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ABSTRACT

Numerical and experimental investigations provide a link to the
location and size of cracks caused by natural vibrations.  Cracks may
generally result in the variation of structural stiffness and hence
enable structures to vibrate nonlinearly.  In order to understand the
vibrational behavior of crack structures accurately, the study pro-
poses a general and efficient algorithm based on the finite element
assumptions and the bilinear vibrational theory.  All formulae are
derived from the time domain properly and may apply to the overall
non-linear motion cycle completely.  The contact effect is also consid-
ered by introducing the degree of penetration on the cracked surface.
By assessing the variation of natural frequencies in crack open and
closed modes, changes in the dynamic characteristics of cracked
structures are investigated.  A single beam and a spatial rotor blade
structure are used to demonstrate the validity of the current method.
Results in estimation with the variation of vibrational behaviors are
significant compared with those available from experiments as well as
some other numerical algorithms.  Conseuqently, it is obviously
found that the current algorithm allows the prediction of the location
and the magnitude of cracks more efficient and significant than
before.  Further extension of the current method to other related fields
is highly suggested.

INTRODUCTION

Small cracks or defects produced in mechanical
components during the manufacturing process will form
discontinuities in their geometry, which will also result
in a variation of stiffness and hence affect the dynamic
characteristics in such a way as to make them difficult
to predict.  For reasons of safety or other applications,

it is therefore necessary to predict the dynamic charac-
teristics of a mechanical component with embedded
microcracks.  An examination of the changes in dy-
namic characteristics can thus be the justification for
the inspection of a cracked structure.  For this purpose,
different approaches based on analytical or numerical
analysis have been adopted to investigate the dynamic
characteristics of cracked beam structures.  In some of
these studies, both sides of the crack were assumed to be
in a constantly open state [10, 17].  However, whether
the crack front remains in an open or closed state during
vibration is influenced by the amplitude limitation or
mutual collision of the crack front surface.  When the
crack tip closes and opens alternately in line with the
vibration, it is referred to as a “breathing crack”.  A
cracked structure with such a breathing crack may thus
exhibit non-linear characteristics to different degrees
[5, 18], depending on the vibration amplitude and mode
shape.  This increases the complexity of the situation
when investigating vibrations in damaged structures,
especially the modeling of a breathing crack.  Many
researchers [1, 6, 13, 15, 16] have introduced an elastic
rotational spring to represent the discontinuous stiff-
ness or local flexibility at the cracked section.  The
spring constant is usually derived from fracture me-
chanics [1, 13].  Another approach using finite element
analysis has been verified to be efficient in dealing with
the dynamic behavior of a complicate cracked structure.
For this kind of numerical analysis [8, 11, 12], the
construction of the stiffness matrix of a finite element
beam model, in particular, a cross section with cracks,
is a necessity.  To consider the variation in local stiff-
ness due to the presence of the crack, Gounaris [8] and
Khiem [11], respectively, proposed a crack compliance
matrix to conjugate with other intact beam sections in
the FE model.  Based on this concept, Khiem [12]
further developed a dynamic stiffness matrix method to
model a multiple cracked beam.  As in the analytical
approach, the cracks were also modeled by a rotational
spring element [1] but with different degrees of stiff-
ness depending on structural attributes such as elastic
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properties and the crack depth.  However as revealed in
certain references [4, 9], a breathing crack experiencing
vibration will exhibit different kinds of structural stiff-
ness before and after the crack surface comes into
contact, and hence cause a change in vibration behavior,
appearing as a bilinear vibration characteristic.  The
modeling of the crack using a single equivalent elastic
spring element thus cannot sufficiently describe the
bilinear vibration characteristic and the effect of con-
tact on the dynamic behavior.  Generally, such a contact
effect comes from the mutual contact of the crack in the
closing period including the increase in contact stiff-
ness and the constraints on the motion of the cracked
section.  To ensure accurate prediction of the dynamic
behavior, this additional contact effect should be taken
into consideration in computation.

Economy and safety are the two main factors,
which should be considered during the design of a
turbine blade.  A blade-shaped component is required
not only to be very light, but also to be sufficiently
strong.  Cracks caused by vibrations are responsible for
most blade failures. Reducing the vibration of the blade
and lowering its stress is a rigorous challenge.  The
dynamic analysis of repetitious engineering structures
is greatly simplified by assuming a perfect periodicity.
Unfortunately, this mathematical idealization is invalid
due to unavoidable manufacturing and material defects.
On account of Manufacturing flaws or cyclic fatigue
during operation, cracks frequently appear in rotating
machinery [2, 7].  A blade crack may cause a local
change in the flexibility.  As noted by several investiga-
tors [20], a local defect may be introduced into the non-
linear system.  Most types of crack in rotating machin-
ery are surface cracks, but it is difficult to emphasize
fracture mechanics in this model.  To make the analysis
easier, the investigation of a two-dimensional problem
using a model of a crack extending over the entire chord
is necessary.  Some researchers [14, 20] have, using a
two-dimensional crack model, studied the vibrational
behavior of a blade, beam and rotor with a crack.  In this
study, a new simplified method combining the finite
element method (FEM) and bilinear vibration theory is
proposed in order to investigate the dynamic character-
istics of a cracked structure.  Analysis is carried out in
the time domain to consider the effect of the motion
constraint on the behavior of the vibration.  The pro-
posed method is validated by the comparison of current
and previously published results.  Through the use of
this numerical analysis, the effects of the location and
depth of the crack on the changes in the vibrational
frequencies and mode shape of a cracked structure are
investigated.  The results predicted by this method can
further be applied as a method of crack identification of
cracked structures.

THEORY  AND  FORMULATION  OF
CONSTRAINED  MOTION

In practice, the vibrational behavior of a crack
structure will be affected owing to the displacement
constraints on the crack sides.  Any finite element nodes
on both sides of the crack surface must be controlled
when the crack sides close or open during vibration.
Therefore, the bilinear vibration behavior of a cracked
structure must be simulated as a three-dimensional sys-
tem with proper motion constraints.  In the following,
the bilinear natural frequency of a vibrating system with
proper displacement constraints is derived.

1. Period of bilinear motion

Consider a multi-degree-of-freedom system, the
motion equations can be expressed in terms of the
matrix form

[M ]{X } + [K ]{X } = 0 (1)

A well-known solution to the Eq. (1) at ith mode is

xj = xoj sin ωt, (2)

Rewrite Eq. (1) into the following form

m ij

d x j

d x j
+

k ij x j

x j
= 0 (3)

By integrating Eq. (3), we have

m ij
0

x
x j d x j = –

– x 0j

x j
k ij x j dx j = 1

2
m ij x j

2

= 1
2

k ij (x 0j
2 – x j

2) (4)

The above Eq. (4) can be written in matrix form as

1
2

[m ]{x 2} = 1
2

[k ]({x 0
2} – {x 2}) (5)

Letting [k ] = [m ]– 1[k ] and substituting into Eq. (5),
yields

{x 2} = [k ]({x 0
2} – {x 2}) (6)

The velocity term in above equation can be further
expressed as

x j = [k ij (x 0j
2 – x j

2)]
1
2 = [k ij ]

1
2 (x 0j

2 – x j
2)

= κ ij (x 0j
2 – x j

2) (7)
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where [κ] = [[m ]– 1[k ]]
1
2

Shown in Figure 1 is the mass i vibrating freely
with amplitude x0 in certain direction but with an elastic
boundary placed at xci in opposite direction.  When the
displacement is constrained at xci, the mass may pen-
etrate into the boundary with a depth of xp after contact
with the elastic boundary.  At this point, a bilinear
motion will occur under this condition and the relation-
ship of x and x  will display an unsymetrical motion
depicted in the phase plane of Figure 2, which is quite
different from a full ellipse type of free vibration.  The
period to complete one cyclic motion consists of two
parts: free motion period and constrained motion period.
This can be estimated from the following integrating
form.

T i = 2 dt
Γ i

= 2(T – i + T + i ) (8)

and T – i = dt
Γ i –

=
x ci

– x 0i 1
x –

dx –,

T + i = dt
Γ i +

=
x p

x ci 1
x +

dx +

In above equations, Γi represent the motion trajec-

tory in the phase plane referring to Figure 2.  T−i is the
period of free motion from −x0 to xci and T+i is the period
of constrained motion from xci to xp.

(1) T−i period of free motion

Since dt =
dx i

dx i
dt = dt

dx i
dx i = ( 1

x i
) dx i  and

1
x i

= (κ ij (x 0j
2 – x j

2))
– 1

= (κ ij
– 1 1

(x 0j
2 – x j

2)
)

= (ς ij
– 1 1

(x 0j
2 – x j

2)
) (9)

The half period for free motion T−i can be obtained
from the integration in the time domain.

T – i = 2ς ij
x ci

– x 0i dx i

(x 0j
2 – x j

2)

= 2ς ij
x cj

– x 0j 1
(x 0j

2 – x j
2)

∂x i

dx j
dx j (10)

where [ς] = ([m ]– 1[k ])
1
2

By letting 
∂x i
∂x j

=
dx i

dt
dt

dx i
=

x i
x j

=
d
dt

(x 0j sin ωt )

d
dt

(x 0j sin ωt )
=

x 0j

x 0j

, Eq. (10) becomes

T – i = 2ς ij
x cj

– x 0j 1
(x 0j

2 – x j
2)

x 0i
x 0j

dx j (11)

After integrating Eq. (11), we get

T – i = 2ς ij
x 0i
x 0j

π
2

– sin– 1( –
x cj

x 0j
) (12)

Finally, the time period of free motion can be
represented in matrix form as

T – i = 2x 0i ς i 1 ς i 2 ς in

1
x 01

π
2

– sin– 1x c1
x 01

1
x 02

π
2

– sin– 1x c2
x 02

1
x 0n

π
2

– sin– 1x cn
x 0n

(13)

kn
mn

Xn

ki k1

X0i + Xci
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Xi

m2

X2

m1

X1

Fig. 1. Schematic showing of a multi-degree-of-freedom system.  A
constrained boundary is located at xci to restrict the motion of
ith mass.

− x0 ~ xc: Displacement interval for breathing crack with rigid boundary

− x0 ~ xp: Displacement interval for breathing crack with elastic boundary

− x0 ~ x0: Displacement interval for opening crack mode in free vibration

Γ

− x0 x0 x0xp x

x

Fig. 2. A bilinear motion plotted on the phase plane as a comparison
of motion loci for opening crack mode and breathing crack
mode.
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(2) T+i period of constrained motion

In the constrained motion, if the mass oscillates
with enough amplitude, it will contact with the elastic
boundary by a depth.  Generally, the depth of penetra-
tion depends on the contact stiffness of the interface
between the two contact bodies, which can be described
by the following term δ according to the studies by
Butcher[3] and Todoo [21], respectively,

δ = (x 0 / α) 1 – (x 0i
2 / x 0j

2 ) (1 – 1 / α2) ,

α = 1 + (x 0i / x 0j ) (14)

The period of constrained motion from xci to xp

can therefore be obtained by intergrating the term T+i in
Eq. (10) with xp = xci + δ, that is

T + i = 2ς ij
x 0i
x 0j

1
α

π
2

– sin– 1( –
x cj

x 0j
1 –

x cj
2

x 0j
2

(1 – 1
α2

) )

(15)

(3) Ti total period of bilinear motion
The total period of the bilinear motion can be

found by adding the partial periods of each motion of
the two regions, free motion period (12) and constrained
motion period (15).

T + i = 2ς ij
x 0i
x 0j

π
2

– sin– 1( –
x cj

x 0j
)

+ 1
α

π
2

– sin– 1( –
x cj

x 0j
1 –

x cj
2

x 0j
2

(1 – 1
α2

)

(16)

The bilinear natural frequency is obtained as

Ωi = 2π
T i

ANALYSIS  OF  A  CRACKED  STRUCTURE

In this study, two cases were investigated to under-
stand the significance of the current method.  Section 1
discusses a beam with a single-edge crack analyzed by
two different methods.  Section 2 discusses a blade-
shaped structure with a single-edge crack.  Due to the
presence of the crack, there is a 1 r1 r  singularity in the

stress field at the crack tip [5].  Usually, quarter point
(singular) elements are used to model the singular be-
havior in the stress field.  However, in this particular
analysis, global changes in the dynamic behaviors of the
beam, rather than local variations in the stress field due
to the presence of the crack, are expected; the regular
element was proven to predict similar results as that
obtained from the model meshed with a singular ele-
ment near the crack site [5].  Therefore, regular ele-
ments are adopted in calculations from this point on.

1. Analysis of a cracked beam structure

To demonstrate the validity of the current method,
two cracked beam models from our previously pub-
lished works are used to investigate the effect of cracks
on dynamic behavior.

(1) Comparison with the bilinear method

A cracked aluminum prismatic cantilever beam is
generated [5].  The length of the beam is 235 mm (L),
width 7 mm (W), and height 23mm (H).  Young’s
modulus is 72 GPa (G), density 2,800 Kg/m3 (ρ) and
Poisson’s ratio 0.3 (v).  A finite element model of the
cracked beam with a single-edge crack at mid-span is
shown in Figure 3.  The computed results of the normal-
ized natural frequencies versus the normalized crack
depth of the cracked beam are shown in Figure 4.
Comparative results obtained by Chondros et al. [5] by
experiment are also depicted.  In Figure 4, it can be
found that a crack with serious depth results in a signifi-

Fig. 3. The finite element model of a cracked beam with refined mesh
at crack site.
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cant decrease in vibrational frequency owing to the
decrease of beam stiffness at the crack site.  The results
of the current method also reveal that the natural fre-
quency for a beam with a breathing crack is higher than
that with an open crack.  It is worth to note that this
cracked beam has a first bending vibrational mode
similar to that brought about in an experiment per-
formed by Ghondros [5].

(2) Comparison with the torsional spring method

The presence of the crack causing a local flexibil-
ity to the beam can be expressed by a linear torsional
constant kt.  The evolution of the constant kt is a matter
of variable complexity depending on the structure.  Rice
& Levy [19] showed that a torsional spring constant due

to the crack can be obtained as: k t = Ew 3

72(1 – v 2)F (a / w )
where the spring constant for a Plexiglas beam is a
function of the crack depth ratio a/w.  For further
comparison here, the beam has the same geometry and
material properties as those used by Bamnions and
Trochides [1].  A comparison of the results of current
FEM simulations and those predicted using the tor-
sional spring method by Bamnions and Trochides [1] is
presented in Figure 5.  From this comparison, it can be
seen that there is great consistency in the predictions of
the dynamic behavior of the cracked beam.  However,
slight differences can be found between these results.
This can be ascribed to the fact that the contact stiffness

owing to the mutual interference of crack interface in
the crack closing period was not considered in the
torsional spring method [8], but dealt with a compatibil-
ity condition of displacement assumed at the interface.
This may lead to an underestimation of beam stiffness
across the crack site and hence reduce the vibrational
frequency.  However, for a breathing crack, the crack
surface is allowed to move freely during the opening
period; while in the closing period the displacement is
restricted by the crack sides coming into contact.  This
obviously shortens the motion path cycle in this period.
Since the period the crack is closed contributes a part of
the time needed to complete a motion cycle, it follows
that this will increase the vibrational frequency of this
half cycle with its constrained motion.  Such an effect of
constrained motion on vibration has been considered in
this study by estimating the time period in the time
domain.

2. Analysis of a blade-shaped component crack

A blade-shaped component crack may cause local
change in the flexibility [2, 7].  The FEM model shown
in Figure 6 was divided into 10 different location points
along the axial direction and divided into 7 location
points along the lateral direction b.  The material prop-
erties are as follows: E = 207 GPa, ρ = Kg/m3, γ = 0.3.
The normalized natural frequency corresponding to dif-
ferent crack depths and positions can be predicted by
current methods and their relationships can be further
depicted in three-dimensional diagrams as shown in
Figure 7.  From these figures, it is found that the
variations of natural frequency can be expressed as a
function of the crack depth for some crack positions.  As
expected, the frequency variation decreases with the
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depth of the crack.  When the crack grows along a lateral
direction, it implies that for a given crack location the
reduction in natural frequencies increases with the in-
crement of the crack depth.  For a crack located at
midpoint (a = 5) the natural frequency decreases about
50% for the first mode and 13% for the second mode.
Therefore, the effect of crack depth on the dynamic
characteristics changes with the crack axial position
initiated in the blade-shaped component structure.  Since
the major stiffness is dominated by the clamped part of
the cantilever blade-shaped component structure, as a
consequence, a crack occurring near the fixed end of the
blade will result in a substantial decrease in the fre-
quency compared to that near the free end.  For a crack
with a constant depth (b = 5) the natural frequency
decreases about 7% for the first mode and 12% for the
second mode.  For a crack embedded in a blade-shaped
component structure, it can be found from Figure 8 that
the natural frequency assessed in the breathing crack
mode is always higher than the crack assessed in the
opening state.  This difference can be ascribed to the
fact that the contact stiffness changes owing to the
mutual interference of crack interfaces.  That was not
considered in the crack opening mode.  A breathing
crack may increase frequencies due to decreases in the
period of constrained motion.  As described previously
the current method provides more precise and correct
crack information than others when detecting crack
depth and location.  Results derived from the current
method also indicate that both the crack location and
depth indeed influence the dynamic behavior of the

a (1-10)

b (1-7)

Fi
xe

d

(a) First mode

(b) Second mode

Fig. 6.  The finite element model of a rotor blade.
Fig. 7. Frequencies versus crack depth and crack position for a cracked

blade (a) first mode; (b) second mode.

crack structure to different degrees.  The existence of a
crack can thus be confirmed by measuring the change in
natural frequencies and comparing them to that mea-
sured for an intact structure.

CONCLUSION

This study focuses on the dynamic behaviors of
cracked structures using the finite element approach
(FEA).  In order to get rid of the complexity of non-
linearity of cracked structures, many researchers have
assumed that the crack surface is persistently in an open
state or the opposing sides of the crack do not come into
contact during vibration.  Actually, such a hypothesis
contradicts the reality of the situation.  Therefore, the
vibration model of breathing cracks is employed to
understand real vibrational behavior.  The vibrationa1
cycle of a breathing crack is non-symmetric including
its open and closed period.  In the closed period of the
crack, the motion will be restricted to a narrow region
constrained by mutual interference of the crack sides.
In order to obtain the overall period for the purpose of
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finishing the unsymmetrical motion cycle, this study
considers the contact effect as being a bilinear theory on
crack sites in computations.  All FEA formulae derived
in the time domain are applied in order to estimate the
above two periods.  To demonstrate the validation of the
current method, two cracked beam models coming from
previously published works are used to investigate the
effect of cracks on dynamic behavior.  Current results
obviously reveal that both the crack location and depth
indeed influence the dynamic behavior of the cracked
beam to different degrees.  In addition to this, compari-
son of the current simulation results and those available
in the literature has shown a significant consistency
when evaluating the variations in natural frequency.
Slight differences can be ascribed to the fact that the
contact effect in the closing period of the crack has not
been considered in some of the other literature.  Results
derived from the current method also indicate that both
the crack location and depth indeed influence the dy-
namic behavior of the crack structure to different degrees.

Thus the existence of a crack can be confirmed by
measuring the change in natural frequencies.  Different
depths of cracks and positions in the beams structure
will change the natural frequency from 5% to 60%.
These apparent and identifiable variable quantities can
be a basis for reference for on-line monitors of cracks or
the safe design of structures.  It is believed that the
current method can provide a reliable and accurate
technique for the detection of cracks occurring in other
damaged structures such as blade-shape components.
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