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ABSTRACT

Effects of different cavity closure models on the development
sheet supercavitation of two-dimensional hydrofoils were examined
in this report.  The study was carried out under the assumption of
potential flow for which a cavity closure model was needed.  A
potential-based boundary element method has been developed for this
purpose.  The models we employed included the constant velocity
model and the short plate termination model.  Several different airfoil
shapes were tested.  Their effects on the cavity shape, lift coefficient,
cavity volume and computation efficiency were studied.  Careful
investigations show that closure models have insignificant influence
on physical quantities, but do have strong effects on computational
efficiency.

INTRODUCTION

Cavitation is a challenging hydrodynamic phe-
nomenon both in physical science and engineering
applications.  In physical science, cavitating flows in-
volve many complicated and interdisciplinary physical
phenomena in which both physicists and applied math-
ematicians are interested.  In engineering applications,
erosion and corrosion of structures are almost unavoid-
able wherever cavitation occurs.  Detrimental noise
ensues from collapse of cavitating bubbles. More
recently, new generation of underwater weapons has
been developed by the concept of supercavitation.

In the past two decades, there has been significant
progress in the study and observation of sheet cavitation
phenomena, primarily due to the fast development of
high-speed computation science and more advanced
experimental techniques.  Nevertheless, the investiga-
tion of cavitation modeling has a very long history that
can be traced back to Kirchhoff [8].  Major pioneering
development was theoretical [5, 9].  The successful

application of potential flow theory played an active
role in these early theoretical developments.  Literature
surveys indicate that there are several significant fea-
tures worth of attention.  The cavity was usually macro-
scopically treated as a single big bubble of finite length,
which encompasses the whole region where cavitations
occur and micro bubbles dominate.  In addition, the
pressure inside the cavity bubble was usually assumed
to be constant.  Linearized theories were proposed by
Tulin [13, 14].  He obtained the analytical solution for
a supercavitating flat plate hydrofoil with a sharp lead-
ing edge.  Later, Acosta [1] provided the first partial
cavitation solution for a flat-plate hydrofoil.  More
recent linearized theoretical development was due to
Furuya and Acosta [6].  Nonlinear development has
been explored by Wu [18, 19].  He employed the open-
wake model to study the cavitating flat plate at an
arbitrary angle of flow incidence.

However, in the context of potential flow, the
specification of condition in the cavity closure region
creates serious problems in cavitation modeling.  It is
clear that very complicated flow phenomena occur in
this region and cannot be incorporated into a potential
flow model.  In fact, the termination of cavity has not yet
been clearly described due to its turbulent, two-phase,
and even compressible flow physics.  Therefore, it is
necessary to resort to some artifact in the vicinity in this
region to cope with this difficulty. Several closure
models have been devised (see, e.g. [2]).  The models
investigated in the present study will be addressed and
discussed later.

With the modern evolution of computational
methods, several nonlinear numerical procedures of
boundary-element type have been successfully devel-
oped for the solution of sheet cavitation, based on the
early theoretical achievements.  In these approaches,
cavity surface conditions are usually satisfied on the
exact cavity surface that is part of the solution and
determined iteratively by proper computational
algorithms.  Uhlman [15, 16] employed a velocity-
based nonlinear boundary element method to obtain
solutions for partially-cavitating and supercavitating
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hydrofoil flows.  Kinnas and Fine [7] developed a
potential-based nonlinear boundary element method.
This appears to be superior to the velocity-based meth-
ods in terms of convergence.  Several different cavity
closure models have been incorporated in these compu-
tation procedures.  For example, in partially cavitating
flow computations, Kinnas and Fine [7] employed a
model in which the velocity in the termination zone was
decreased to zero according to a prescribed law.  More
recently, the reentrant jet was used by Krishnaswamy et
al. [10].  Vaz et al. [17] developed a new boundary
element method in which the elements are located on the
foil surface and the boundary conditions for the cavity
surface have been reformulated based upon a Taylor
expansion.  They compared their results with those
using the reentrant jet model [4] and concluded that
different models had insignificant effects on the cavity
physics.

In supercavitating flow computations, Uhlman [16]
employed the short-plate model; Lee et al. [11] and
Chen and Weng [3] used a simple closure model.
However, their effects on computations, such as con-
vergence and convergence rate, and on flow physics,
such as lift, cavity shape, and so on, have not yet been
studied and compared in detail.  It is the purpose of the
present study to carry out a more clear observation in
computation.

THEORETICAL  FORMULATION

Consider a uniform potential flow past a two-
dimensional hydrofoil, as shown in Figure 1.  The
governing equation of the velocity potential φ = φ(x) is
the Laplace equation,

∇2φ = 0. (1)

The flow velocity is related to the velocity poten-
tial by

u = ∇φ. (2)

Several boundary conditions are identified for well-
posedness of the problem.

For a uniform incoming flow, the velocity distri-
bution far away from the hydrofoil is

∇φ = U (icosα + jsinα), (3)

where α is the angle of attack of the uniform flow, U the
speed of the incoming uniform flow, and i and j the unit
vectors in x- and y-directions, respectively.

On the surface of hydrofoil, Sb, and the surface of
cavity, Sc, a kinematic condition must be prescribed,

∇φ • n = 0, (4)

where n denotes the unit normal to the surfaces.  This
condition guarantees no penetration of the fluid flow
through the surfaces.

In addition, a dynamic condition is required on the
surface of the cavity, Sc.  That is, the pressure inside the
cavity is constant,

p = pv = constant, (5)

where pv denotes the vapor pressure.  According to this
condition, it can be derived via the Bernoulli equation
that on the cavity surface, we have

|uc| = constant, (6)

where uc represents the tangential velocity on the cavity
surface.  The implication of this condition is that the
velocity potential at any point x on the cavity surface
can be expressed as

φ(x) = φ(xd) + |uc|s, (7)

where the subscript d represents the detachment point of
the cavity and s the distance between the detachment
point and x along the cavity surface.

Furthermore, the cavitation number, σ, can be
related to uc as follows,

σ =
P – p v

1
2
ρU 2

=
uc

U

2

– 1, (8)

where P is the pressure of the undisturbed flow and   the
density of fluid.

For a cavitating flow, we need two more conditions,
i.e., the detachment condition and the termination con-
dition of the cavity.  These two conditions prescribe
where the cavity begins and how it ends.  Generally
speaking, these conditions cannot be discussed pre-
cisely within the context of potential flow since the flow
detachment points are strongly affected by viscous ef-
fect and the flow around the cavity end is obviously
turbulent.  For simplicity, we assume that the flow
detaches exactly at the leading edge.  It is also assumed

Foil Sbα Cavity Sc

P = PV

Fig. 1.  Schematic of cavitating flow.
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that the flow detaches at the trailing edge for a
supercavitating flow.

The termination condition and the related models
will be discussed in detailed in the next section.

Finally, for a two-dimensional potential flow in a
multi-connected domain, the Kutta condition must be
prescribed to determine uniquely the circulation.  This
condition is prescribed at the end point of cavity for a
supercavitating flow.

CAVITY  CLOSURE  MODELS

Two different closure models were studied.  We
briefly describe and comment on these models in the
following.

The first one is the simple closure model which,
shown in Figure 2, prescribes a simple close cavity on
which surface the tangential velocity is constant
everywhere, according to Eqs. (5) and (6).  This model
was employed in [11].  The cavity shape and the tangen-
tial speed on the cavity surface are part of the solution
to be determined.

This is a purely computational model due to its
simplicity in numerical implementation.  In fact, from
the mathematical point of view, a closed finite body
with a constant pressure does not exist in exact potential
flow theory.  This kind of termination condition is
contradictory to the constant pressure condition inside
the cavity (or the constant tangential velocity condition
on the cavity surface).

The second model is the short plate termination
model (or modified Riabouchinsky model).  This is a
well-developed model proposed by Riabouchinsky [12].
As shown in Figure 3, the cavity ends at a plate normal
to the incoming flow.  In addition to the cavity shape and
the tangential velocity, the height of the short plate is
unknown and need be determined as the flow solution is
sought.

The short plate model was first employed by
Uhlman [16].  Incorporating with this model, he devel-
oped a velocity-based nonlinear boundary element
scheme to compute supercavitating flow fields.

NUMERICAL  DISCRETIZATION

According to Green’s identity, the solution of the

Laplace equation, Eq. (1) can be written in terms of
normal dipoles and sources distributed on the boundary
surfaces.  Here, we introduced a dipole distribution on
the cavity and wet foil surfaces and a source distribution
on the cavity surface.  The total potential of the flow
may be expressed as

φ(x ) = U ⋅ x + q
S c

(ξ)φsdS – µ
S b + S c

(ξ)(n ⋅ ∇ φx) dS

+ µw
S w

(ξ) (n ⋅ ∇ φx) dS

where q(ξ) and µ(ξ) represent the source and dipole
strengths at position ξ, respectively, φx is the potential
due to a source of unit strength located at x on the
boundary surface, µw the dipole strength on the wake
surface Sw, and n the unit normal directed into the flow
at ξ.

The distribution of sources on the cavity surface
serves as a normal flux generator so as to adjust the form
of cavity surface.  They vanish pointwise when the
cavity surface is exactly prescribed or located, leaving
only a dipole distribution on the foil and cavity surfaces.

The numerical discretization has been a standard
procedure.  The wetted part of the hydrofoil surface and
the cavity surface are approximated by an N-sided poly-
gon defined by Nb and Nc vertex points (“nodes”) dis-
tributed on the surfaces Sb and Sc, respectively.  The
total number of elements N is the sum of Nb and Nc.
Assume that the dipole and source strengths on each
element are constant and that the control point is posi-
tioned at the center of each element.  The discretized
form the integral formulation can be formally written as

φi = U ⋅ xi + Σ
j = 1

N c

q jαij – Σ
k = 1

N

µkβ ik + µwβ iw (9)

where the subscript i denotes the control point of i-th
element and the coupling coefficient is defined as
follows,

αij = 1
2π

ln
S j

rdS

End point

Foil Cavity

Wake

Fig. 2.  The constant-pressure model.

Cavity surface

Wake

Foil Short plate    = ±   /2θ π

Inflow

Fig. 3.  The modified riabouchinsky model.
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β ik =

1
2π S j

∂ln r
∂n k

dS , i ≠ k ,

1
2

, i = k (10)

where r is the distance between points ξ and x.
To obtain the solution, one must solve together the

unknown cavity shape and discretized source and dipole
strengths in the equation system (9).  Therefore, the
singularity strengths and locations on the cavity surface
must be updated iteratively.  A nonlinear procedure has
been developed to cope with this kind of solution.  The
detailed description of the iterative procedure can be
found in [3].  For completeness, it is briefly stated in the
following.
(1) Prescribe the cavity length and an initial shape of

cavity surface.
(2) Determine the dipole and source strengths by solv-

ing the equation system of Eq. (9) on the basis of the
prescribed cavity boundary.

(3) The shape of cavity surface is then updated based on
the source distribution obtained in the last step.

(4) Repeat steps (2) and (3) till reasonable convergence
is achieve.

SOME  TEST  CASES  AND  DISCUSSIONS

For test purposes, a series of computations have
been conducted for three different hydrofoil sections.
They are flat plate, NACA16004 section, and Eppler’s
new section.  The flat-plate hydrofoil is the most typical
case in literature because its analytical data are available.
The NACA16004 section represents a “traditional” hy-
drofoil section.  In contrast, the Eppler’s new section
represents a hydrofoil section of new generation de-
signed specifically for cavitating flow conditions.  For
each hydrofoil, we varied the cavity-length-to-chord
ratio ( / c  = 1.2, 1.4, 1.6, 1.8, 2.0) and the angle of
attack (α = 2°, 4°, 6°, 8°).

In addition to compare effects of different closure
models on the flow development, we employed the same
mesh in the chordwise direction for the each flow setup
condition.  For the short plate model, two additional
elements were implemented on the plate to model plate
effects.  Some important effects we have observed are
discussed in the following.

We first examine the cavity shape. Some of typical
convergent computational results for the simple and
short-plate models are shown in Figures 4-7.  Figures 4
and 5 show the convergence history (L2-norm of differ-
ence between two subsequent iterative solutions) and
the cavity shape, respectively, for different hydrofoil
sections at a small flow angle of attack, α = 4°, and a
short cavity length, / c .  On the other hand, Figures 6
and 7 show results at a bigger angle of attack, α = 8°, and
a longer cavity length  / c .

For each case, regardless of the incidence angles
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Fig. 5.  Cavity shapes for different hydrofoils at α = 4° and / c = 1.2.
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of flow and cavity lengths, we find that the cavity shape
curves closely coincide to each other, except at the rear
cavity region where the closure models are applied.
This seems to indicates that different closure models do
not significantly alter the cavity shape.

It is interesting to note that, as pointed out in the
previous section, the simple closure model contradicts
to the potential flow theory and, therefore, cannot be a
real physical model.  However, this fact does not create
a significant deviation of cavity shape.  Therefore, as far
as computations and engineering applications are
concerned, this seems to be a feasible model.  In fact, we
find that the simple closure model is a good one in terms
of not only its engineering applicability but also its
robust convergence property that will be discussed later.

In addition, since the cavity shapes computed from
different closure models do not differ significantly, we
may conclude immediately that the cavity volumes vary
insignificantly.

The cavitation numbers we obtained by computa-
tions with three different closure models do not vary
significantly.  Furthermore, general observations
throughout our test cases also show that the static pres-
sure distributions on the foil surfaces agree with one
another very well.  This implies that at a specified set of
flow incidence and cavity length, the lifts due to differ-
ent closure models do not have observable deviation
from one another.

Observing these computational results, we may
conclude that, as far as macroscopic properties of cavity
are concerned, cavity closure models have only minor
effects on the development of flows of two-dimensional
supercavitating hydrofoils.

Nevertheless, the convergence history of itera-
tions shows an interesting phenomenon for different
closure models.  As shown in Figures 4 and 6, it appears
that computations with the simple closure model have a
much better and stable convergence history.  In contrast,
those employing the short-plate model usually require
much more number of iterations to converge.  What is
worse is that the iterations sometimes lead to divergence.

Figure 8 shows the convergence history at a = 2°
and / c  = 1.4.  Iterated with the same initial guess, the
computations that incorporated with the simple model
were fully convergent within 100 iterations whereas
those with the short-plate model could not achieve a
reasonable convergence.  In fact, we found that for all
three hydrofoils the computations with the short-plate
model were usually divergent for a long cavity if the
angle of attack was small.  It seems that the short-plate
model is somewhat unstable for iterations of the present
potential-based scheme.  Nevertheless, it appears that
this model does not show such divergent iterations in
the velocity-based scheme developed by Uhlman [16] in
which the unknown is the surface vorticity rather than
velocity potential.  The reason why the employment of
the modified Riabouchinsky model in the present poten-
tial-based boundary element method leads to numerical
instability in some cases is not clear.  A possible cause
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may be due to sharp edges of streamline near the ends of
the short plate, which is detrimental in finding the
tangential velocity on the cavity surface by taking first
derivatives of the velocity potential.  This is especially
true for a long bubble with a small angle of attack.  The
velocity-based scheme avoids this dilemma because it
employs surface vorticity as unknown from which the
velocity distribution can be immediately obtained with-
out taking partial derivatives.

Nevertheless, as the angle of attack increases, the
flat-plate model leads to convergence.  Figure 9 shows
such an example for which the angle of attack is   and the
cavity length ratio is 1.4.  However, it is evident that the

computation with the flat-plate model took much longer
time to converge, compared to that with the simple
closure model.  The latter converged within 100
iterations, whereas the former did not fully converge
before 1000 iterations.

For an even larger angle of attack, the convergence
history became better for the flat-plate model, as shown
in Figure 10.  Nevertheless, the simple closure model is
still a better scheme to be employed in computations
because of its better convergence rate.  Similar behav-
iors of convergence were observed for other hydrofoils.
It seems that these trends are universal.

CONCLUSION

Our study shows that cavity closure models do not
have strong effect on the development of the cavity and
engineering integrated properties of interests in
supercavitating flows.  Even though the reentrant jet
model is known to its better approximation to real
supercavitating flows, the computation results show
that they do not deviate significantly from those by
simpler closure models.

What should be more cautious in using these mod-
els is the convergence problem in computations.  Dif-
ferent models incur different convergence processes
and in some cases result in divergence during iterations.
Therefore, as far as engineering applications are
concerned, the simple closure model should be a better
choice because of its easiest implementation and nu-
merical robustness in iterations.
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