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ABSTRACT

Acoustic point-source reflection from a non-uniform seabed
within which the density and sound speed vary continuously with
depth is considered in this paper.  This fundamental problem has
illuminated many interesting phenomena about the effects of sedi-
ment stratification on acoustic wave interactions with the seabed.  The
analysis employs the analytical solutions for the Helmholtz equation
in the sediment layer, in which the density and the sound speed are,
respectively, described by three kinds of geological models.  The
results have demonstrated that the effects of sediment stratification
are confined in a region in range, where the reflection field is
dominated by the reflected ray bundles containing ray components
with the grazing angles that are neither too steep nor too shallow.  The
effects of many other factors, such as frequency, sediment thickness,
basement elasticity, on the reflection field are investigated; in
particular, the interface wave component may become important in
the region close to the seabed, if the sediment thickness is relatively
thin in comparison with the acoustic wave length.

INTRODUCTION

The geoacoustic properties of seabed, including
geological and geometrical characteristics, affect sig-
nificantly the acoustic wave propagation in an ocean
waveguide, particularly in a shallow water environment.
The interactions of acoustic wave with seabed, which in
general are non-uniform and/or randomly inhomo-
geneous, inevitably result in a reduction of acoustic
energy as well as sound field coherency.  As a result, the
subject of acoustic wave interactions with non-uniform
seabed has constantly attracted the attention in the
study of ocean acoustics.  The present analysis consid-

ers a fundamental problem of acoustic point-source
reflection from a seabed with non-uniform distribu-
tions of density and sound speed; the environmental
geometry is schematically shown in Figure 1.  The
sediment layer is assumed to be fluid-like, within
which the acoustic properties may be portrayed by a
parameterized model capable of describing a realistic
seafloor [3], and at the same time, rendering analytical
solutions to the acoustic wave equation.  While the
solutions completely based upon numerical computa-
tion are readily obtained for a general horizontally-
stratified oceanic environment, the parameterized mod-
eling offers a better approach for the seabed-property
analysis, particularly in the applications of geoacoustic
inversion.

The problem of acoustic plane wave incident upon
a seabed, such as the one shown in Figure 1, has been
analyzed in a sequence of papers by Robins [7-10], and
later extended by Liu and Huang [5], Liu et al. [6], to
include random roughness on the surface and/or shear
elasticity within the seabed.  These studies have devel-
oped the analytical expressions corresponding to vari-
ous density and sound speed profiles, and implemented
the formulations incorporating with the current soft-
ware to analyze the reflection and/or scattering sound
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ρ2 , c0
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sediment layer
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Fig. 1. Environmental model: a point-source wave incident upon a
seabed with a fluid-like sediment layer, subject to continuous
variations in density and sound speed.
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fields.  The present analysis is a direct extension of the
aforementioned studies for the source geometry from
the plane wave to the point source.  Although the
extension is rather straightforward, the point source
sound field covering full wavenumber spectrum, in
stark contrast to the single-wavenumber-component
plane wave, is expected to demonstrate a more compli-
cated interfering pattern in the reflection field, which is
the primary objective in this analysis.

In the following sections, the formulations to
be employed in this analysis are first summarized.
Then the computational algorithms are implemented
to generate numerical results, which are gauged by
current available programs to ensure their correct-
ness.  Numerical examples are demonstrated and
discussed.

FORMULATIONS

Consider an acoustic point source with a spectral
strength Sω in a uniform medium with density ρ0 and
sound speed c0, located at a distance zs above the seabed.
The seabed consists of a fluid-like sediment layer of
thickness h, and with the density ρ1(z) and the sound
speed c1(z) both varying continuously with depth in a
specific fashion to be described later.  The seabed
overlies on a semi-infinite basement which is assumed
to be a uniform elastic medium with density ρ2, com-
pressional sound speed c2p, and shear sound speed c2s.
The coordinate system takes z-axis passing through the
source, so that the overall sound field is axisymmetric
with respect to z-axis; the overall environmental model
is shown in Figure 1.

1. Solutions of acoustic wave equations

By the principle of Fourier decomposition, the
time-dependent acoustic sound field in each layer may
be represented as:

φi (r , z , t ) = φi , ω(r , z ) e iωt dω,  i = 0, 1, 2        (1)

where φi represents an acoustic variable in layer i,
which for convenience is taken to be the acoustic pres-
sure in a fluid layer and the displacement potential in an
elastic layer, and φi, ω is the corresponding frequency
spectrum satisfying the Helmholtz equation in various
layers [2]:

(∇2 + k 0
2) φ0, ω = S ω

δ(r )δ(z – z s)
2πr

(2)

∇2 – 1
ρ

d ρ1

dz
∂
∂z + k 1

2(z ) φ1, ω = 0 (3)

(∇2 + k 2p
2 ) φ2p , ω = 0 (4)

(∇2 + k 2s
2 ) φ2s , ω = 0 (5)

where ko = ω/c0 is the medium wavenumber of the upper
fluid layer, and k1(z) = ω/c1(z) is that of the fluid-like
sediment layer, which is a function of z, and k2p = ω/c2p

and k2s = ω/c2s are, respectively, the compressional and
shear wavenumbers is the lower elastic layer.  It is noted
that the second term in the Eq. (3) represents the effects
of density variation in the medium.

In view of range-independent characteristics of
the environment as well as axisymmetic nature of the
sound field, the solutions of the Helmholtz equations
may be expressed as Fourier-Bessel representation [4]:

φi , ω = φi , ω
0

∞
(k r, z ) J 0(k rr ) k rd k r

(6)

where φi , ω  is the ith-layer wavenumber spectrum for
frequency ω, J0 is the zeroth-order Bessel function of
the first kind, and kr is the horizontal wavenumber.
Substituting Eq. (6) into the corresponding Helmholtz
equations, Eqs. (2)-(5), results in the following depth-
dependent equations:

d 2

dz 2
+ k 0, z

2 φ0, ω = S ω
δ(z – z s)

2π (7)

d 2

dz 2
+ 1

ρ1

d ρ1

dz
d
dz

+ k 1, z
2 (z ) φ1, ω = 0 (8)

d 2

dz 2
+ k 2p , z

2 φ2p , ω = 0 (9)

d 2

dz 2
+ k 2s , z

2 φ2s , ω = 0 (10)

where k 1, z = (k i
2 – k r

2)
1 / 2

 is the vertical wavenumber in
the layer i.

The exact solutions for the depth-dependent equa-
tions are readily derived for layers 0 and 2, since the
corresponding vertical wavenumbers are constant;
however, for layer 1, the solution may only be obtained
through a numerical procedure for general variations
of density and/or sound speed with respect to depth.
Based upon the fundamental theorem for the linear
ordinary differential equations [1], the general solution
of Eq. (8) may be expressed as a linear combination of
two fundamental solutions, G(kr, z) and H(kr, z).
Therefore, the solutions corresponding to Eqs. (7)-(10)
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are, respectively, given by:

φ0, ω(k r, z ) = A 0
+(k r) e

α 0z
–

S ω
4πα0

e
– α 0 z – z S        (11)

φ1, ω(k r, z ) = A 1
–(k r) G (k r, z ) + A 1

+(k r) H (k r, z )    (12)

φ2p , ω(k r, z ) = A 2
–(k r) e

– α 2p (z – h ) (13)

φ2s , ω(k r, z ) = k r
– 1B 2

–(k r) e
– α 2s(z – h ) (14)

where the coefficients in the exponential functions are
defined as:

α0 = (k r
2 – k 0

2)
1 / 2

α2p = (k r
2 – k 2p

2 )
1 / 2

α2s = (k r
2 – k 2s

2 )
1 / 2

The unknown amplitudes A 0
+, A 1

–, A 1
+, A 2

+, B 2
–
 may

be determined from the boundary conditions, which in
present case are:

w0|z = 0 = w1|z = 0 (15)

p0|z = 0 = p1|z = 0 (16)

w1|z = h = w2|z = h (17)

p1|z = h = −σzz|z = h (18)

0 = σrz|z = h (19)

where wi, pi, and σ's represent, respectively, the vertical
displacement, acoustic pressure, and stresses in various
layers.  By the applications of the boundary and the
radiation conditions, the linear system for the unknown
amplitudes is formed, which may be conveniently cast
as:

B (k r) χ(k r) = C (k r) (20)

where χ(k r) is a vector containing the unknowns:

χ(k r) = [A 0
+(k r) A 1

–(k r) A 1
+(k r) A 2

–(k r) B 2
–(k r)]

T

(21)

and the coefficient matrix B (k r) and the forcing vector
C (k r) are, respectively, given as follows:

B (k r) =

α0

ρ0ω2
– 1
ρ1Uω2

G ' (k r, 0) – 1
ρ1Uω2

H ' (k r, 0)

1 – G (k r, 0) – H (k r, 0)

0 1
ρ1Lω2

G ' (k r, h ) 1
ρ1Lω2

H ' (k r, h )

0 G (k r, h ) H (k r, h )

0 0 0

0 0

0 0

α2p 0

µ2(2k r
2 – k 2s

2 ) – 2µ2k rα2s

2µ2k rα2p – µ2(2k r
2 – k 2s

2 )

(22)

C (k r) = –
S ω

4πρ0ω2
sign ( – z s) e

– α 0 zs S ω
4πα0

e
– α 0 zs

0 0 0

T

(23)

where ρ1U and ρ1L are, respectively, the density at the
upper boundary and the lower boundary of the sediment
layer, and µ2 is the shear modulus of the basement layer;
it is noted that ρ1L = ρ2 to maintain density continuity at
the lower boundary.  The symbol G' and H' denote the
derivative with respect to its argument of the function,
and sign( ) represents positive or negative depending on
the sign of the numerics inside the argument.

2. Exact solutions of the depth-denpedent equation in a
continuously varying sediment layer

To proceed the analysis, the functions G and H,
along with their derivatives, in the matrix B  in Eq. (22)
must be defined.  These two functions, as noted in a
previous paragraph, are the fundamental solutions of
the depth-dependent equation, Eq. (8), in the sediment
layer, which in general may only be obtained numeri-
cally for an arbitrary variation of density ρ1(z) and/or
sound speed c1(z) (equivalently k1(z)).  Here, we are
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interested in the analytical solutions corresponding to
various combinations of the density and sound speed
profiles which are geologically meaningful.  Under
this consideration, it has been shown that the exact
solutions of Eq. (8) exist if the density and the sound
speed profiles satisfy the following combinations [7,
11, 12, 13]:

ρ1(z ) = A e – α(z – h / 2)

[e – α(z – h / 2) + a ]2 (24)

1
c 2(z )

=

1
c 1

2
, constant

(1 + δz )
c 1U

2
, k 2 – linear

b 2

c 0
2

+ 1
c 1U

2
– b 2

c 0
2

1
(1 – κz )2

, inverse – square

(25)

where A, α, a, c 1 , c1U, δ, b, c0, and κ are constants,
which when appropriately assigned may well fit the
profiles in a realistic sea floor [3].  An example of the
profiles is shown in Figure 2.  It is noted that c1U and c1L

are the sound speeds at the upper and lower boundary of
the sediment layer, respectively.  Again, to maintain
continuity, c1U = c2p.

For a plane wave having the horizontal wavenumber
kr = k0 cos θ0 with θ0 incident grazing angle, the solution
of Eq. (8) may be expressed as:

p (r , z ) = p (z ) e
ik rr

(26)

The solutions for p (z ) i.e., the functions G and H in
Eq. (12), corresponding to various profiles shown above
have been derived in literature, and may be summarized
as follows [7]:

p 1(z ) = ρ(z )

e σ z, e – σ z constant

Ai (η(z )), Bi (η(z )), k 2 – linear

ζ(z )H υ
(1)(βζ(z )), ζ(z )H υ

(2)(βζ(z )), inverse – squa

(27)

where Ai, Bi are the Airy functions, and H υ
(1), H υ

(2) are the
υ th-order Hankel functions; relevant parameters/vari-
ables are defined below:

σ 2 = α2

4
– k r

2sin2θ 1 (28)

η = – 1

(k 1U
2 δ)

23
– k 1U

2 δz + k 1U
2 – k r

2 – α2

4
      (29)

ζ = 1 − κz (30)

β2 = 1
κ 2

k 0
2b 2 – k r

2 – α2

4
(31)

υ2 = 1
4

– ω2

κ 2
1

c 1U
2

– b 2

c 0
2 (32)

with k1 = ω/c1 and θ1 defined as k1 cos θ1 = k0 cos θ0.  It
is to be noticed from Eq. (32) that for high frequency, or
any other factor rendering υ2 negative, the Hankel func-
tion becomes imaginary orders.  While both the Airy
functions and the Hankel functions are generally built-
in in most computational software, the imaginary order
of Hankel functions may not be readily available, so that
a special treatment may be needed [7].  For this instance,
the authors have found that Mathematica [14] is particu-
larly useful in this analysis.

RESULTS  AND  DISCUSSION

The formulations derived in the previous section
may be readily implemented to investigate the effects of
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Fig. 2. Sample profiles for density and sound speed; parameters em-
ployed (units omitted): A = 2073, α = −0.0249, a = 0.288,  c1 =
2059, 1750, 1750 (for constant, k2-linear, inverse-square sound
speed profile, respectively), δ = −0.0101, b = 0.953, c0 = 2500, and
κ = −0.05.
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sediment stratification on the sound fields in each layer,
particularly in the upper semi-infinite half space, which
shall be referred to as the reflection field that comprises
both the source and reflected fields.  In the present case
of point source, in order to view the overall behavior of
the sound fields, the results are better represented by the
Transmission Loss (TL) over the range, as opposed to
the reflection coefficient for the case of plane wave.
The transmission loss in the upper layer is defined as
(Since the absolute value of TL bears little significance
in this analysis as the source spectrum Sω is nominally
taken to be unity, so that the unit of TL may considered
to be dB referenced to 1 Pa.):

TL = 20log|p0| (33)

It is to be noted that the source spectrum Sω shown in Eq.
(2) is taken to be unity, which may be considered as the
sound field being normalized by the source spectrum.

Before generating the numerical results, when
possible, the computational algorithm should be checked
against the currently available software to ensure its
correctness.  In this regard, the widely-applied numeri-
cal program OASES is invoked.  It is noted that OASES
employs a numerical device that discretizes the non-
homogeneous medium into a few numbers of layers,
each of which being uniform, and then solves the prob-
lem by the method of global matrix.  Therefore, by
treating the sediment layer as a whole with the exact
expressions for the wave equation, the results should be
asymptotically approached by those generated by OA-
SES as the grid for the non-homogeneous layer is gradu-
ally refined.  Figure 3 shows a comparison between the
present results, referred to as exact solutions, and those
obtained by OASES for a typical example of inverse-
square case shown in Figure 2.  It is clearly seen in
Figure 3 that, as the number of layering increases from
5 to 20 in OASES, the results become closer and closer
to the exact solutions, indicating that the numerical
algorithm is reliable in the present analysis.

Figure 4 shows the results of TL for frequency 50
Hz, and for three kinds of sound speed stratification; the
density distribution remains the same as generalized-
exponential type.  It is interesting to note that variation
in sediment stratification affects the results mainly in
the intermediate range, which for the set of parameters
shown in the legend of the figure is roughly between 100
and 800 m.  This behavior is analyzed as follows.  In the
field close to the source (near field), the reflection field
is dominated by the direct paths from the source field as
well as the reflective waves resulting from the steeper
source sound rays, for which the reflection is weak and
most energy is penetrated into the bottom, and therefore
it makes little difference for which type of sound speed

variation the sound rays are encountered in the sediment
layer.  On the other hand, for the sound field far away
from the source (far field), the reflection field is in
effect attributable to those source sound rays emerating
with shallow grazing angles, for which they exercise
total reflection without feeling the difference of the
sediment stratification.  For the intermediate range, the
reflection field, besides the direct source field, is an
integration of a bundle of reflective (and/or penetrable)
sound rays whose amplitudes and/or phases are signifi-
cantly affected by the sediment properties, rendering
the stratification of the sediment layer an effective
factor for the characteristics of the reflection field.

Figures 5 and 6 are the similar results as Figure 4
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except for frequency changed to 75 Hz and 100 Hz,
respectively.  These results demonstrate similar behav-
iors as those described in the previous paragraph, ex-
cept now that the outer bound of the effective range of
influence due to sediment stratification is pushed out
further as the frequency increases, which is seen, as an
example, in Figure 7 for the case of inverse-square
profile.  It is also noticed that the interference pattern
becomes more and more complicated as the frequency
increases.

To examine the dependence of reflection field on
other geometrical or dynamical parameters, in what
follows, we shall just focus on the case of inverse-
square sound speed profile in the sediment layer be-
cause of its bearing close to reality.  Figure 8 shows the
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Fig. 6. TL for various sound speed distributions for frequency 100 Hz.

results for frequency 75 Hz, and for three sediment layer
thicknesses: 30, 60, and 100 m.  Again, the variation is
similar to that of Figure 4).

Figure 9 demonstrates a series of results for vari-
ous sediment thicknesses when the shear property of the
seafloor basement is accounted for.  In this case, the TL
becomes higher when the sediment thickness is smaller,
owing to the fact that energy may lose into the bottom
with an extra mechanism of shear wave propagation.
For large sediment thickness, the shear property is
ineffective because the waves do not penetrate into the
bottom.

Finally, Figures 10 to 12 show the complete sound
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Fig. 8. TL for frequency 75 Hz and for three sediment layer thick-
nesses: 30, 60, and 100 m.
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fields for frequency 50, 75, and 100 Hz, respectively.
The sound fields in the upper and lower semi-infinite
half spaces, and in the sediment layer demonstrate
three different kinds of propagation pattern.  In the
upper medium, the interference between the source
field and the reflected field results in a beam pattern
whose number increases as frequency increases, while
in the lower medium, the sound field is mainly pen-
etrated outgoing waves whose energy decays quickly.
In the sediment layer, the sound field demonstrates a
waveguide propagation pattern, in which the energy
propagation is mainly due to normal modes.

CONCLUDING  REMARKS

This analysis considers the problem of acoustic
point-source reflection from a flat seabed with a non-
uniform fluid-like sediment layer within which the den-
sity follows a generalized-exponential variation with
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Fig. 9. Effects of basement shear property on TL for frequency 75 Hz
and for various sediment layer thicknesses.

Fig. 10. Complete sound field for frequency 50 Hz.

Fig. 11. Complete sound field for frequency 75 Hz.

Fig. 12. Complete sound field for frequency 100 Hz.
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depth, and the sound speed profile is either constant or
varying as k2-linear or inverse-square function.  The
combination of these density and sound speed profiles
not only are realistic in an oceanic environment but also
allow the acoustic wave equation to be solved
analytically, thus facilitating the analysis of the problem.
The study has shown that the different sound speed
stratification in the sediment layer affects the reflection
field mainly in the intermediate range of the sound field.
Near or far away from the source, the reflection field is
dominated by waves with propagation mechanisms that
are little interactive with the sediment layer.  This sheds
light on the experimental procedure that a measurement
should be carried out in the intermediate range, if an
inversion problem for sediment stratification is in order.
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