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ABSTRACT 

It is widely recognized that a proper schedule of available 
generating units may save utilities millions of dollars per year 
in production costs.  A novel particle swarm optimization 
(PSO) combined with the direct search method (DSM) is 
developed in this paper for the solution of economic dispatch 
(ED) problem with valve-point effect.  A new inertia weight 
mechanism is incorporated into PSO to enhance its search 
capacity that leads to a higher probability of obtaining the 
global optimal solution.  The main attractive feature of the 
proposed inertia weight mechanism is to monitor the weights 
of particles, which were linearly decreased in general appli-
cations, and to further provide a well-balanced mechanism 
between the global and local exploration abilities.  The DSM 
algorithm is used as a fine tuning to determine the eventual 
global optimal solution with a reduced computing time.  The 
validity, robustness, and effectiveness of the proposed ap-
proach is verified through numerical experiments for extended 
economic dispatch application. 

I. INTRODUCTION 

With increasing of the fuel prices and restructuring of the 
power industry, the non-convex economic dispatch (NED) 
problem may become a more important problem due to the 
inclusion of non-smooth cost function.  The objective of eco-
nomic dispatch (ED) is to schedule the outputs of the online 
generating units so that the fuel cost of generation can be mini- 
mized, while simultaneously satisfying all unit and system 
equality and inequality constraints.  Improvements in sched-

uling the unit outputs may save utilities millions of dollars per 
year in production costs.  Several classical optimization tech-
niques, such as the lambda dispatch approach, the gradient 
method, the linear programming and the Netwon’s method, 
were used to solve the ED problem [18].  The lambda-iteration 
approach has been widely used in practice and requires the 
associated incremental costs of the units that are assumed to be 
monotonically increasing.  However, the generating units ex- 
hibit a greater variation in the fuel cost functions due to the 
physical operation limitations of power plant components, 
such as valve points or combined cycle units.  The inclusion of 
non-smooth cost function increases the non-linearity as well as 
the number of local optima in the solution space.  Inaccurate 
dispatch results could be induced by the classical calculus- 
based techniques.  The importance of the NED problem is thus 
likely to increase and more advanced algorithms for NED prob- 
lem are worth developing to obtain accurate dispatch results. 

Dynamic programming (DP) solution is one of the ap-
proaches to solving the ED problem with non-convex unit cost 
functions.  Unlike the lambda-iteration approach, the DP 
method has no restrictions on generator cost function and per- 
forms a direct search of solution space.  However, the DP 
method may cause the problems of curse of dimensionality  
[18] or local optimality [7] in the solution procedure.  In this 
respect, several optimization algorithms based on stochastic 
searching techniques, including simulated annealing (SA) [16], 
genetic algorithm (GA) [6, 10, 15], tabu search algorithm 
(TSA) [5, 8], evolutionary programming (EP) [12, 13, 19], 
particle swarm optimization (PSO) [3] and hybrid stochastic 
search [1, 9, 14, 17], were developed to solve the highly non- 
linear ED problem without restrictions on the shape of fuel 
cost functions.  Although these heuristic approaches do not 
always guarantee a global optimal solution, they generally 
provide a reasonable solution.  Simulated annealing mimics 
the physical operation of the annealing process.  It is easy to 
implement, yet the complicated annealing schedule is closely 
related to performance optimization.  However, a poor tuning 
of the annealing schedule may inadvertently affect the per-
formance of simulated annealing.  Genetic algorithms were 
inspired by the principles of natural evolution and are very 
popular in solving optimization problems in power systems.  
The drawbacks of this approach are attributed to the long 

Paper submitted 02/20/09; revised 08/29/09; accepted 12/29/09.  Author for 
correspondence: Chun-Lung Chen (e-mail: cclung@mail.ntou.edu.tw). 
*Department of Marine Engineering, National Taiwan Ocean University, 
Keelung, Taiwan, R.O.C. 
**Department of Electrical Engineering,  Minghsin University of Science and 
Technology, Hsinchu County, Taiwan, R.O.C. 



44 Journal of Marine Science and Technology, Vol. 19, No. 1 (2011) 

 

computing time, degradation in efficiency with highly corre-
lated objection functions, premature convergence leading to 
local minima and the complicated process in coding and de-
coding the problem.  Evolutionary programming with a Gaus- 
sian operator was originally proposed for machine intelligence 
but has been successfully applied to many optimization prob-
lems.  It is more efficient than GA in computation time, and 
can generate a high quality solution with a shorter calculation 
compared to other stochastic algorithms.  The disadvantage of 
this method is its slow convergence to a good near optimal 
solution. 

Particle swarm optimization (PSO) was original presented 
by Kennedy and Eberhart in 1995 [4].  It was inspired by 
observation of the behaviors in bird flocks and fish schools.  
PSO is one of the latest versions of nature inspired algorithms, 
which characteristics of high performance and easy imple-
mentation.  With a parallel searching mechanism, the PSO 
algorithm has high probability to determine the global or near- 
global optimal solution for the NED problem [3].  However, 
there are many problems in the solution process by the con-
ventional PSO.  One of the main drawbacks of the conven-
tional PSO is its premature convergence, especially while 
handling problems with more local optima and heavier con-
straints.  A hybrid particle swarm optimization-sequential 
quadratic programming (PSO-SQP) method is presented to 
increase the possibility of exploring the search space where 
the global optimal solution exists [14].  In  this paper, an al-
ternative approach is proposed to the ED problem considering 
valve-point effects using an improved PSO, which focuses on 
the adjustment of inertia weight factor ω [11].  A novel inertia 
weight mechanism is incorporated into PSO to further provide 
a well-balanced mechanism between the global and local ex- 
ploration abilities.  Instead of maximum iteration count itermax, 
another parameter Z is designed to improve the searching 
abilities.  A local optimization technique, which utilizes the 
direct search method (DSM) [2], is also used as a fine tuning to 
determine the eventual global optimal solution with light 
computational expenses.  Test results are provided to illustrate 
the merits of the proposed hybrid PSO-DSM algorithm.  The 
same multiple minimum problem has been solved by the HSS 
in [14], the TSA in [5], the EP-SQP in [14] and the PSO-SQP 
in [14]. 

II. PROBLEM FORMULATION 

The main objective of solving the ED problem is to minimize 
the total generation cost of a power system while satisfying 
various constraints.  The objective function can be formulated 
as follows: 

 
1

( )
N

T i i
i

Minimize F F P
=

=∑  (1) 

where FT is the total fuel cost.  N is the number of units in the 
system.  Fi(Pi) is the fuel cost function of unit i, and Pi is the 

power output of unit i.  Generally, fuel cost of generation unit 
will be in second-order polynomial function [18]. 

 2( )i i i i i i iF P a b P c P= + +  (2) 

where ai, bi and ci are the cost coefficients of unit i.  However, 
the fuel cost functions of units may be much more complicated 
due to the physical operation limitations, which actually exist 
in a practical optimization problem.  Reference [15] has shown 
the input-output performance curve for a typical thermal unit 
with many valve points.  The fuel cost functions taking into 
account the valve-point effects were expressed as 

 2 min( ) sin( ( ))i i i i i i i i i i iF P a b P c P e f P P= + + + −  (3) 

where ei and fi are the constants from the valve-point loading 
effect of generators. 

Subject to following constraints: 
 

• Power balance constraint  
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• Unit capacity constraints  

 min max
i i iP P P≤ ≤  (5) 

where PD is the total load demand; PLoss is the transmission 

loss; min
iP and max

iP are minimum and maximum generation 

limits of unit i respectively.  The transmission losses are tra-
ditionally represented by 

 0 00
1 1 1

N N N

Loss i ij j i i
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= = =

= + +∑∑ ∑  (6) 

where Bij is the coefficient of transmission losses. 

III. PARTICLE SWARM OPTIMIZATION WITH 
INERTIA WEIGHT (PSO-IW) 

PSO is a population based optimization approach.  It was 
inspired by observation of the behaviors in bird flocks and fish 
schools.  In a physical N-dimensional search space, the posi-
tion and velocity of particle q are represented as the vectors  
Xq = {xq1, xq2, …, xqN} and Vq = {vq1, vq2, …, vqN} in the PSO 

algorithm.  Let 1 2{ , ,..., }Pbest Pbest Pbest
q q q qNPbest x x x= and Gbest = 

{x1,Gbest, x2,Gbest, …, xN,Gbest} be the best position of particle q 
and the best position that has been achieved so far by any 
particles, respectively.  By tracking two best values, i.e. Pbestq 
and Gbest, the global optimal might be reached by this opti-
mization technique.  Similar to other evolutionary algorithms, 
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the PSO has a number of parameters that must be selected.  
The acceleration constants c1 and c2 should be determined in 
advance that control the maximum step size.  The inertia 
weight ω controls the impact of the previous velocity of the 
particle on its current one.  Selection of the inertia weight ω 
and weighting factors c1 and c2 considerably affects the per-
formance of the PSO.  The appropriate selection of these pa-
rameters justifies the preliminary efforts required for their 
experimental determination.  The modified velocity and posi-
tion of each particle can be calculated using the current ve-
locity and the distance from Pbestq to Gbest as shown in the 
following formulas: 

 1 1 ( ) 2k k k k
q q q qV V c rand Pbest X cω+ = × + × × − +  

( )k k
qrand Gbest X× × −   (7) 

 1 1k k k
q q qX X V+ += + ,       q = 1, 2, …Q (8) 

where k
qV is the velocity of particle q in iteration k, k

qX is the 

position of particle q in iteration k, k
qPbest  is the best value of 

fitness function that has been achieved by particle q before 
iteration k, Gbestk is the best value of fitness function that has 
been achieved so far by any particle, c1 and c2 represent the 
weighting of the stochastic acceleration terms that pull each 
particle toward Pbestq and Gbest positions, rand means a 
random variable between 0.0 to 1.0, and ω is the inertia weight 
factor.  It is obvious that the inertia weight ω is an important 
factor to avoid being entrapped in a local minimum.  As 
originally developed, ω is usually linear decreasing during it- 
erations and is calculated using the following expression [11]. 

 max max min
max

( )
iter

iter
ω ω ω ω= − − ×  (9) 

where ωmax and ωmin are the initial and final weight respec-
tively, itermax is the maximum iteration count, and iter is the 
current number of iterations.  The process of implementing the 
PSO is as follows: 
 
Step 1: Create an initial population of particles with random 

positions and velocity within the solution space.  
Step 2: For each particle, calculate the value of the fitness 

function. 
Step 3: Compare the fitness of each particle with each Pbest.  

If the current solution is better than its Pbest, then 
replace its Pbest by the current solution. 

Step 4: Compare the fitness of all the particles with Gbest.  If 
the fitness of any particles is better than Gbest, then 
replace Gbest. 

Step 5: Update the velocity and position of all particles ac-
cording to Eqs. (7) and (8). 

Step 6: Repeat steps 2-5 until a criterion is met. 

IV. PARTICLE SWARM OPTIMIZATION WITH 
IMPROVED INERTIA WEIGHT (PSO-IIW) 

In applying the conventional PSO to solve the generation 
scheduling problem, it is quite likely that the final solution 
may lead to sub-optimal solution owing to the inclusion of 
non-smooth cost function in the NED problem.  In general, the 
initial candidate solutions are usually far from the global op-
timum and hence the larger inertia weight ω may be proved to 
be beneficial.  Large inertia weight enables the PSO to explore 
globally and small inertia weight enables the PSO to explore 
locally.  This inertia weight ω plays the role of balancing the 
global and local exploration abilities.  The value of ω for all 
particles will decrease at the same time as the iteration number 
increases.  However, it is not reasonable for all particles to 
employ the linearly decreasing inertia weights of formula (9).  
The standard PSO has oscillatory problem and easy to be 
trapped in local optima if a promising area where the global 
optimum is residing is not identified at the end of the optimi-
zation process.  The conventional PSO still need further re-
search and development to improve its performance and to 
obtain the robustness. 

To increase the possibility of exploring the search space 
where the global optimal solution exists, we follow a slightly 
different approach to further provide a well-balanced mecha-
nism between the global and local exploration abilities.  The 
proposed weighting function is defined as follows:  

,
max max min ,

1
,

( ) , ( ) 0

, ( ) 0

k
iter qik k k k

qi qi i Gbest qi

k k k k k
qi qi qi i Gbest qi

Z
if v x x

Z
if v x x

ω ω ω ω

ω ω −


= − − × × − >


 = × − <

 

 q = 1, 2, …Q;   i = 1, 2, …N (10) 

where k
qiω is the element inertia weight i of particle q in itera-

tion k.  

From (10), if the k
qiv  and ,( )k k

i Gbest qix x−  move at the same 

direction, the value of k
qiω  employed will be the linearly de-

creasing to prevent the particles from flying past the target 

position during the flight.  Otherwise, the value of k
qiω will be 

kept without decreasing to facilitate a free movement of par-
ticles in the search space.  Instead of maximum iteration count 
itermax, another parameter Z is designed to further provide a 
well-balanced mechanism between the global and local ex-
ploration abilities.  It is obvious that the value of Z is an im-
portant factor to control the linearly decreasing dynamic pa-
rameter framework descending from ωmax to ωmin.  Suitable 
selection of Z provides a balance between global and local 
explorations, thus requiring less iteration on average to find a 
sufficiently optimal solution.  The main attractive feature of 
inertia weight mechanism described above is to monitor the 
weights of a particle, which were linearly decreased in general 
applications, to avoid storing too many similar particles at the 
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end of the optimization process.  The significance of control of 
inertia weight ω in the PSO algorithm is also retained to in-
crease the possibility of occurrence of escaping from local 
optimal solutions. 

V. SOLUTION METHOD AND 
IMPLEMENTATION OF PSO-IIW 

The main computational processes of the algorithm pre-
sented in this paper to solve ED with valve-point effects 
problem of power systems are discussed in the following sub- 
sections.  This algorithm is an implementation of PSO-IIW. 

 
Step 1: Initialize the PSO-IIW parameters. 
 Set up the set of parameters of PSO, such as, number 

of particles Q,weighting factors c1, c2, parameter Z, 
and maximum number of iterations itermax. 

Step 2: Create an initial population of particles randomly. 
 Each particle contains the real power generation of 

the generators.  Eq. (11) shows a particle q,  

 1 2[ , , ..., , ..., ]k k k k k
q i NX P P P P=  ,  q = 1, 2, …, Q (11) 

 Let rand be a uniform random value in the range [0,1].  
The initial power outputs of N – 1 thermal generating 
units, without violating (5), are generated randomly 
by 

 min max min( )i i i iP P rand P P= + × −  (12) 

 To satisfy the power balance equation, a dependent 
generating unit is arbitrarily selected among the com- 
mitted N units and the output of the dependent gen-
erating unit Pd is determined by 

 
1

N

d D Loss i
i
i d

P P P P
=
≠

= + −∑   (13) 

 Whereas Pd can be calculated directly from the quad-
ratic equation as shown in below [16]. 

 2

1

( 1) 0
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 0
1 1
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j i
j d i d
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≠ ≠
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 0 00
1 1 1

N N N
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i d j d i d
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 If Pd violates (5), a repairing strategy is applied to 
pick one unit at random to increase (or decrease) its 
output by the random or predefined step (e.g., 10 MW), 
one by one, until it can satisfy all the constraints. 

Step 3: Evaluate the fitness of the particles. 
 For each particle, calculate the value of the fitness 

function.  The fitness function is an index to evaluate 
the fitness of the particles.  Eq. (1) shows the fitness 
function of the ED problem.  

Step 4: Record and update the best values. 
 The two best values are recorded in the searching 

process.  Each particle keeps track of its coordinate in 
the solution space that is associated with the best so-
lution it has reached so far.  This value is recorded as 
Pbest.  Another best value to be recorded is Gbest, 
which is the overall best value obtained so far by any 
particle. 

Step 5: Update the velocity and position of the particles. 
 Eq. (15) is applied to update the velocity of the par-

ticles.  The velocity of a particle represents a move-
ment of the generation of the generators.  Eq. (16) is 
applied to update the position of the particles.  The 
new positions of the particles are forced to satisfy the 
unit’s generation limit constraint given by (5) and 
other constraints if they exist.  The position of a par-
ticle is the generation of the generators. 

 1 1 ( )k k k k
qi qi qi qi qiV V c rand Pbest Xω+ = × + × × −  

2 ( )k k
i qic rand Gbest X+ × × −  (15) 

 1 1k k k
qi qi qiX X V+ += +    q = 1, 2, …Q; i = 1, 2, …N (16) 

Step 6: End conditions. 
 Check the end condition.  If it is reached, the algo-

rithm stops, otherwise, repeat steps 3-5 until the end 
conditions are satisfied.  In this study, the “end con-
ditions” of PSO are 
(1) The total operating cost between two consecutive 

iterations is unchanged or the variation of oper-
ating cost is within a permitted range. 

(2) The variation of Gbest is within a permitted range. 
(3) The maximum number of iterations is reached. 

VI. LOCAL OPTIMIZATION USING THE 
DIRECT SEARCH METHOD 

Usually, the stochastic search technique can identify a near 
global region but slows in a finely tuning local search.  In 
contrast, the local searching technique can climb hills rapidly 
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but is easily trapped in local minima.  In this paper, the 
PSO-IIW algorithm was responsible for “global exploitation” 
and the DSM algorithm was used to “local optimization” with 
the current solutions of the PSO-IIW as the starting points.  
Like many local search techniques, the DSM is more sensitive 
to the initial starting points.  To further weaken the dependence 
of finding the global optimal solution on the initial starting 
solutions, the selection of calculation step S in the direct 
search procedure is vital to the success of DSM to find the 
global optimal solution.  In this study, the DSM with large 
initial calculation step S1 and small reduced factor K is usually 
commended to enhance its search capacity that leads to a 
higher probability of obtaining the global optimal solution.  It 
is obvious that the reduced factor K is an important factor to 
avoid being entrapped in a local minimum.  Although a small 
selection of the reduced factor K in the direct search procedure 
often leads to slow convergence, it increases the possibility to 
create and explore the new solution in the search space.  In 
general, as the number of convergence level increases, more 
potential candidates yielding economic schedules are retained, 
so that the system production cost can be decreased.  There-
fore, a larger convergence level is desired to provide a better 
chance to reach the global optimal solution when the problem 
has a number of local optimal points.  Although an arbitrary 
choice of larger S1 may be misleading the search, it can be 
improved by the multi-level convergence technique for pre-
venting premature convergence.  The main attractive feature 
of multi-level convergence is to reduce the step size gradually 
to increase the possibility of occurrence of escaping from local 
optimal solution.  Unfortunately, the appropriate selection of 
these parameters justifies the preliminary efforts required for 
their experimental determination.  From our experience, a 
proper initial calculation step S1 is chosen to be 10~20% of the 
largest generation unit in the power system.  The recom-
mended value of reduced factor K is 1.1~3.0 depending on the 
number of local minimum points in the cost functions.  The 
details for solving the extended economic dispatch problem 
are the same as that in [2].  The outline of the proposed algo-
rithm is shown in the flowchart in Fig. 1. 

VII. NUMERICAL EXPERIMENTS 

To verify the feasibility and effectiveness of the proposed 
PSO algorithm, two test systems were simulated.  All the com- 
putation was performed on a PC Genuine Intel ®CPU 
T2300@1.66GHz computer with 1.0GRAM size, and several 
computer programs were developed in FORTRAN:  

 
PSO: Basic particle swarm optimization 
PSO-IW: Particle swarm optimization with inertia weight 
PSO-IIW: Particle swarm optimization with improved in-
ertia weight 
PSO-IIW*: PSO-IIW with local optimization 
 
After testing and evaluating different parameter combina- 

START

Read system data

Initialize a population of
particles Q

Perform improved particle
swarm optimization

procedure for candidates

NO

Termination criteria
reached?

YES

Apply DSM for local
optimization

Obtain solution

END
 

Fig. 1.  Flow chart for the proposed PSO-IIW* algorithm. 

 
 

tions, parameters of the PSO, PSO-IW and PSO-IIW algo-
rithms used in the two examples are listed in Table 1 for clarity.  
The studied cases are stated in detail as follows: 

1. Example 1: Test for a 3-unit System 

In the first example, a system with three generating units 
considering the valve-point effects is studied to test the solu-
tion quality and performance of the proposed PSO-IIW algo-
rithm.  The system unit data is shown in Table 2 [12] and the 
total load demand is 850 MW.  The traditional approaches, 
such as lambda-iteration dispatch method cannot be used to 
solve the above problem due to its non-smooth fuel cost func- 
tion.  Owing to the randomness of the heuristic algorithms, 
their performance cannot be judged by a single run result.  
Many trials with different initial conditions should be made to 
acquire a useful conclusion about the performance.  To inves-
tigate effects of different parameters chosen on the final results, 
three cases were simulated for the three PSO strategies.  Table 
3 shows the worst cost, average cost, and best cost achieved 
for 100 trial runs.  From the results, the superiority of the 
PSO-IW and PSO-IIW algorithms over basic PSO can be  
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Table 1.  Best parameter setting of the three PSO strategies. 

Parameter PSO PSO-IW PSO-IIW 

Example 1 
Q = 400; itermax = 400; 

c1 = 0.1; c2 = 0.1 

Q = 400; itermax = 400; 
c1 = 0.1; c2 = 0.1; 

ωmax = 1.1; ωmin = 0.4 

Q = 400; itermax = 400; 
c1 = 0.1; c2 = 0.1; 

Z = 100; 
ωmax = 1.1; ωmin = 0.4 

Example 2 
Q = 3000; itermax = 3000; 

c1 = 0.1; c2 = 0.1 

Q = 3000; itermax = 3000; 
c1 = 0.1; c2 = 0.1; 

ωmax = 1.1; ωmin = 0.4 

Q = 3000; itermax = 3000; 
c1 = 0.1; c2 = 0.1;  

Z = 100; 
ωmax = 1.1; ωmin = 0.4 

 
 

Table 2.  Parameters for the three-unit system. 

Unit No. max
iP  min

iP  ai bi ci ei fi 

1 600 100 561 7.92 0.0016 300 0.0315 

2 400 100 310 7.85 0.00194 200 0.042 

3 200   50 78 7.97 0.00482 150 0.063 
 
 

Table 3.  Comparison of results with 100 trail tests for the load of 850 MW in the system Example 1. 

PSO PSO-IW PSO-IIW 
Method 

Case A Case B Case C Case A Case B Case C Case A Case B Case C 

Parameter Setting 
c1 = 0.1 
c2 = 0.1 

c1 = 1.0 
c2 = 1.0 

c1 = 1.5 
c2 = 1.5 

c1 = 0.1 
c2 = 0.1 

c1 = 1.0 
c2 = 1.0 

c1 = 1.5 
c2 = 1.5 

c1 = 0.1 
c2 = 0.1 

c1 = 1.0 
c2 = 1.0 

c1 = 1.5 
c2 = 1.5 

Worst Cost ($/h) 8241.399 8234.078 8234.080  8234.071  8234.071  8234.071  8234.071  8234.071  8234.071  

Average Cost ($/h) 8234.218 8234.073 8234.073  8234.071  8234.071  8234.071  8234.071  8234.071  8234.071  

Best Cost ($/h) 8234.071 8234.071 8234.071  8234.071  8234.071  8234.071  8234.071  8234.071  8234.071  

NTO 25 8 10  100  100  100  100  100  100  

ACT (sec.) 0.1718 0.1749 0.1759  0.1890  0.1911  0.1915  0.1903  0.1895  0.1897  

NTO: number of times to reach optimal solution ($8234.071) 
ACT: average computation time for 100 trail tests  

 
 

noticed.  The proposed PSO-IIW algorithm has reached the 
optimal solution ($8234.071) with a high probability for the 
solution of the small-size NED problem in these test cases. 

To illustrate the convergence property of the proposed al-
gorithm, Fig. 2 shows the PSO-IIW optimization procedure 
compared to PSO and PSO-IW in a typical run.  In this test 
case, the same initial random solution ($8274.99) was given to 
the three PSO strategies and search for the optimal solution 
along different trajectories respectively.  The results show that 
all of the three PSO strategies can obtain the optimal solution 
($8234.071) for this small-size NED problem.  However, it 
shows that the PSO with inertia weight provides a good con-
vergence property to achieve the optimal solution.  The total 
number of iterations required for the PSO-IIW is 88 and that of 
PSO-IW algorithm is 151 to achieve the optimal solution.  The 
basic PSO is slow in convergence (215th iteration) in com-
parison with PSO-IW and PSO-IIW.  The suitableness of the 
algorithm presented in this paper to the solution of the optimal 
NED is, thus, confirmed. 

8234.05
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Iteration
1 51 101 151 201
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Fig. 2. Comparative convergence behavior of the three PSO strategies 

for the three-unit example system. 
 
 

2. Example 2: Test for a 13-unit System 

In this example, the simulation includes test runs for the 
thirteen–unit system used in [17] to demonstrate the robust-
ness and effectiveness of the proposed PSO-IIW* algorithm.  
There are many local optimal solutions for the dispatch prob- 
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Table 4.  Parameters for the thirteen-unit system. 

Unit No. max
iP  

min
iP  

ai bi ci ei fi 

1 680 0 550 8.1 0.00028 300 0.035 

2 360 0 309 8.1 0.00056 200 0.042 

3 360 0 307 8.1 0.00056 200 0.042 

4 180 60 240 7.74 0.00324 150 0.063 

5 180 60 240 7.74 0.00324 150 0.063 

6 180 60 240 7.74 0.00324 150 0.063 

7 180 60 240 7.74 0.00324 150 0.063 

8 180 60 240 7.74 0.00324 150 0.063 

9 180 60 240 7.74 0.00324 150 0.063 

10 120 40 126 8.6 0.00284 100 0.084 

11 120 40 126 8.6 0.00284 100 0.084 

12 120 55 126 8.6 0.00284 100 0.084 

13 120 55 126 8.6 0.00284 100 0.084 

 
 

Table 5. Comparison of dispatch results for the load of 
2520 MW in the system Example 2. 

Unit 
HSS 
[1] 

TSA 
[5] 

EP-SQP 
[14] 

PSO-SQP 
[14] 

PSO-IIW 

1 628.23 628.319 628.3136 628.3205 628.3185 

2 299.22 299.1993 299.1715 299.0524 299.1990 

3 299.17 331.8975 299.0474 298.9681 299.1990 

4 159.12 159.7305 159.6399 159.4680 159.7330 

5 159.95 159.7331 159.6560 159.1429 159.7330 

6 158.85 159.7306 158.4831 159.2724 159.7328 

7 157.26 159.7334 159.6749 159.5371 159.7328 

8 159.93 159.7308 159.7265 158.8522 159.7329 

9 159.86 159.7316 159.6653 159.7845 159.7329 

10 110.78   40.0028 114.0334 110.9618   77.3996 

11   75.00   77.3994   75.0000   75.0000   77.3996 

12   60.00   92.3932   60.0000   60.0000   92.3998 

13   92.62   92.3986   87.5884   91.6401   87.6868 

Cost ($/h) 24275.71 24313 24266.44 24261.05 24169.92 

 
 

lem and the problem is well suitable for testing and validating 
the developed algorithm.  The system unit data is given in 
Table 4 and the load demand is 2520 MW.  Network losses of 
the system are neglected for comparison.  The same multiple 
minimum problem has been solved by the HSS in [14], the 
TSA in [5], the EP-SQP in [14] and the PSO-SQP in [14].  
Table 5 depicts the numerical results of various methods.  
From these results, although multiple local minimum solutions 
exist in this studied case, the proposed PSO-IIW can find a 
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Fig. 3. Comparative convergence behavior of the three PSO strategies 

for the thirteen-unit example system. 
 
 

better solution ($24169.92) than many existing techniques.  
Details of the best solutions obtained by the proposed PSO-IIW 
algorithm is shown in the sixth column of Table 5.  The results 
show that the proposed PSO-IIW provides an accurate algo-
rithm to tackle efficiently the difficult NED problem. 

To demonstrate the good convergence property of the 
proposed algorithm, Fig. 3 shows the PSO-IIW optimization 
procedure compared to basic PSO and PSO-IW in a typical  
run.  In the test case, the same initial random starting points 
were given to the basic PSO, PSO-IW and PSO-IIW algo-
rithms.  As shown in Fig. 3, the basic PSO has premature 
convergence problem and easy to be trapped in local optima 
($24308.12) at the 56th iteration in the test case.  Similar to 
basic PSO algorithm in optimization, the main problem of the 
PSO-IW is that it also gets trapped in a local optimal solution 
($24256.32) since a promising area where the global optimal 
is residing is not identified at the end of the optimization 
process.  It is seen that the satisfactory solution ($24170.96) 
achieved by PSO-IIW decreases very quickly before 118 it-
erations and achieve the global optimal solution ($24169.92) 
at the 881th iteration.  The improved inertia weight mecha-
nism is very effective and the algorithm converges much faster 
than the case when no inertia weight mechanism is included in 
the algorithm.  The final results of PSO-IIW are also better 
than those of PSO and PSO-IW.  Note that the count factor Z in 
Eq. (10) plays a significant role in the convergence of the 
PSO-IIW to the global optimal solution.  To illustrate the 
effect, the algorithm was run 100 times for various values of 
the Z factors and the variation of the average minimum cost 
for each run is shown in Table 6.  In the study case, the rec-
ommended value of the parameter Z is chosen to be 100-500 to 
make the search effectively.  The success of the proposed 
inertia weight technique to ‘jump’ out of the local optimal 
solution is, thus, confirmed. 

To investigate effects of initial trail solutions on the final 
results, different initial random solutions were given to the 
PSO, PSO-IW, PSO-IIW and PSO-IIW* approach.  Table 7 
shows the worst cost, average cost, and best cost achieved 
using the four PSO strategies for 100 trial runs.  In these test 
cases, the proposed PSO-IIW can easily obtain the satisfactory 
solutions using the improved inertia weight technique.  How- 
ever, only the near global optimal solution can be obtained by 
the proposed PSO-IIW approach.  The number of times  
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Table 6. Comparison of dispatch results with 100 trial tests 
under various Z in the system Example 2. 

Parameter 
Z 

Average 
Cost ($/h) 

Parameter 
Z 

Average 
Cost ($/h) 

Parameter 
Z 

Average 
Cost ($/h) 

10 24273.72 800 24236.69 2000 24239.91 

20 24292.86 900 24234.45 2100 24232.81 

30 24285.24 1000 24230.92 2200 24225.69 

40 24255.87 1100 24236.65 2300 24237.38 

50 24231.72 1200 24230.22 2400 24233.43 

100 24207.71 1300 24226.21 2500 24231.26 

200 24212.94 1400 24232.19 2600 24227.34 

300 24213.12 1500 24239.36 2700 24224.88 

400 24212.99 1600 24234.28 2800 24234.59 

500 24211.87 1700 24228.76 2900 24238.14 

600 24235.94 1800 24226.47 3000 24229.90 

700 24235.89 1900 24238.28 --- --- 

 
 

Table 7. Comparison among different methods after 100 
trials in the system Example 2. 

Method PSO PSO-IW PSO-IIW PSO-IIW* 

Worst Cost 
($/h) 

24362.81 24344.24 24325.27 24169.92 

Average Cost 
($/h) 

24227.49 24222.34 24207.71 24169.92 

Best Cost 
($/h) 

24182.16 24169.92 24169.92 24169.92 

NTO 0 2 23 100 

ACT (sec.) 47.18 52.14 54.94 58.26 

Parameter Setting in DSM: S1 = 80 MW; K = 1.2; ε = 0.001MW. 
NTO: number of times to reach optimal solution ($ 24169.92). 
ACT: average computation time for 100 trail tests. 

 
 

reached global optimal solution ($24169.92) for the PSO-IIW is 
23 and that of PSO-IW algorithm is 2 in the test cases.  The 
basic PSO makes no guarantee that the solutions are optimal or 
even close to the optimal solution.  As shown in the fifth 
columns of Table 7, a reliable solution procedure provides the 
optimal solution ($24169.92) 100 times to demonstrate its 
effectiveness and efficiency.  This test case study converges 
within 58.26 sec for each run when the value of Q is chosen to 
be 3000.  In fact, various load demands chosen were studied 
and the results show that the proposed PSO-IIW* method can 
successful remedy the local optimal solution problem.  The 
accurate approach makes it an attractive method for the solu-
tion of the NED problem. 

VIII. CONCLUSION 

This paper presents a hybrid algorithm based on a combi-

nation of improved particle swarm optimization (PSO) algo-
rithm and direct search method (DSM) to solve the economic 
dispatch with valve-point effects.  Using the parallel searching 
mechanism with improved inertia weight strategy, the pro-
posed PSO algorithm can give a good direction to identify the 
near global optimal solution region.  A local optimization 
technique, which utilizes the DSM approach, is also used as a 
fine tuning to determine the eventual global optimal solution 
with light computational expenses.  Many nonlinear charac-
teristics of units could be handled properly in the direct search 
procedure with a reduced computing time.  It is observed that 
obtaining the global optimal solution is possible by using the 
proposed algorithm for the NED problem.  Numerical ex-
periments demonstrate that the proposed algorithm is more 
practical and valid than many existent techniques for the so-
lution of the NED problem. 
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