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ABSTRACT 

This study is concerned with the selection of the width of a 
caisson.  At present, the width is determined based on the 
consideration that, struck by a prescribed design impulsive 
breaking wave force, a caisson must remain stable against 
sliding and rocking.  In this study, the problem is formulated in 
a different way.  The equations of equilibrium of a caisson, 
together with the criteria for the caisson to remain at rest, are 
used to derive expressions for the selection of the width.  The 
criteria of a rest mode are presented graphically using the 
applied force as the abscissa and the coefficient of friction 
between the caisson and the base as the ordinate.  The region 
corresponding to a rest mode is indicated.  The present ap-
proach gives results that are equivalent to those of the existing 
approach and, by treating the coefficient of friction and the 
applied force as random, the safety of a caisson is given in 
probability terms. 

I. INTRODUCTION 

At present, the width of a caisson is selected based on the 
consideration that, struck by a prescribed impulsive breaking 
wave force, a caisson remains stable against sliding and 
rocking [3].  Thus, the resultant force representing the cais-
son’s resistance against sliding is made larger than that which 
causes it to slide, and the resultant moment that counters the 
rocking tendency of the caisson is made larger than that which 
causes it to rock.  To account for uncertainties, safety factors 
are applied to the two conditions.  

In the present study, the equations of equilibrium of a 
caisson, together with the criteria for a rest mode are used to 
derive the expressions of the conditions for a rest mode.  These 
expressions are presented in graphical form with the non- 
dimensionalized breaking wave force as the abscissa and the 
coefficient of friction of the limiting Coulomb friction force 
between the caisson and the base as the ordinate.  The region 

corresponding to a rest mode is identified.  The graph shows at 
a glance whether a caisson is in a rest mode  or not.  The two 
expressions of the width of the caisson, each for an appropriate  
range of values of the applied impulsive force, are derived.  It 
is shown that the two expressions are equivalent to the two 
conditions used in the existing method [3].  Two examples are 
given to show how the appropriate width of a caisson is chosen 
and what the corresponding safety factors against sliding and 
rocking are.  Considering the applied force and the coefficient 
of friction as random, the probability that a caisson remains at 
rest is determined.  

The model of the caisson considered in this study is the 
same as that in Example 4.1 in section 4.2 in [3] and the model 
of wave pressures is taken from section 4.2 of the same ref-
erence.  For the sake of easy reference, these models are re-
peated here. 

II. MODELS AND CONDITIONS OF REST MODE 

1. Model of Caisson 

A caisson is modeled as a rigid body, rectangular in eleva-
tion and its footprint is of unit length as shown in Fig. 1.  The 
width and height of the caisson are respectively B and H.  The 
design water level (including tide level) is shown.  The part of 
the caisson above the design water level is made of concrete 
whose unit weight is γC = 2.4 t/m3.  The part of the caisson 
below the design water level consists of concrete compart-
ments filled with sand.  It is assumed (arbitrarily) that half of 
that part of the caisson is concrete and half of it is sand whose 
unit weight is γ' = 1.1 t/m3.  The coefficient of friction is µ = 0.6.  
The values of h, d, h', hC, H and D used in the examples are 
given in the parentheses in the figure. 

2. Model of Wave Force 

The distributions of wave pressures are shown in Fig. 2.  To 
use the formulas and graphs given in [3], the quantities to be 
specified are: HO', the deep water wave height, T1/3, the sig-
nificant wave period and β = 15°, the angle between the di-
rection of wave approach and the normal of the vertical wall, 
and i = 1/100, the sea bottom slope (see Fig. 1). 

3. Equilibrium Equations and Criteria for a Rrest Mode 

Referring to Fig. 3, the free-body diagram of a caisson, the 
resultant of the wave pressures on the vertical wall of the 
caisson is the force P and the resultant of the uplift pressures is  
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Fig. 1.  Caisson. 
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Fig. 2.  Wave pressures. 

 
 

U.  A caisson, initially at rest, under the action of P and U, may 
be initiated into many modes of motion.  It may remain at rest, 
slide, rock, and slide and rock simultaneously.   In Fig. 3, C is 
the center of mass of the caisson, W is its weight in water.  The 
vertical reaction force is fy whose line of action is at a distance 
ξ from C and fx is the horizontal reaction force.  The force P, 
for convenience, is expressed in terms of W as P = Wk where  
k is a dimensionless quantity.  The uplift force U is expressed 
in terms of P as U = Pq = Wkq where q is a dimensionless 
quantity. 

In the short duration ∆t of action of the impulsive forces, 
the equations of equilibrium are: 

 xf P Wk= − = −  (1) 

 (1 )yf W U W qk= − = −  (2) 

and, by taking moment of the forces about C, 

 ( ) / 6 0x y P Cf H f P H H UBξ+ − − − =  (3) 

where HP is the distance between the line of action of the force 
P and the caisson’s base and HC is the distance between the 
center of mass C and the base as shown in Fig. 3. 

From (1), (2) and (3), we have 

 
( / 6) [( / ) ( / 6)]

1
P PPH BU Bk H B q

W U qk
ξ + += − = −

− −
 (4) 
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Fig. 3.  Free body diagram of caisson. 

 
 
For the body to be in contact with the base, fy must not be 

less than zero.  From (2), this requires 

 
1

k
q

≤  (5) 

For the caisson to be at rest, xf  must not exceed the lim- 

iting Coulomb friction force µfy.  That is, 

 0 ( )
1

x

y

f k
k

f qk
µ µ≥ = ≡

−
 (6) 

Finally, fy must remain within the base OO' of the caisson.   
That is, / 2Bξ ≤ .  From (4), this condition is 

 
1

(2 / ) (4 /3) A
P

k k
H B q

≤ ≡
+

 (7) 

It may be verified that kA ≤ 1/q.  The conditions (6) and (7) 
constitute the criteria for the caisson to be at rest.  These con-
ditions are presented graphically in Fig. 4 using the parameters 
k and µ as the horizontal and vertical axes respectively.  The 
curve OA, (or µ0) and the line AH, (or k = kA) k intersect at A, 
whose coordinates are k = kA and 

 
1

( )
1 (2 / ) ( / 3)

A
A A

A P

k
k

qk H B q
µ µ= = ≡ >

− +
 (8) 

The shaded region in Fig. 4 represents the rest mode.  That 
is, a caisson is at rest provided the values of k (the normalized 
force) and µ (the coefficient of friction) correspond to a point 
that lies in the shaded area in Fig. 4. 

III. DETERMINATION OF CAISSON WIDTH  

Noting that k = P/W, q = U/P, U = puB/2 where pu is the 
pressure of uplift force at the toe of the caisson (see Fig. 3),  
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Fig. 4.  Region of rest mode in k – µ plane. 
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Fig. 5.  Region of B that satisfies (9). 

 
 

and by expressing W in terms of the effective unit weight  
γe(W = HBγe) of the caisson in water, the condition (6) requires 

 
[ ( / 2)]e u

P
B

H pµ γ
≥

−
 (9) 

A sketch of B as a function of P is given in Fig. 5.  The con- 
dition (6) is satisfied so long as B assumes a value in the shaded 
region in Fig. 5. 

In the same way, the condition k ≤ kA in (7) requires 

 
2

[ (2 / 3)]
P

e u

PH
B

H pγ
≥

−
 (10) 

The quantity B as a function of P is sketched in Fig. 6.  The 
condition (7) is satisfied so long as B assumes a value in the 
shaded region in Fig. 6. 

The line in (9) and the curve in (10) intersect at  

 
2 22 [ ( / 2)]

[ (2 /3)]
P e u

C
e u

H H p
P P

H p

µ γ
γ

−≡ =
−

 (11) 

That is, for P ≤ PC, the width of a caisson is given by (10) 
and for P ≥ PC, it is given by (9).  Combining Figs. 5 and 6, the 
width of a caisson that satisfies (6) and (7) is given in Fig. 7. 

B

O P

Eq. (10)

 
Fig. 6.  Region of B that satisfies (10). 
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Fig. 7.  Region of B that satisfies both (9) and (10). 

 

 

The condition (6) may be re-written as 
P

W U
µ ≥

−
, or 

 
( )

1
W U

P

µ − ≥  (12) 

Eq. (12) states that the limiting frictional force must be larger 
than the force P.  This is the same as Eq. (4.16) in Goda (Goda, 
1985) which ensures that the caisson remains stable against 
sliding for the fact that in Goda, 1985, a safety factor against 
sliding is applied. 

Similarly, the condition (7) may be written as PHP ≤ 
(WB/2) – (2UB/3) or 

 1U

P

Wt M

M

− ≥  (13) 

where t = B/2 and MU = 2UB/3.  Here, MU is the moment of  
U about the heel of the caisson and Mp is the moment of P  
about the base.  Eq. (13) is the same as Eq. (4.17) in [3] except 
Eq. (4.17) in [3] has a safety factor against rocking; satisfaction 
of (13) ensures safety against rocking. 

The following are two examples, each consisting of two 
cases, given to show how the width of a caisson may be 
chosen and the interpretations of the caisson’s safety in 
terms of safety factors and in the framework of the present 
method. 
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Fig. 8. Diagram showing rest region and the point with coordinates 0.45 

and 0.6 in k – µ plane for Example 1, B = 15.83 m, SF against 
sliding = 1, SF against overturning = 2.27. 

 
 

1. Example 1 

Consider the caisson in Fig. 1.  Using the data given in [3] 
Example 4.1 except the value of B, with HO' = 6.3 m, T1/3 = 
11.4 s, β = 15°, and tide level 0.6 m, we have, P = 94.5 t/m,  
MP = 487.4 t – m/m, HP = 5.158 m, pU = 6.65 t/m, U = 3.325 B, 
MU = 6.65 B2/3, γe = 1.264, and PC = 42.43 t/m (< P = 94.5 t/m).  
Thus, from (9), B ≥ 15.834 m.  If the width of the caisson is 
chosen as B = 15.374 m, then W = 210.15 t/m, U = 52.64 t/m, 
MU = 555.75 t – m/m, k = P/W = 0.45, q = U/P = 0.557, kA = 
0.719 (> k = 0.45), µO(k) = 0.6 and µA = 1.2 (> µO(k) = 0.6). 

The point with k = 0.45 and µO(k) = 0.6 is marked as a heavy 
dot in Fig. 8.  It is noted that the point lies on the curve µO(k) 
indicating that the caisson with width B = 15.834 m has no 
safety margin for the caisson to be at rest.  The safety factor 
against sliding is equal to unity according to (12) or equation 
(14.6) in [3].  The safety factor against rocking is 2.27, ac-
cording to Eq. (4.17) in the same reference.  That is, the cais- 
son is on the verge of sliding but it has ample margin against 
rocking. 

Using Eq. (4.16) in [3], and setting the safety factor against 
sliding equal to 2.1 , we have B = 19.0 m,W = 252.17 t/m, U = 
63.18 t/m, MU = 880.22 t – m/m, q = 0.6685, k = 0.375, kA = 0.7 
(> 0.375), µO(k) = 0.5 and µA = 1.3.  The point (0.375, 0.6) in 
the k – µ plane now lies away from the boundary curve µO(k) 
within the region corresponding to the rest mode as shown in 
Fig. 9.  The safety factor against rocking in this case is 3.27. 

2. Example 2 

In this example, the configuration of the caisson is the same 
as that in Example 1 except the width B.  The applied force is 
chosen to be much smaller than that in Example 1.  Thus, with 
HO' = 3 m, T1/3 = 7 s, β = 15°, and tide level 0.6 m we have, in 
this case, P = 35.8 t/m, MP = 185.4 t – m/m, HP = 5.183 m, pU = 
2.64 t/m, U = 1.32 B, MU = 2.46B2/3, γe = 1.264, and PC = 46.7 
t/m (> P = 35.8 t/m), Thus, from (10), B ≥ 5.677 m.  With B = 
5.677 m, we have, W = 75.35 t/m, U = 7.5 t/m, MU = 28.4  
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Fig. 9. Diagram showing rest region and the point with coordinates 0.375 

and 0.6 in k – µ plane for Example 1, B = 19 m, SF against sliding = 
1.2, SF against overturning = 3.27. 
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Fig. 10. Diagram showing rest region and the point with coordinates 

0.475 and 0.6 in k – µ plane for Example 2, B = 5.677 m, SF 
against sliding = 1.14, SF against overturning = 1. 

 
 

t – m/m, k = P/W = 0.475, q = U/P = 0.209, kA = 0.475 (= k), 
µO(k) = 0.527 and µA = 0.527 (= µO(k)).  The point with k = 
0.475 and µ = 0.6 is shown in Fig. 10.  It is seen that the point 
lies on the boundary AH of a rest mode.  The safety factor 
against rocking is equal to unity.  The safety factor against 
sliding is 1.14 (< 1.2). 

By setting the safety factor against rocking equal to 1.2, we 
have, according to Eq (4.17) in [3], B = 6.217 m, W = 82.51 t/m, 
U = 8.21 t/m, MU = 34.0 t – m/m, q = 0.229, k = 0.434, kA = 
0.508 (> k = 0.434), µO(k) = 0.487 and µA = 0.575.  The point 
(0.434, 0.6) in the k – µ plane lies within the region of rest 
mode as shown in Fig. 11.  The safety factor against sliding is 
1.245 (> 1.2). 

IV. TREATING K AND µ AS RANDOM 
VARIABLES 

Since the values of the forcing function and the coefficient 
of friction can not be stated with certainty, they are treated as  
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Fig. 11. Diagram showing rest region and the point with coordinates 

0.434 and 0.6 in k – µ plane for Example 2, B = 6.217 m, SF 
against sliding = 1.245, SF against overturning = 1.2. 

 
 

random variables so that the safety of a caisson against a 
breaking wave force may be assessed in terms of probability.  

The random variables k and µ are naturally statistically 
independent.  In this study, k is considered a Gumbel random 
variable and µ is a Lognormal random variable.  That is, the 
probability density function of k is [2] 

 ( ) exp[ ( ) exp( ( ))]k k k k k kf x x u x uα α α= − − − − − , 

–∞ < x < ∞ (14) 

The parameters αk and uk are: αk = π/6σk and uk = E[k] – 
(0.577)/αk.  Here and hereafter, E[ ] is the expected value of the 
quantity enclosed in the brackets and σ is the standard devia-
tion of the random variable in the subscript. 

As a lognormal random variable, the probability density 
function of µ is [2]  

 2ln1 1
( ) exp[ ( ) ]

22

y
f y

y
µ

µ
µµ

λ
ςπ ς

−
= −   0 < y < ∞ (15) 

The parameters ςµ and λµ are: λµ = E[µ] – 2
µς /2, 2

µς  = ln(1 + 2kµ )  

and kµ = σµ/E[µ].  Probability functions other than Gumbel and 
Lognormal may be used.  (see [5]) 

Both fk()and fµ() involve two parameters which are ex-
pressible in terms of expected value and standard deviation.  
The event that a caisson, initially at rest, will remain at rest 
under the action of a breaking wave force corresponds to the 
event that the force k and the coefficient of friction µ lie within 
the boundaries defining the rest mode in the k – µ plane as 
shown in Fig. 3.  Thus, the probability of a rest mode, denoted 
by Pr, is given by 

 
0 ( )

( ) ( )
Ak

r k

y x

P f x dx f y dyµ
µ

∞

−∞ =

 
 =
  

∫ ∫  (16) 

where µ0( ) is given by (6) and kA by (7).  It should be men-
tioned here that for a given caisson, kA is a function of the 
forcing function P and is thus a random quantity.  That is, kA in 
(7) is seen to be dependent on the quantities HP and q = U/P = 
(B * pU)/(2 * P) which are random.  For simplicity, the mean 
values of these quantities are used.  The integration with re-
spect to y is  

 
0

0

( )

ln( ( )1
( ) [( ) / 2]

2
y x

x
f y dy µ

µ
µµ

µ λ
ς

∞

=

  −
  =
  
∫  (17) 

A function of x, where erfc() is the complementary error 
function [1].  The remaining integration in (16) must be car-
ried out numerically.  

If k is deterministic, say k–, then the probability density 
function of k is a Dirac delta function fk(x) = δ(x – k–) and the 
probability of a rest mode is, from (16),  

 
ln1

[( ) / 2]
2r

k
P erfc µ

µ

λ
ς
− −

=  (18) 

where erfc() is the complementary error function [1]. 
If µ is deterministic and takes on a value µ–, then the 

probability density function of µ is fµ(y) = δ(y – µ–) and the 
probability density function of a rest mode is, from (16), 

 ( ) exp[ exp( ( ))]r k A k A AP F k k uα= = − − −  (19) 

provided µ– = µA in (8).  Here, Fk() is the probability distribu-
tion function of k and kA is given in (7).  If µ– < µA then kA in (19) 
should be replaced by *k−  obtained from (6) µ0( *k− ) = µ– = 

*k− /(1 – *k− q) as 

 *

1
k

q

µ
µ

−
−

−

=
+

 (20) 

In the following, the Pr values are calculated for the cais-
sons in Examples 1 and 2 for the cases: (1) both k and µ are 
random, (2) k is deterministic and µ is random and (3) k is 
random and µ is deterministic.  These cases are referred to as 
the G/Ln case, the δ/Ln case and the G/δ case respectively. 

The expected values and standard deviation of µ are re-
spectively chosen arbitrarily as E[µ] = 0.6 and σµ = 0.1; those 
of k are E[k] = E[P]/W and σk = σP/W, where, for Example 1, 
E[P] = 94.5 t/m2 and σP = 0.1E[P] = 9.45 t/m2.  For Example 2, 
E[P] = 35.8 t/m2 and σP = 0.1E[P] = 3.58 t/m2.  Other relevant 
quantities may be found in sections 6 and 7 and Figs. 8, 9, 10 
and 11.  Specifically, for Example 1, HP = 5.158 m, pU/P = 0.07 
and, for case 1 (B = 15.83 m), q = 0.557 and for case 2 (B = 19 
m), q = 0.6685.  For Example 2, HP = 5.183 m, pU/P = 0.074 and, 
for case 1 (B = 5.667 m), q = 0.209 and for case 2, q = 0.229. 

The Pr values as well as the safety factors are all given in 
Table 1.  These Pr values will of course be different depending 
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Table 1. Probabilities of a rest mode and safety factors for the caissons in Examples 1 and 2 (σ = 0.1 stands for σµ = 0.1 
and σp = 0.1 E[P]; σ = 0.2 stands for σµ = 0.2 and σp = 0.2 E[P]). 

Example case B(m) 
G/Ln 

(σ = 0.1) 
G/Ln 

(σ = 0.2) 
δ/Ln 

(σ = 0.1) 
δ/Ln 

(σ = 0.2) 
G/δ 

(σ = 0.1) 
G/δ 

(σ = 0.2) 
SFS SFR 

1 15.8 0.54 0.53 0.47 0.44 0.57 0.57 1.00 2.27 
1 

2 19.0 0.73 0.63 0.86 0.66 0.77 0.68 1.20 3.27 
1 5.68 0.53 0.50 0.76 0.59 0.74 0.66 1.14 1.00 

2 
2 6.22 0.73 0.60 0.89 0.69 0.79 0.70 1.25 1.20 

 
 

on the expected value and standard deviation of µ and k.  Thus, 
by letting σµ = 0.2 and σP = 0.2 E[P], the Pr values are re- 
calculated and given in Table 1 as well.  For brevity, these 
cases are identified as σ = 0.1 and σ = 0.2 respectively.  Natu-
rally, as the standard deviation increases, the probability of a 
rest mode is correspondingly reduced.  In this connection, it is 
noted that in Example 1, for B = 15.83 m, for the G/δ case, 
changing the standard deviation of k does not change the Pr 
value.  This is due to the special choice made (arbitrarily) of 
the relationship between the standard deviation and the ex-
pected value: σP/E[P] = constant. 

It is of some interest to point out that in Example 1, case 1, 
while the safety factor against sliding is 1.00, meaning that 
there is no safety margin against sliding, there is nevertheless a 
finite probability (around 0.5) that the caisson remains at rest.  
Similarly, in Example 2, case 1, the safety factor against rocking 
is 1.00 indicating that rocking is impending but the probability 
of a rest mode is finite.  

In Example 1, case 2 (B = 19 m), the safety factor against 
sliding is equal to 1.2 and that against rocking is 3.27.  In 
Example 2, case 2, the safety factor against rocking is 1.2 and 
that against sliding is 1.25.  The Pr value for both cases con-
sidering the G/Ln case is around 0.7.  It is thus seen that the 
safety factors against sliding and rocking are not correlated 
with the probability of a rest mode.  This correlation can only 
be made if the probabilities of sliding and rocking are calcu-
lated.  This can be done by first deriving the criteria corre-
sponding to sliding and rocking.  This task, though rather 
lengthy, may be carried out in much the same way those for a 
rest mode are obtained in this paper.  The manner in which the 
probabilities of sliding and rocking are calculated is the same 
as demonstrated in reference [5]. 

V. SUMMARY AND CONCLUSIONS 

The criteria for a caisson to be at rest under the action of a 
breaking wave force are derived using the equilibrium equa-
tions of the caisson together with the conditions a rest mode 
must satisfy.  The criteria so obtained are shown to agree with 
those currently in use: the caisson must not slide nor rock. 

The criteria are presented in the form of a graph with the 
applied force, k, normalized with respect to the weight of the 
caisson in water as the abscissa and the coefficient of friction 

as the ordinate.  A region in this k – µ plane is identified as the 
safe region.  A point that lies within the rest region indicates 
that the caisson will be at rest.  Two examples are given to 
show how to use the plot to select the width of a caisson. 

Since there are uncertainties associated with the applied 
force and the coefficient of friction, safety factors are used in 
current practice.  The k – µ plot introduced here is a convenient 
way to treat k and µ as random variables and assess the safety 
of a caisson in terms of probability.  Two examples are given 
to show how the probability of a rest mode is calculated. 

In closing, it should be mentioned that the problems related 
to probabilistic modeling of the random variables k and µ and 
the assessment of the parameters that characterize these vari-
ables remain to be studied.  It is mentioned here that current 
design practice also requires consideration of bearing capacity 
at the heel of the caisson [4] and much work has been done to 
understand the behavior of subsoil, the latest being the work of 
Ulker [7]. 
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