
interval T if y(t) is continuously differentiable on T and satis-
fies (1) for all t ∈ T.  The precise definition is given in the 
following. 

 
Definition 1.  Let T be an open subinterval of R, Ω a con-
nected open subinterval of R2m+1, and F a differentiable func-
tion from Ω to R

m.  Then DAE (1) is solvable on T in Ω if 
there is an r-dimensional family of solutions φ(t, c) defined on 
a connected open set ,  × Ω Ω� �T ⊂ Rr such that: 
1. φ(t, c) is defined on all of T for each ,∈Ω�c  
2. ( , ), ( , ))   for ( , ) ,( , t t tt φ φ ∈Ω ∈ × Ω� �c c c T  
3. If ψ(t) is any other solution with (t, ψ(t, c), ψ� (t, c)) ∈ Ω, 

then ψ(t) = φ(t, c) for some ,∈Ω�c  
4. The graph of φ as a function of (t, c) is an (r + 1) − dimen-

sional manifold. 
 
The above definition means that locally there is an r-dimen- 

sional family of solutions.  At any time t0 ∈ T, the initial con-
ditions form an r-dimensional manifold  φ(t0, c) and r is in-
dependent of t0.  The solutions are a continuous function of the 
initial conditions on this manifold. 

It is known that the property of index [4] plays a key role in 
the classification and behavior of DAE systems.  It also pro-
vides a measurable scheme of the singularity of a DAE and the 
difficulty for numerically solving a DAE.  The definition of 
index is described in the following. 

 
Definition 2.  The minimum number of times that all or part of 
DAE (1) must be differentiated with respect to t in order to de- 
termine ( )t�y  as a continuous function of y(t) and t, is the 
index ν of the DAE (1). 

 
The definition of the index given above is usually referred 

to as the differentiation index of DAE’s.  According to the 
definition, an implicit ODE has index zero.  A DAE having 
index two or greater is referred to as a higher index DAE. 

An alternative, but less general, characterization of the in-
dex is the number of iterations of the following (theoretical) 
procedure needed to convert the DAE into an ODE: 

 
1. If /∂ ∂�F y  is nonsingular, then stop, 
2. Suppose that /∂ ∂�F y  has constant rank and that nonlinear 

coordinate changes make (1) semi-explicit.  Differentiate 
the constraint equation, let F = 0 denote the new DAE, and 
return to 1. 
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To motivate the next definition, suppose that we wish to 
solve (1) by the implicit Euler method starting at time t0 with 
constant step-size h.  Let tn = t0 + nh, y0 be the estimate for y(tn).  
Then the implicit Euler method applied to (1) gives 

 1, , 0,n n
n nt

h
−−  = 

 

y y
F y  (5) 

which will need to be solved by a nonlinear equation solver.  

The Jacobian of F in (5) with respect to yn is ( )1
h +

�y yF F  so 

that this matrix pencil will be important.  For the linear case, 

this was the pencil ( )1 ,h +A B  where A, B are constant ma-

trices.  Another definition of the index is given in the follow-
ing in terms of the matrix pencil. 

 

Definition 3.  The local index νl of (1) at ˆ ˆ ˆ( , , )t �y y  is the index 

of the matrix pencil ˆ ˆˆ ˆ ˆ ˆ( , , ) ( , , ).t tλ +
�

� �
y yF y y F y y  

 
Proposition 4.  Suppose that  has constant rank.  Then ν = 1 if 
and only if νl ≡ 1. 

 
From the above definition and proposition, it can be seen 

that the semi-explicit DAE 

 1 1 1 2( , , )t=�x F x x  

2 1 20 ( , , )t= F x x  (6) 

has index one if and only if ∂F2/∂x2 is nonsingular. 

III. NUMERICAL SOLUTIONS OF DAES 

In this section we examine some of the properties of the 
numerical methods for solving DAE’s.  We examine the linear 
multistep methods (LMM’s) applied to DAE’s, especially the 
most popular and hence best understood class of LMM’s, 
namely the backward differentiation formulas (BDF).  On the 
other hand, we also introduce a method that is well suitable for 
using computer algebra systems, namely the Pade approxi-
mation method.  First we calculate power series of the given 
equations system (by using BDF) and then transform it into 
Pade series form, which give an arbitrary order algorithm for 
solving differential-algebraic equations numerically. 

The first general technique for the numerical solution of 
DAE’s, proposed in 1971 by Gear in a well-known and often 
cited paper [11], utilized the BDF.  This method was initially 
defined for systems of differential equations coupled to alge-
braic equations 

 ( , , ),t=�x f x u  

0 ( , , ),t= g x u  (7) 

where u is a vector of the same dimension as g.  The algebraic 
variables y are treated in the same way as the differential 
variables x for BDF, and the method was soon extended to 
apply to any fully-implicit DAE system 

 ( , , ) 0.t =�F y y  (8) 

The simplest first order BDF method is the implicit Euler 
method, which consists of replacing the derivative in (8) by a 
backward difference 

 1 , , ,n n
n nth

−−  = 
 

0
y y

F y  

where h = tn – tn–1. The resulting system of nonlinear equations 
for yn at each time step is then usually solved by Newton’s 
method.  The k-step (constant step-size) BDF consists of re-
placing �y  by the derivative of the polynomial which inter-
polates the computed solution k + 1 times tn, tn–1, …, tn–k, 
evaluated at tn.  This yields 

 , , ,n
n nth

ρ  = 
 

0
y

F y  (9) 

where 0
k

n i i n iρ α= −= ∑y y  and αi, i = 0, 1, …, k are the coeffi-

cients of the BDF method.  The k-step BDF method is stable 

for ODE’s for k < 7.  The relation 0
k

n i i n iρ α= −= ∑y y  simply 

says that the derivative of y at tn can be represented as a 
polynomial of order k.  We define another type of power series 
in the form 

2
0 1 2 1 1( ) = + + + + ( + + + ) ,n

n m mf t f f t f t f p e p e t� �  (10) 

where p1, p2, …, pm are constants, e1, e2, …, em are bases of 
vector e, m is the size of vector e.  Let y be a vector with m 
elements, then every element can be represented by the Power 
series in (10).  Therefore we can write 

 2
,0 ,1 ,2 ,n

i i i i iy y y t y t e t= + + + +�  (11) 

where yi is the ith element of y.  Substitute (11) into (1), we  
can get 

 1
, ,1 1 ,( ... ) ( ),n j n j

i i n i i m mf f p e p e t Q t− − += + + + +  (12) 

where fi is the ith element of ( , , )t�F y y  in (1), and Q(tn–j+1) is a 

polynomial whose degree is no less than tn–j+1.  Now suppose 
that 0 0 0( , , )t�y y  is a set of consistent initial conditions for (1), 

i.e. 

 0 0 0( , , ) 0.t =�F y y  
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Then the solutions of (1) can be assumed to be 

 2
0 1 ,t t= + +y y y e  (13) 

where e is a vector function which is the same size as y0 and 

0.�y  Substitute (13) into (1) and neglect higher order term, we 

have the linear equation of e in the form 

 Ae = B, (14) 

where A and B are constant matrices.  Solving Eq. (14), the 
coefficient of t2 in (13) can be determined.  Repeating above 
procedure for higher order terms, we can get the arbitrary 
order power series of the solutions for (1). 

From (11) and (14), we can determine the linear equation in 
(14) as follows: 

 Ai,j = Pi,j. 

Solve this linear equation, we have ei (i = 1, …, m).  Sub-
stituting ei into (11), we then have yi (i = 1, …, m) which are 
polynomials of degree n.  Repeating this procedure, we   can 
get the arbitrary order Power series solution of differential- 
algebraic equations in (1).  The next step would be to put the 
power series into Pade series form and then obtain numerical 
solution of it. 

Suppose that we are given a power series 
0

,i
ii

c x
=

∞
∑  rep-

resenting a function f (x), so that 

 
0

( ) ,i
i

i

f x c x
=

∞

=∑  (16) 

where ci = 0, 1, 2, … is a given set of coefficients.  This ex-
pansion is the fundamental starting point of any analysis using 
Pade approximants.  A Pade approximant is a rational fraction 

 [ ] 0 1

0 1

/ ,
L

L
M

M

a a x a x
L M

b b x b x

+ + +=
+ + +

�

�

 (17) 

which has a MacLaurin expansion that is agreed with (16) as 
high (in order) as possible.  For definiteness, we may take b0 = 
1.  This choice turns out to be an essential part of the precise 
definition and (17) is our conventional notation with this 
choice for b0.  So there are L + 1 independent numerator co-
efficients and M independent denominator coefficients, mak-
ing L + M + 1 unknown coefficients in all.  This number 
suggests that normally the [L/M] ought to fit the power series 
(16) through the orders 1, x, x2, …, xL+M in the notation of 
formal power series, 

 10 1

0 0 1

( ).
L

i L ML
i M

i M

a a x a x
c x Q x

b b x b x
+ +

=

∞ + += +
+ + +∑

�

�

 (18) 

Upon cross-multiplying, the above equation can be re-ar- 
ranged as 

 0 1 0 1( )( )M
Mb b x b x c c x+ + + + +� �  

1
0 1 ( ).L L M

La a x a x Q x + += + + + +�  (19) 

Equating the coefficients of xL+1, xL+2,…, xL+M yields 

 1 1 2 0 1 0,M L M M L M Lb c b c b c− + − − + ++ + + =�  

 2 1 3 0 2 0,M L M M L M Lb c b c b c− + − − + ++ + + =�  

�  

1 1 0 0.M L M L L Mb c b c b c− + ++ + + =�  (20) 

If j < 0, we define cj = 0 for consistency.  Since b0 = 1, Eq. 
(20) become a set of M linear equations for M unknown de-
nominator coefficients: 

 

1 2 3 1

2 3 4 1 1 2

3 4 5 2 2 3

1 2 1 1

,

L M L M L M L M L

L M L M L M L M L

L M L M L M L M L

L L L L M L M

c c c c b c

c c c c b c

c c c c b c

c c c c b c

− + − + − + +

− + − + − + + − +

− + − + − + + − +

+ + + + +

     
     
     
     = −
     
     
     
     

�

�

�

� � � � � � �

�

 

  (21) 

from which the bi’s may be found.  The numerator coefficients 
a0, a1, …, aL follow immediately from (19) by equating the 
coefficients 1, x, x2, …, xL: 

0 0 ,a c=  

1 1 1 0 ,a c b c= +  

2 2 1 1 2 0 ,a c b c b c= + +  

�  

min( , )

1

.
L M

L L i L i
i

a c b c −
=

= + ∑  (22) 

Thus, Eqs. (21) and (22) normally determine the Pade nu-
merator and denominator and called the Pade equations.  Sum- 
marizing the previous discussion, the thus constructed [L/M] 

Pade approximant is able to agree with 
0

i
ii

c x
=

∞
∑  through 

order xL+M. 
Before the end of this section, we shall summarize the pro- 

cedure for solving DAEs by using the proposed algorithm. 
 

Algorithm Pade Series Solutions for DAEs 
Input: The DAEs ( ( ), ( ), ) 0t t t =�F y y and set an error toler-
ance ν. 
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Step 1: Calculate a power series solution for y(t) by using Eqs. 
(11)-(15).  Denote the solution by f(x). 

Step 2: Calculate a Pade series solution for f(x).  Utilize Eq. 
(20)-(22) to compute the coefficients for the Pade se-
ries. 

Step 3: Put the Pade series solution back into Eq. (1) to see if 
the error tolerance ν is fulfilled.  If yes, then output 
f(x); if not, then go back to Step 1 and calculate a 
solution with higher power. 

End. 

IV. HAMILTONIAN DAES 

In this section, we derive a class of DAE’s by the Hamil-
ton’s principle.  We shall call such a system the Hamiltonian 
DAE.  The DAE structure allows a model to be obtained from 
energy functions, constraint equations, and a virtual work 
expression in a systematic manner.  Hamilton’s principle has 
its origin from the classical mechanics.  It can, however, also 
arise naturally when dealing with the constrained optimization 
problem.  Here we take the optimization viewpoint. 

Consider a nonlinear time-varying dynamical system 

 ( ) ( ( ), ( ), )t t t t=�x f x u  

together with the associated performance index (cost function) 

 
0

0( ) ( ( ), ( ), )d ,
T

t
J t L t t t t= ∫ x u  (24) 

Where x(t) ∈ Rn is the state, u(t) ∈ Rm is the control input, 
L(x(t), u(t), t) is the Lagrange function (or Lagrangian).  The 
Lagrangian L can be viewed as a weighting on the state vari-
ables and the control input in order to achieve a prescribed 
performance requirement.  The main purpose of the control is 
to find an optimal feedback law u*[t0, T] such that the per-
formance index (24) is minimized.  Usually, in the classical 
mechanics, the Lagrangian is a function of the displacement 
variables (x, u) as well as the flows ( , )x u� � .  However, in the 
control systems community, the Lagrangian is merely a func-
tion of the displacement.  The Hamiltonian and the Lagrangian 
can be related by the Legendre transformation: 

 ( ( ), ( ), ) ( ( ), ( ), ) ( ( ), ( ), ),TH t t t L t t t t t t= +x u x u p f x u  (25) 

where p is the canonical momentum conjugated to x.  Using 
the above identity, Eq. (24) can be rewritten as: 

 
0

' ( ( ), ( ), ) ( ) ( ) d .
T T

t
J H t t t t t t = − ∫ �x u p x  (26) 

By using the Leibniz’s rule, the increment in J ' can be ex-
pressed in the increment of x, p, u, and t as follows: 

 
0

d ' ( ) d .
T T T T

t
J H H tδ δ δ = − + − ∫ � �

x pu p x x p  (27) 

To eliminate the variation in ,x�  integrate by parts to get: 

 
0 0 0

d d .
T TT T

T t t

T T

t
t tδ δ δ δ+ +− = − ∫∫ �x x p x p xp p  (28) 

Substituting (28) into (27) yields: 

0
d ' d dT T

T t
J = − +p x p x  

0

( ) ( ) d .
T T T T

t
H H H tδ δ δ + + + − ∫ � �

x u p+ p x u x p  (29) 

According to the Lagrange theory, the constrained mini-
mum of J is attained at the unconstrained minimum of J '.  This 
is achieved when dJ ' = 0 for all independent increments in its 
arguments.  Setting to zero the coefficients of the independent 
increments δx, δu, and δp yields necessary conditions for a 
minimum J as shown in the following. 

 , ,
TH H L∂ ∂ ∂ ∂

∂ ∂ ∂ ∂
= − = = +� �

f
p x x

p p
x

x  (30) 

 0 .
TH L∂ ∂ ∂

∂ ∂ ∂
= = + f

u u
p

u
 (31) 

The first two equations are the canonical Hamilton equa-
tions.  The third equation can be viewed as an algebraic con-
straint.  Therefore we shall call (30)-(31) a Hamiltonian DAE.  
The third equation is usually called the stationarity condition 
in the optimal control theory.  The actual value of p(t) is by no 
means important, but it must evidently be determined as an 
intermediate step in finding the optimal control u*(t), which 
depends on p(t) through the stationarity condition. 

An important point is worth noting.  The time derivative of 
the Hamiltonian is 

 T
T TH H H

t
H

∂ ∂ ∂
∂ ∂

= + + +
∂

� � � �x u
u

p
x

f  

.
T T

H H H

t
 = + + +∂ ∂
 
 

∂
∂ ∂ ∂

� �

u
u p f

x
 

If u(t) is an optimal control, then 

 .H
H

t
= ∂

∂
�  

Now, in the time-invariant case, f and L are not explicit 
function of t, and so neither is H.  In this situation 

 0.H =�  
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Hence, for time-invariant systems and cost functions, the 
Hamiltonian is a constant on the optimal trajectory. 

V. NUMERICAL EXAMPLE 

In this section, we first examine a classical trajectory pre-
scribed path control (TPPC) problem which has been thor-
oughly studied in [3].  Then we will find an optimal guidance 
law for the TPPC problem by solving a Hamiltonian DAE.  
The two results are then compared in the end of the section. 

The TPPC problems are often encountered in the simulation 
of space vehicle.  In this problem, a vehicle is usually modeled 
to fly in space when its trajectory is imposed with constraints.  
That is, a set of path constraints are usually appended to the 
equations of motion for describing the shape of the trajectory.  
To model the system dynamics, we need a set of state (dif-
ferential) equations 

 ( ) ( ( ), ( ), ),t t t t=�x f x u  (32) 

that described the classical equations of motion together with a 
set of algebraic equations 

 0 ( ( ), ( ), ),t t t= g x u  (33) 

that corresponds to the path constraints.  In general, the x 
variables are formed as state variables, while the u variables 
are treated as the control (algebraic) variables.  The state 
variables describe the position, velocity, and possibly the mass 
of the vehicle.  The control variables are typically described as 
angle of attack (α) and bank angle (β), which effectively de-
termine the magnitude and direction of the aerodynamic forces 
acting on the vehicle.  In a TPPC problem the path constraints 
often are functions only of the state variables.  In this paper, 
the TPPC problems of interest can be written as 

 ( ) ( ( ), ( ), ),t t t t=�x f x u  (34) 

 0 ( ( ), ),t t= g x  (35) 

where the matrix product (∂g/∂x)(∂f/∂u) is nonsingular for all t 
of interest.  This condition is merely used to guarantee that the 
TPPC problem is solvable.  See also [3]. 

The complete nonlinear kinematics of aircraft is considered 
in the TPPC problem.  The state variables can be expressed in 
an earth centered relative coordinate system (see Fig. 1).  In 
relative coordinate system, a spherical representation of the 
state variables can be utilized.  Here we illustrate the represen- 
tation of the state variables are altitude h, geocentric latitude λ, 
longitude ψ, magnitude of the relative velocity vector VR, 
relative azimuth A, and relative fight path angle γ. 

The control variables for TPPC problems are angle of at-
tack and bank angle measured in a body coordinate system.  
The angle of attack is measured from the relative velocity 
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Fig. 1.  State variables in relative coordinate. 
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Fig. 2.  Rotate about YO through α in body coordinate system. 

 
 

vector of the vehicle to the body XO axis, and corresponds to 
‘pitch’ about the vehicle’s latitudinal axis (namely the YO axis) 
as shown in Fig. 2. 

The bank angle is measured from the relative velocity 
y-axis to the body YO axis, and corresponds to a ‘roll’ about the 
vehicle’s longitudinal axis (namely the XO axis) as shown in 
Fig. 3. 

For most trajectory application problems, position and ve-
locity of the vehicle (namely the rectangular three-component 
vectors r

�

 and v
�

) are often expressed as the differential vari- 
ables.  The equations of aircraft dynamical system can be 
written as 

,r v=� ��  

 
1

( ) ( ( , , , ) ( , , )),PA Fv g r F r v
m

rα β α β+= +
��� � � � � ��

� � ��
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Fig. 3.  Rotate about XO through β in Body Coordinate System. 
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( )  acceleration vector due to gravity,
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, )  aerodynamic force vector,
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In this paper, we limit our discussion to reentry vehicles 

with no propulsive forces so that , ) 0,( ,PF r α β ≡
��

��

 and sim-

plify the simulation to model only a spherical geopotential and 
spherical earth.  When state variables are expressed in relative 
coordinates, the differential equations of above can be trans-
lated to the following six equations of motion: 
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cos( ) sin( )
,

cos( )
RV A

r

γξ
λ

× ×=
×

�  

cos( ) cos( ),RV
A

r
λ γ= × ×�  

2sin( ) cos( )R E

D
g

m
V rγ λ× − ×= Ω− − ×�  

(sin( )cos( )cos( ) cos( )sin( )),Aλ γ λ γ× −  

2cos( ) cos( ) R

R R

VL
g

m V V r

β γγ
 

= + − ×  
�  

cos(2 )sin( )E Aλ+ Ω  

2 cos( )
(sin( )cos( )sin( )E

R

r
A

V

λ λ γΩ+ ×  

cos( )cos( )),λ γ+   (36) 
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λ λ
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where 

 

2

 gravitational constant,

/ ,  the gravity force,

 earth angular rotation rate,

 the mass of the vehicle,

 the vehicle cross-

 the earth radius

sectional reference area,
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e mo
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 at s
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pheric density,

( )  the aerodynamic lift coefficient,

( )  the aerodynamic drag coefficient,

1
,  the aerodynamic lift force,

2
1

,  the aerodynamic drag force.
2

L

D

L R
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It’s worth noting that the equations of motion are undefined 
if γ = 90° or λ = 90°.  The equation-prescribed path is usually 
written as functions of the relative state variables.  When the 
state (differential) and algebraic equations are both expressed 
in relative coordinates, it will be easy to determine the index of 
the resulting DAE system.  The index of the resulting DAE 
system in relative coordinates can be found by a reduction 
technique based on repeated differentiations of the algebraic 
equations.  This procedure can reduce the index of the system 
to one.  Here, the vehicle is solved by the 5-step backward 
differential formulas (BDF).  First, let us consider a simple 
path constraint so that the vehicle is constrained to fly along a 
prescribed azimuth and fight path angle trajectory.  It is given 
by the state variable constraints as follows: 

21 9 ( /3 ) ,0 00tγ + += ×  

 20 45 90 ( /300) .A t= − − ×  (37) 

The above path constraints are also discussed in [4].  The 
DAE system (36)-(37) has index two.  We have to differentiate 
the algebraic Eq. (37) once and substitute for A’ and γ’ from the 
differential Eq. (36).  Then the resulting index one DAE sys-
tem related to the original system can be derived in the fol-
lowing, 
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Consistent initial values for the DAE system are determined 
by selecting the initial differential and control variables to 
satisfy the two algebraic equations in the related index one 

system (38).  Numerical results are obtained for the following 
set of initial values: 

 

0 ,
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For simplicity, we consider the problem in a model of 
spherical gravitational earth.  So we can use the relative state 
variables in the differential equations.  The related coefficients 
of the vehicle in this experiment are given as follows: 

m = 2.8905 tons, 

S = 550 ft.2 

The atmosphere is modeled with simple relation, ρ = 
0.002378exp(−h/23800).  The lift and drag coefficients are 
chosen as functions of angles of attack, 

 (0. ,01)LC α=  

20.04 0.1 .D LC C= +  

The rest of the constraints needed in (36) are shown as fol-
lows: 

 16 3 2

5

1.4077 10  

2

ft. /

0902900 ft.

s ,

7.2921 10  rad s.

,

/

e

E

a

µ
−

=

= ×

Ω = ×

 

In our simulation, a truth model is generated by solving the 
index one problem with a tight local relative tolerance (EPS = 
10-8) and absolute tolerance (EPS = 10-7).  The state variables 
of vehicle are plotted as functions of time in Fig. 4 and Fig. 5. 
Now we shall impose an optimal criterion on the TPPC prob-
lem so that the problem can be reformulated as a Hamiltonian 
DAE.  Consider the following performance index: 

 
0

0( ) ( ( ), ( ), )d .
T

t
J t L t t t t= ∫ x u  

The Lagrange function L considered here has the following 
quadratic form: 

 
1

( ),
2

T TL = +x Qx u Ru  
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Fig. 4.  State variables. 

 
 

where the matrix Q is a 6 × 6 identity matrix and R is a 2 × 2 
identity matrix, x is the state variable, and u is the control 
variable.  To solve the optimal control problem is then equiva- 
lent to solving the following Hamiltonian DAE: 

 ,
H

∂
= ∂

�x
p

 (38) 

 ,
H∂− =

∂
�p

x
 (39) 

 0 .
H= ∂

∂u
 (40) 

where H is the Hamiltonian function for the aircraft dynamics, 
and p is the generalized momentum vector.  As mentioned in 
Section 3, the Hamiltonian function H is equal to L + pTf.  Here 
f is the equations of the vehicular motion.  In our experiment, 

/H ∂= ∂�x p  of the Hamiltonian DAE system is equal to the 
differential equations of the TPPC problem, namely the equa-
tions of motion in relative coordinates.  Here we define six 
variables as generalized momentum to yield an appropriate 
stationary point with choosing state variables x and control 
variables u.  The control variables u are also the angle of at-
tack α and bank angle β.  Then /H ∂= ∂�p x  of the Hamilto-
nian DAE system is given as follows: 
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Fig. 5.  State variables and control variables. 
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The stationarity conditions are shown below: 
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The three parts of the Hamiltonian DAEs (36) (41) (42) can 
be put into the following compact form: 
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Fig. 7.  State variables and generalized momentum. 
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 Numerical results are obtained for 

the following set of initial values: 

h = 150070 ft., ξ = 1.1°, 

λ = 1.2°, VR = 15000 ft./sec, 

γ = −1°, A = 45°, 

p1 = 2000, p2 = 10−6, 

p3 = −10, p4 = 200, 

p5 = 2000, p6 = 8.9, 

α = 2.6725°, β = −0.0522°. 

The numerical results are shown in Figs. 6-9. 
For the above two cases, we make the following observa-

tion.  According to the above numerical results, we can see 
that the control variable α in the optimal control problem 
decreases along with time in compared with the simple TPPC 
problem.  Although β increase slightly, it still doesn’t affect the 
value of Lagrange function L, so as to attain the minimum.  
From those figures, it can be seen that the values of h, VR, 
γdecrease severely and the values of λ, ξ, and A increase slowly  
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in order to meet the performance requirement, namely the  
state variables must have the minimum energies among all 
possible trajectories.  For the two cases, it is calculated, in  
the same time interval, that the Lagrangian L is equal to 
2.906314888887725 × 1015 for the optimal control problem, 
and equal to 3.950072046453987 × 1015 for the TPPC problem.  
In other words, the TPPC problem with optimal control design 
can not only achieve the purpose of flight control, but also 
satisfy the minimum energy requirement. 

VI. CONCLUSIONS 

We have proposed a potential unified framework for solv-
ing optimal control problem in the present paper.  The optimal 
control problem is reformulated as a Hamiltonian DAE and 
then is solved by the BDF method.  To serve as an illustrative 
example, we also derive an optimal control law for the TPPC 
problem.  Currently, we just limited the fight path angle γ and 
the azimuth A so that γ was gradually decreasing from −1° and 
A increasing from 45°.  It is possible to alter the algebraic 
constraint to a more complex equation or a realistic fight route. 
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