=
Journal of

Marine Science and Technology

e
Z
&
&
S
5

Volume 19 | Issue 1 Article 9

NUMERICAL SOLUTIONS OF DIFFERENTIAL-ALGEBRAIC EQUATIONS AND
ITS APPLICATIONS IN SOLVING TPPC PROBLEMS

He-Sheng Wang
Department of Communications, Navigation and Control Engineering National Taiwan Ocean University, Keelung 202,

Taiwan., hswang@mail.ntou.edu.tw

Wei-Lun Jhu
Department of Electrical Engineering, National Taiwan Ocean University, Keelung, Taiwan.

Chee-Fai Yung
Department of Electrical Engineering, National Taiwan Ocean University, Keelung, Taiwan.

Ping-Feng Wang
Institute for Information Industry, Taipei, Taiwan.

Follow this and additional works at: https://jmstt.ntou.edu.tw/journal

b Part of the Computer Sciences Commons, and the Engineering Commons

Recommended Citation

Wang, He-Sheng; Jhu, Wei-Lun; Yung, Chee-Fai; and Wang, Ping-Feng (2011) "NUMERICAL SOLUTIONS OF
DIFFERENTIAL-ALGEBRAIC EQUATIONS AND ITS APPLICATIONS IN SOLVING TPPC PROBLEMS," Journal of Marine
Science and Technology: Vol. 19: Iss. 1, Article 9.

DOI: 10.51400/2709-6998.2139

Available at: https://jmstt.ntou.edu.tw/journal/vol19/iss1/9

This Research Article is brought to you for free and open access by Journal of Marine Science and Technology. It has been
accepted for inclusion in Journal of Marine Science and Technology by an authorized editor of Journal of Marine Science and

Technology.


https://jmstt.ntou.edu.tw/journal/
https://jmstt.ntou.edu.tw/journal/
https://jmstt.ntou.edu.tw/journal/vol19
https://jmstt.ntou.edu.tw/journal/vol19/iss1
https://jmstt.ntou.edu.tw/journal/vol19/iss1/9
https://jmstt.ntou.edu.tw/journal?utm_source=jmstt.ntou.edu.tw%2Fjournal%2Fvol19%2Fiss1%2F9&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=jmstt.ntou.edu.tw%2Fjournal%2Fvol19%2Fiss1%2F9&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/217?utm_source=jmstt.ntou.edu.tw%2Fjournal%2Fvol19%2Fiss1%2F9&utm_medium=PDF&utm_campaign=PDFCoverPages
https://jmstt.ntou.edu.tw/journal/vol19/iss1/9?utm_source=jmstt.ntou.edu.tw%2Fjournal%2Fvol19%2Fiss1%2F9&utm_medium=PDF&utm_campaign=PDFCoverPages

76 Journal of Marine Science and Technology, Vol. 19, No. 1, pp. 76-88 (2011)

NUMERICAL SOLUTIONS OF
DIFFERENTIAL-ALGEBRAIC EQUATIONS
AND ITS APPLICATIONS IN SOLVING TPPC
PROBLEMS

He-Sheng Wang*, Wei-Lun Jhu**, Chee-Fal Yung**, and Ping-Feng Wang* * *

Key words: differential-algebraic equations, computer algebra, tra-
jectory-prescribed path control.

ABSTRACT

In this paper, we present a numerica method for solving
nonlinear differential algebraic equations (DAE's) based on
the backward differential formulas (BDF) and the Pade series.
Usefulness of the method is then illustrated by a numerical
example, which is concerned with the derivation of the opti-
mal guidance law for spacecraft. This kind of problems is
called trgjectory-prescribed path control (TPPC) in the litera-
ture. We reformulate the problem as a Hamiltonian DAE
system (usualy with a higher index). After establishing the
system of spacecraft dynamics, we can derive the optimal guid-
ance law of the system by the proposed numerical method.

I[.INTRODUCTION

In system theory, adynamical system is often considered as
a set of ordinary differential or difference equations (ODE);
these equations describe the relations between the system
variables. As pointed out in [4], for the most general purpose
of system analysis, one usualy begins by defining the first
order system

F(y®), y(®).t) =0, )

where F and y are vector-valued functions. Eg. (1) istermed
as differential-algebraic equations (DAE), since it contains
differential equations as well as a set of algebraic constraints.
For control and systems engineers, it is usually assumed that
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(1) can be rewritten in an explicit form
y(t) = f (y(t).1). @)

An ODE of the form (2) is caled a state-variable (state-
space) description in the systems and control society. Since
then, theorems and design techniques being developed are
largely based on (2). In fact, the state-variable descriptions
have been the predominant tool in systems and control theory.
While the representation (2) will continue to be very important,
there has been an increasing interest in working directly with
D).

If (1) can, in principle, be rewritten as (2) with the same
state variables y, then it will be referred to as a system of im-
plicit ODE’s. In this paper, we are especially interested in
those problems for which this rewriting is impossible or less
desirable. We consider the general nonlinear DAEs which are
linear in the derivative

A(y(®) ¥ + f (y(t),t)=0. ©)

Suppose that iég/ry) has a constant rank. Then, in princi-

ple, locally the system (3) can be put in the semi-explicit form
X(t) = fL(x(t), u(t), 1),
0= f,(x(t), u(t), 1). (4)

A large class of physical systems can be modeled by this
kind of DAEs. The paper of Newcomb et al. [24] gives many
practical examples, including circuit and system design, ro-
botics, neural network, etc., and presents an excellent review
on nonlinear DAEs. Many other applications of DAEs aswell
ashumerical treatments can befoundin[4]. An existence and
unigueness theory for nonlinear DAEs has been well devel-
oped in [26] by exploiting their underlying differential geo-
metric structure. Recently, Venkatasubramanian et al. [28]
have extensively studied the bifurcation phenomena of DAEs.
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They have also thoroughly investigated feasibility regionsin
differential-algebraic systems. The notion of feasibility regions
provides a natural gateway to the stability theory of DAEs.

There are several reasons to consider systems of the form
(4), rather than try to rewrite it as an ODE. Of great impor-
tance, we point out that, when physical problems are simulated,
themodel often takestheform of aDAE. DAEScan be used to
depict a collection of relationships between variables of in-
terest and some of their derivatives, which may be treated as
an algebraic constraint between the state variables. These
relationships may even be generated automatically by a mod-
eling or simulation program. In particular, the variables thus
introduced usually have a physical significance. Changing the
model to (2) may produce less meaningful state variables. If
the original DAE can be solved directly, then it becomes easier
for scientists or engineers to explore the effect of modeling
changes and parameter variations. These advantages enable
researchers to focus their attention on the physical problem of
interest. On the other hand, although the state-space models
are very useful, but the state variables thus introduced often
do not provide a physical meaning [8, 27]. Besides, some
physica phenomena, like impulse, hysteresis which are im-
portant in circuit theory, cannot be treated properly in the
state-space models [18, 29]. Differential-algebraic equations
representation provides a suitable way to handle such prob-
lems. It has been proven in the literature that DAE systems
have higher capability in describing a physical system [17, 24,
29]. Infact, DAE system models appear more convenient and
natural than state-space models in large scale systems, eco-
nomics, networks, power, neural systems and elsewhere [17,
20, 24].

In this paper, we investigate some of the control problems
that are well suitable for the DAE system framework. In par-
ticular, we show that the optimal control problem can be re-
formulated asaHamiltonian DAE. The derived DAE can then
be solved by numerical methods. The numerical method is
mainly based on the backward differential formulas (BDF)
and the Pade series, which can be obtained by using computer
algebra systems (such as MAPLE, Mathematica, etc.). Fur-
thermore, we consider a practical design problem, namely the
trajectory prescribed path control (TPPC) problem. In the
simulation of space vehicles, we often encounter the TPPC
problems. That is, we usually append a set of path constraints
to the equations of motion for describing the shape of the tra-
jectory. Here the optimal guidance law for aircraft dynamics
is derived based on a DAE approach. After establishing the
system of aircraft dynamics, we can derive the optimal guid-
ance law of the system by solving a Hamiltonian DAE.

The rest of the paper is organized as follows: In Section 2,
some of the elementary materials concerning DAE's are in-
vestigated. In Section 3, by using the Lagrange multiplier's
method, it is shown that the optimal control problem can be
rewritten as a Hamiltonian DAE. Simulation results are given
in Section 4. Finally, some concluding remarks are given in
Section 5.

[I.ELEMENTSOF DAES

In this section we summarize some basic definitions and
preliminary results that will be needed through-out this paper.
Most of the treatments are purely algebraic and the definitions
are fairly standard. First, the definitions of solvability and
index for the general nonlinear DAE's (1) will be givenin this
section. Suppose that the DAE (1) consists of a system of m
equations in the (2m + 1)-dimensional variable (y(t), y(t),t).
A function y(t) is said to be a solution of the DAE (1) on a
interval 7if y(t) is continuously differentiable on 7 and satis-
fies (1) for all t € 7. The precise definition is given in the
following.

Definition 1. Let 7 be an open subinterval of R, Q a con-

nected open subinterval of R*™?, and F a differentiable func-

tion from Qto R™ Then DAE (1) is solvable on 7'in Q if

thereisan r-dimensional family of solutions ¢(t, c) defined on

aconnected open set 7 xQ, Q c R" such that:

1. ¢(t, c) isdefined on all of Tfor eachce Q,

2. (t,¢(t,c), é(t,c))e Q for (t,c)e T xQ,

3. If y(t) is any other solution with (t, w(t, ¢), v (t, ¢)) € Q,
then w(t) = ¢(t, c) for some ce Q,

4. The graph of ¢ asafunction of (t, ¢) isan (r + 1) — dimen-
sional manifold.

The above definition meansthat locally thereisan r-dimen-
sional family of solutions. At any timet, € 7, theinitial con-
ditions form an r-dimensional manifold ¢(to, ¢) and r isin-
dependent of t,. The solutions are a continuous function of the
initial conditions on this manifold.

It isknown that the property of index [4] playsakey rolein
the classification and behavior of DAE systems. It also pro-
vides a measurabl e scheme of the singularity of aDAE and the
difficulty for numerically solving a DAE. The definition of
index is described in the following.

Definition 2. The minimum number of timesthat all or part of
DAE (1) must be differentiated with respect to t in order to de-
termine y(t) as a continuous function of y(t) and t, is the
index v of the DAE (1).

The definition of the index given above is usually referred
to as the differentiation index of DAE’s. According to the
definition, an implicit ODE has index zero. A DAE having
index two or greater is referred to as a higher index DAE.

An dternative, but less general, characterization of the in-
dex is the number of iterations of the following (theoretical)
procedure needed to convert the DAE into an ODE:

1. If OF /9y isnonsingular, then stop,

2. Suppose that dF /dy has constant rank and that nonlinear
coordinate changes make (1) semi-explicit. Differentiate
the constraint equation, let F = 0 denote the new DAE, and
returnto 1.
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To motivate the next definition, suppose that we wish to
solve (1) by the implicit Euler method starting at time tp with

constant step-size h. Lett, =ty + nh, yo bethe estimatefor y(t,).

Then the implicit Euler method applied to (1) gives

F (tn, y,, o _hy"-lJ =0, (5)

which will need to be solved by a nonlinear equation solver.
The Jacobian of F in (5) with respect to y, is (%) F,+F, so
that this matrix pencil will be important. For the linear case,
this was the pencil (%)A+ B, where A, B are constant ma-

trices. Another definition of the index is given in the follow-
ing in terms of the matrix pencil.

Definition 3. Thelocal index v of (1) a (t, ¥, §/) istheindex
of the matrix pencil AF,(f, 9, ¥)+F,({, 9, ).

Proposition 4. Supposethat has constant rank. Then v=1if
and only if y=1.

From the above definition and proposition, it can be seen
that the semi-explicit DAE

X =Fy(X, X5, 1)

0=F,(X;, X,,1) (6)

has index one if and only if oF ,/0x; is honsingular.

[11. NUMERICAL SOLUTIONS OF DAES

In this section we examine some of the properties of the
numerical methods for solving DAE’s. We examine the linear
multistep methods (LMM’s) applied to DAE's, especialy the
most popular and hence best understood class of LMM'’s,
namely the backward differentiation formulas (BDF). On the
other hand, we also introduce amethod that iswell suitablefor
using computer algebra systems, namely the Pade approxi-
mation method. First we calculate power series of the given
equations system (by using BDF) and then transform it into
Peade series form, which give an arbitrary order algorithm for
solving differential-algebraic equations numerically.

The first genera technique for the numerical solution of
DAE's, proposed in 1971 by Gear in a well-known and often
cited paper [11], utilized the BDF. This method was initially
defined for systems of differential equations coupled to alge-
braic equations

x = f(x,u,t),

0=9g(x,u,t), @)

where u is avector of the same dimension asg. The algebraic
variables y are treated in the same way as the differential
variables x for BDF, and the method was soon extended to
apply to any fully-implicit DAE system

F(y, y,1)=0. (8)

The simplest first order BDF method is the implicit Euler
method, which consists of replacing the derivative in (8) by a
backward difference

Yo~ Yo
F|——"= vy, t |=0,
RN

where h =t, —t,_;. Theresulting system of nonlinear equations
for y, a each time step is then usually solved by Newton's
method. The k-step (constant step-size) BDF consists of re-
placing y by the derivative of the polynomial which inter-

polates the computed solution k + 1 times t,, t,4, ..., ths
evauated at t,. Thisyields
F[”hy“ , yn,tn}o, ©

where py, =>¥ ay,, and ¢, i =0, 1, ..., k are the coeffi-
cients of the BDF method. The k-step BDF method is stable
for ODE's for k < 7. The relation py, =X\, &y, simply

says that the derivative of y at t, can be represented as a
polynomial of order k. We define another type of power series
intheform

f(t) = fo+ f1t+ f2t2+"'+(fn+ pg+---+ pmem)t”, (10)

where py, po, ..., Pm &€ constants, e;, &, ..., €, are bases of
vector e, mis the size of vector e. Let y be a vector with m
elements, then every element can be represented by the Power
seriesin (10). Therefore we can write

Y=Y+ Y+ t2++et", (11)

where y; is the ith element of y. Substitute (11) into (1), we
can get

fi=(f,+p.g+.+ pi,mgn)tnij +Q(t" ™), (12

wheref; istheithelement of F (Y, y,t) in(1), and Q(t"*Y)isa

polynomial whose degree is no less than t™7**. Now suppose
that (Y,. Y,.t,) isaset of consistent initial conditions for (1),

i.e

F (Yo ¥o:t0) =0.
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Then the solutions of (1) can be assumed to be

y=Y,+ it +et?, (13)
where e is a vector function which is the same size as y, and
Y, Substitute (13) into (1) and neglect higher order term, we

have the linear equation of ein the form

Ae=B, (19
where A and B are constant matrices. Solving Eq. (14), the
coefficient of t? in (13) can be determined. Repeating above
procedure for higher order terms, we can get the arbitrary
order power series of the solutions for (1).

From (11) and (14), we can determine the linear equation in
(14) asfollows:

Aj=Pij.

Solve this linear equation, we have g (i = 1, ..., m). Sub-
stituting g into (11), we then havey; (i = 1, ..., m) which are
polynomials of degree n. Repeating this procedure, we can
get the arbitrary order Power series solution of differential-
algebraic equationsin (1). The next step would be to put the
power series into Pade series form and then obtain numerical
solution of it.

Suppose that we are given a power series Y~ ¢ X', rep-
resenting afunction f (x), so that

f(9=26x, (16)

wherec =0, 1, 2, ... isagiven set of coefficients. This ex-
pansion is the fundamental starting point of any analysisusing
Pade approximants. A Pade approximant is arational fraction

L
[L/m]= D aXrtaX (17)

b, + X+ + by, X"

which has a MacLaurin expansion that is agreed with (16) as
high (in order) as possible. For definiteness, we may take by =
1. This choice turns out to be an essential part of the precise
definition and (17) is our conventional notation with this
choice for by. So there are L + 1 independent numerator co-
efficients and M independent denominator coefficients, mak-
ing L + M + 1 unknown coefficients in all. This number
suggests that normally the [L/M] ought to fit the power series
(16) through the orders 1, x, X%, ..., "™ in the notation of
formal power series,

iC.Xi _ 3, +ax+--ax

i=0 by, + b+ + by, X" +Q(x).

(18)

Upon cross-multiplying, the above equation can be re-ar-
ranged as

(b + X+ + by, XM )(c, +Cx+-+7)

=a, +aX+--+a x" +Q(x"M™1), (19)
Equating the coefficients of x-**, x*2,..., x**"Myields
By CLomaa T Oy 4o+ +BC L =0,
bM Cmst bM—ch—M Tt bOCL+2 =0,
bM C+ bM—lCL+l +eeet bOCL+M =0. (20)

If j <0, we define ¢; = O for consistency. Since by = 1, Eq.
(20) become a set of M linear equations for M unknown de-
nominator coefficients:

Comsr Comsz Clomes C bM Cla
CL—M +2 CL—M +3 CL—M +4 CL+1 bM -1 CL+2
Ciom+s Ciom+sa  Cimss Clio bM 2 |=7| Cis |»
L CL CL+:I. CL+2 CL+M +1 L bl _ _CL+M B
(21)

from which the b;’'s may be found. The numerator coefficients
&, &, ..., a follow immediately from (19) by equating the
coefficients 1, x, X, ..., X-:

8 = Co»
a =¢ +he,
a, =G, +BG +0,G,,

min(L,M)

a =¢C + be, . (22)

i=1

Thus, Egs. (21) and (22) normally determine the Pade nu-
merator and denominator and called the Pade equations. Sum-
marizing the previous discussion, the thus constructed [L/M]

Pade approximant is able to agree with » " ¢ X' through

order X+,

Before the end of this section, we shall summarize the pro-
cedure for solving DAESs by using the proposed a gorithm.

Algorithm Pade Series Solutions for DAES
Input: The DAEsSF (y(t), y(t),t)=0and set an error toler-
ance v.
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Sep 1: Caculate a power series solution for y(t) by using Egs.
(11)-(15). Denote the solution by f(X).

Calculate a Pade series solution for f(x). Utilize Eq.
(20)-(22) to compute the coefficients for the Pade se-
ries.

Put the Pade series solution back into Eq. (1) to seeif
the error tolerance v is fulfilled. If yes, then output
f(x); if not, then go back to Sep 1 and calculate a
solution with higher power.

Sep 2:

Sep 3.

End.

IV.HAMILTONIAN DAES

In this section, we derive a class of DAE's by the Hamil-
ton’s principle. We shall call such a system the Hamiltonian
DAE. The DAE structure alows amodel to be obtained from
energy functions, constraint equations, and a virtual work
expression in a systematic manner. Hamilton's principle has
its origin from the classical mechanics. It can, however, also
arise naturally when dealing with the constrained optimization
problem. Here we take the optimization viewpoint.

Consider a nonlinear time-varying dynamical system

x(t) = f(x(),ut).t)

together with the associated performance index (cost function)

It,) = f L(x(t), u(t),t)dt, (24)

Where x(t) € R" is the state, u(t) € R™ is the control input,
L(x(t), u(t), t) is the Lagrange function (or Lagrangian). The
Lagrangian L can be viewed as a weighting on the state vari-
ables and the control input in order to achieve a prescribed
performance requirement. The main purpose of the control is
to find an optimal feedback law u’[to, T] such that the per-
formance index (24) is minimized. Usually, in the classical
mechanics, the Lagrangian is a function of the displacement
variables (x, u) as well as the flows (x, u) . However, in the
control systems community, the Lagrangian is merely a func-
tion of the displacement. The Hamiltonian and the Lagrangian
can be related by the L egendre transformation:

H(x(1),u(t),t) = L(x (1), u(t),t) + p" f (x(t),u(t).1), (25)

where p is the canonical momentum conjugated to x. Using
the above identity, Eq. (24) can be rewritten as:

J'= f[H (x(), u(t),t) - P’ E)X(V) ]dt. (26)

By using the Leibniz's rule, the increment in J' can be ex-
pressed in the increment of x, p, u, and t asfollows:

dJ'= f[HIa‘u— prox+(H,—x)spldt.  (27)

To eliminate the variation in x, integrate by partsto get:
—IT p'oxdt=—p'ox| +p'ox| + JT p'oxdt. (28)
t T to t
Substituting (28) into (27) yields:
dJ'=—p'dx| +p'dx]|
T
+jt [(HX + p)T SX + H55u+(Hp—>'<)T5p]dt. (29)

According to the Lagrange theory, the constrained mini-
mum of Jisattained at the unconstrained minimum of J'. This
is achieved when dJ' = O for all independent incrementsin its
arguments. Setting to zero the coefficients of the independent
increments ox, du, and Jp yields necessary conditions for a
minimum J as shown in the following.

_OH . 9H _afT AL

=21 _p=ZLL _—, 30

X ap oxX  oX p+ax (30)
oH oL of"

O=—=— — . 31

Ju au+ Ju P (3D

The first two equations are the canonical Hamilton equa-
tions. The third equation can be viewed as an agebraic con-
straint. Therefore we shall call (30)-(31) aHamiltonian DAE.
The third equation is usualy caled the stationarity condition
in the optimal control theory. The actual value of p(t) is by no
means important, but it must evidently be determined as an
intermediate step in finding the optimal control u’(t), which
depends on p(t) through the stationarity condition.

An important point isworth noting. The time derivative of
the Hamiltonian is

. OH oHT . oHT
=—

H=" X+——Uu+p'f
ot ox au
OH oH™ . (oH .jT
=—H u+|—+p| f.
ot au ox

If u(t) isan optimal control, then

H=2H,
ot

Now, in the time-invariant case, f and L are not explicit
function of t, and so neither isH. Inthissituation

H =0.
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Hence, for time-invariant systems and cost functions, the
Hamiltonian is a constant on the optimal trajectory.

V.NUMERICAL EXAMPLE

In this section, we first examine a classical trgjectory pre-
scribed path control (TPPC) problem which has been thor-
oughly studied in [3]. Then we will find an optimal guidance
law for the TPPC problem by solving a Hamiltonian DAE.
The two results are then compared in the end of the section.

The TPPC problems are often encountered in the simulation
of spacevehicle. Inthisproblem, avehicleisusually modeled
to fly in space when its trgjectory isimposed with constraints.
That is, a set of path constraints are usually appended to the
equations of motion for describing the shape of the trgjectory.
To model the system dynamics, we need a set of state (dif-
ferential) equations

Xx(t) = £ (x(),u(t),t), (32
that described the classical equations of motion together with a
set of algebraic equations
0=g(x(t),u(t).t), (33)
that corresponds to the path constraints. In general, the x
variables are formed as state variables, while the u variables
are treated as the control (algebraic) variables. The state
variables describe the position, vel ocity, and possibly the mass
of thevehicle. The control variables aretypically described as
angle of attack (a) and bank angle (), which effectively de-
termine the magnitude and direction of the aerodynamic forces
acting on the vehicle. InaTPPC problem the path constraints
often are functions only of the state variables. In this paper,
the TPPC problems of interest can be written as

x(t) = f(x(),u(®).1), (34)

0=g(x(t),1), (35
where the matrix product (6g/ox)(cf/ou) isnonsingular for all t
of interest. Thisconditionismerely used to guarantee that the
TPPC problemis solvable. Seeaso[3].

The complete nonlinear kinematics of aircraft is considered
in the TPPC problem. The state variables can be expressed in
an earth centered relative coordinate system (see Fig. 1). In
relative coordinate system, a spherical representation of the
state variables can be utilized. Hereweillustrate the represen-
tation of the state variables are atitude h, geocentric latitude A4,
longitude y, magnitude of the relative velocity vector Vg,
relative azimuth A, and relative fight path angle y

The control variables for TPPC problems are angle of at-
tack and bank angle measured in a body coordinate system.
The angle of attack is measured from the relative velocity

North pole A Vr
Zr

Greenwich
meridian N

\

Equatorial
plane

Fig. 1. Satevariablesin relative coordinate.

Body Reference Point

A

Z,

Fig. 2. Rotate about Yo through « in body coor dinate system.

vector of the vehicle to the body Xg axis, and corresponds to
‘pitch’ about the vehicle's latitudinal axis (namely the Yo axis)
asshownin Fig. 2.

The bank angle is measured from the relative velocity
y-axisto the body Yo axis, and correspondsto a‘roll’ about the
vehicle's longitudinal axis (namely the Xg axis) as shown in
Fig. 3.

For most trajectory application problems, position and ve-
locity of the vehicle (namely the rectangular three-component
vectors I and V) are often expressed as the differential vari-
ables. The equations of aircraft dynamical system can be
written as



82 Journal of Marine Science and Technology, Vol. 19, No. 1 (2011)

Body Reference Point

Fig. 3. Rotate about Xo through #in Body Coordinate System.

with T (t,), V(t,) and t, given, and

g(r) = acceleration vector due to gravity,
m= mass of the vehicle,

= aerodynamic force vector,

= propulsive force vector.

In this paper, we limit our discussion to reentry vehicles
with no propulsive forces so that F.(F,&,/)=0, and sim-
plify the simulation to model only aspherical geopotential and
spherical earth. When state variables are expressed in relative
coordinates, the differential equations of above can be trans-
lated to the following six equations of motion:

h=V,xsin(y),

_ Vgxcos(y)xsin(A)
~ rxcos(A)

¢
.V
A= TRX cos(y) x cos(A),

Vq :—%— gxsin(y) — Q2 xr xcos(A)

x(sin(A) cos(A) cos(y) — cos(A)sin(y)),

5 Loos(B) | cos(y) (V_ _gj

mx Vg Vi r

+2Q_ cos(A)sin(A)

N rQZ cos(A)

R

+cos(A) cos(y)),

x (sin(4)cos(A)sin(y)

(36)

A:Mcos(y) +V—Rcos(;/)sin(A) tan(A)
mv, r

R

—2Q¢ (cos(4) cos(A) tan(y) —sin(4))

. rQZ cos(A)sin(A)sin(A)
Vi cos(y)

where

a, = theearth radius,
r=H+a,
M1 = gravitational constant,
g=u/r?, thegravity force,
Q; = earth angular rotation rate,
m=the mass of the vehicle,
S= the vehicle cross-sectional reference area,
p(h) = the atmospheric density,

C, (o) = the aerodynamic lift coefficient,
C, () = the aerodynamic drag coefficient,

L= % pC, SV, the aerodynamic lift force,

D= % pC,SVZ, the aerodynamic drag force.

It'sworth noting that the equati ons of motion are undefined
if y=90° or A =90°. The equation-prescribed path is usualy
written as functions of the relative state variables. When the
state (differential) and algebraic equations are both expressed
in relative coordinates, it will be easy to determine the index of
the resulting DAE system. The index of the resulting DAE
system in relative coordinates can be found by a reduction
technique based on repeated differentiations of the algebraic
equations. This procedure can reduce the index of the system
to one. Here, the vehicle is solved by the 5-step backward
differentia formulas (BDF). First, let us consider a simple
path constraint so that the vehicleis constrained to fly along a
prescribed azimuth and fight path angle trajectory. Itisgiven
by the state variable constraints as follows:

0= y+1+9x(t/300)?,

0= A—45-90x (t/300)°. (37

The above path constraints are also discussed in [4]. The
DAE system (36)-(37) hasindex two. We haveto differentiate
the algebraic Eq. (37) once and substitutefor A’ and y’ from the
differential Eq. (36). Then the resulting index one DAE sys-
tem related to the original system can be derived in the fol-
lowing,
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h=V,xsin(y),

. Vzcos(y)sin(A)
"~ rcos(A)

z:%coqy)qu),

Ve =—2 - gsin(7)
m
-1 Q2 cos(A) x
(sin(4) cos(A) cos(7) — cos(A) Sin(»)),

. Lcos() , cos(y)(Va _
VIRV (T gJ

+2Q cos(A)sin(A)

. rQZ cos(A) N
VR
(sin(4) cos(A)sin(y) + cos(4) cos(y)),

__LSnB) Ve gng
A= mVRcos(7)+ . cos(y)sin(A) tan(A)

—2Q_ (cos(y) cos( A) tan(A) —sin(4))

. rQZ cos(4)sin(A)sin(A)
Vk cos(y)

2
_t +Lcos(ﬁ>+cos<y)[V_R _gj
5000 mVg \A r

+2Q_ cos(A)sin(A)

2
N rQg cos(A) 9
VR

(sin(4) cos(A)sin(y) + cos(4) cos(y)),
t . _Lsn(g)

500 mV,cos(y)

+Vr—Rcos(7/)sin(A) tan(A)

—2Q_ (cos(A) cos( A) tan(y) —sin(4))

N rQZ cos(4)sin(A)sin(A)
Vs cos(y) .

Consistent initial valuesfor the DAE system are determined
by selecting the initia differential and control variables to
satisfy the two algebraic equations in the related index one

system (38). Numerical results are obtained for the following
set of initia values:

h =150000 ft.,
§=0,
A=0°,

V, =12000 ft./sec,
y=-1,
A=45°,
o= 2.6729°,

S =-0.0522°,

For simplicity, we consider the problem in a model of
spherical gravitational earth. So we can use the relative state
variablesin the differential equations. Therelated coefficients
of the vehiclein this experiment are given asfollows:

m = 2.8905 tons,
S=550ft.?
The atmosphere is modeled with simple relation, p =

0.002378exp(—h/23800). The lift and drag coefficients are
chosen as functions of angles of attack,

C, =(0.0))e,

C, =0.04+0.1C?.

The rest of the constraints needed in (36) are shown as fol-
lows:

a, = 20902900 ft.,
1 =1.4077x10" ft2/<,
Q. =7.2921x10°° rad/s.

In our simulation, atruth model is generated by solving the
index one problem with atight local relative tolerance (EPS =
10®) and absolute tolerance (EPS = 107). The state variables
of vehicle are plotted as functions of timein Fig. 4 and Fig. 5.
Now we shall impose an optimal criterion on the TPPC prob-
lem so that the problem can be reformulated as a Hamiltonian
DAE. Consider the following performance index:

It,) = f L(x(t), u(t),t)ct.

The Lagrange function L considered here has the following
quadratic form:

Lzé(xTQx+uT Ru),
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where the matrix Q isa 6 x 6 identity matrix and Risa2 x 2
identity matrix, x is the state variable, and u is the control
variable. To solve the optimal control problem isthen equiva-
lent to solving the following Hamiltonian DAE:

. oH
=—, 38
X o (38)

. oH
-p=——, 39
p="= (39)

oH
0=—. 40
> (40)

where H isthe Hamiltonian function for the aircraft dynamics,
and p is the generalized momentum vector. As mentioned in
Section 3, the Hamiltonian function H isequal to L + p'f. Here
f isthe equations of the vehicular motion. In our experiment,
x=0dH /dp of the Hamiltonian DAE system is equal to the
differential equations of the TPPC problem, namely the equa-
tions of motion in relative coordinates. Here we define six
variables as generalized momentum to yield an appropriate
stationary point with choosing state variables x and control
variables u. The control variables u are also the angle of at-
tack a and bank angle . Then p=dJH /dx of the Hamilto-
nian DAE system is given as follows:

__Vrcos(A)sin(A) p,
~ cos(A)(h+20902900)2

+ Vg cos(y) cos(A) p,
(h+20902900)*

—1.4536x107° x (1.189x10 8 or® + 4.756x10°°)

XV p,e
R P€
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Fig. 5. Satevariablesand control variables.

_ 2.8153x10°p,
sin(y)(h+20902900)°

+5.3175x10°° cos(A) p,
X(sin(4) cos(A) cos(y) — cos(4)sin(7))

+1.7283x10 20V, cos( B) pye =

2 6
o S(;/)p5[ Vi . 28153x10" J

(h+20902900)> V. (h+20902900)*
R

+5.3175x10-9%

%(sin(A) cos(A)sin(y) + cos(A) cos(y))

+1.7283x10° 0 DVeSNB) o
cos(y) Ps

+ Ve C0S(7) sSin(A) tan(4) pe
(h+20902900)?

15.3175x10-° XA SNASN(A)Ps
Vi cos(y)

i

p2=—§,

__Vcog(y)sin(A)sin(4) p,
*" cos?(A)(h+20902900)

~(5.3175x10°h+1.1115)sin(4) p,

x(sin(4) cos(A) cos(y) - cos(4)sin(y))
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The stationarity conditions are shown below:
0=-8.2269x10° V2 p,e =*
+4.1134x10°°V,, cos( ) p.e **

+4.1134x10°° VeSO Ps -
cos(y)

+a,

0=—-4.1134x10"° oV, sin(B) p.e **

+4.1134x10°° Y2 XD Po -
cos(y)

+p.

Thethree parts of the Hamiltonian DAEs (36) (41) (42) can

be put into the following compact form:

Vg versus t

(42)

Fig. 7. Satevariables and generalized momentum.

X

o o —
o — O

o O O

(43)

\<.
Il

where y is equal to | p|. Numerical results are obtained for

(41) u

the following set of initial values:

h = 150070 ft.,
A=12°
y=-1°

p. = 2000,

ps =-10,

ps = 2000,
a=2.6725°,

&=1.1°,

Vg = 15000 ft./sec,
A=45°,

p,=10°

p4 = 200,

ps = 8.9,

S =-0.0522°.

The numerical results are shown in Figs. 6-9.

For the above two cases, we make the following observa-
tion. According to the above numerical results, we can see
that the control variable a in the optimal control problem
decreases along with time in compared with the simple TPPC

problem. Although f increase dlightly, it still doesn’t affect the

value of Lagrange function L, so as to attain the minimum.

From those figures, it can be seen that the values of h, Vg,

ydecrease severely and the values of 1, &, and A increase slowly
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in order to meet the performance requirement, namely the
state variables must have the minimum energies among all
possible trgjectories. For the two cases, it is calculated, in
the same time interval, that the Lagrangian L is equa to
2.906314888887725 x 10™ for the optimal control problem,

and equal to 3.950072046453987 x 10™ for the TPPC problem.

In other words, the TPPC problem with optimal control design
can not only achieve the purpose of flight control, but also
satisfy the minimum energy requirement.

V1. CONCLUSIONS

We have proposed a potential unified framework for solv-
ing optimal control problem in the present paper. The optimal
control problem is reformulated as a Hamiltonian DAE and
then is solved by the BDF method. To serve as an illustrative
example, we also derive an optimal control law for the TPPC
problem. Currently, we just limited the fight path angle y and
the azimuth A so that y was gradually decreasing from —1° and
A increasing from 45°. It is possible to alter the algebraic
constraint to amore complex egquation or arealistic fight route.
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