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ABSTRACT

The distribution of soil classes is an important factor in engineer-
ing design.  In order to generate the soil class map, fuzzy soil
classifications were developed to provide the means to characterize
and quantify the soil classes, and then the spatial distribution of soil
class can be interpolated by geostatistical method.  For establishing
continuous class soil maps, this paper present an index of fuzzy soil
classification generated from principal component analysis (PCA).
The ability of classification of the index is tested with a soil database
which including 9,260 soil samples, and the accurate rate of simula-
tion was 91.7%.  There are two procedures presented to establish the
3-D soil class map.  The first method is to integrate 2-D membership
degree maps into 3-D maps; while the second method is to interpolate
the spatial distribution of index of fuzzy soil classification directly by
3-D ordinary kriging.  These procedures are illustrated by a demon-
strated area.

INTRODUCTION

Geotechnical engineering design is strongly influ-
enced by the distribution of soil classes.  For visualizing
the three-dimensional distribution of soil classes, the
quantitative system of soil classification is required.
The traditional systems of soil classification are deter-
ministic and symbolic and cannot to be used to conduct
numerical calculation or to predict the spatial distribu-
tion of soil classes.  McBratney and de Gruijter[8]
proposed fuzzy k-means (FKM) for fuzzy quantitative
soil classification.  Fuzzy soil classification uses the
membership degrees to correspond to the degrees of
classification.  Hence, the fuzzy information is able to
express the gradual transition of soil classes [7] and can
be interpolated by geostatistical methods [5] to obtain

the spatial prediction of soil classes [3, 4, 6, 11].
FKM is an unsupervised cluster system; it needs to

define the number of cluster in advance but not to define
the rule of experience.  It can obtain the optimal centers
of groups that minimize the total distance from sample
to cluster center.  Chen et al. [2] showed that the fuzzy
similarity measure could improve the ability of FKM’s
identification in soil classification.  This system is
referred to the fuzzy similarity of grain-size distribution
(FSGSD). FSGSD is based on the similarity degree
between curves of grain-size distribution to identify the
soil classes.  The membership degrees are obtained by
FKM, and the degrees of similarity are evaluated by
FSGSD for each class.  Then the soil class maps are
generated by geotechnical method and illustrated indi-
vidually for each class; not an integrated soil class map.
Therefore this paper uses principal component analysis
(PCA) to establish an index of fuzzy soil classification.
Through the index, the spatial distribution of soil classes
can be estimated easily, and soil class map can be made
further.  In this paper the procedure of analysis includes
four parts: the quantifying soil classification system,
using PCA to obtain the index of fuzzy soil classifica-
tion from the degree of fuzzy similarity, applying
geostatistics to predict the distribution of index of fuzzy
soil classification, and visualizing the 3-D soil class
map.

FUZZY  SIMILARITY  OF  GRAIN-SIZE
DISTRIBUTION

The fuzzy similarity measure which first presented
by Pappis and Karacapilidis [12] is mainly applied to
determine the degree of similarity between two fuzzy
numbers.  FSGSD, which presented by Chen et al. [2],
identifies the soil classes based on the similarity be-
tween patterns of grain-size distribution curve.  The
similarity degree is defined as the ratio of the area that
is confined by minimum curve to the area that is con-
fined by maximum curve as shown in Figure 1.  In the
figure, the x-axis is grain size and y-axis is percent finer.
The x-axis is assumed nominal scale for simplifying
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calculation.  Since the area measure is a trapezoid area,
the measure equation can be written as follows:

S (A , B ) =
(G L + 2S L + 2M L + C L )
(G U + 2S U + 2M U + C U ) (1)

where GL, SL, ML, and CL represent the lower accumu-
lated content of gravel, sand, silt, and clay between two
curves, respectively; GU, SU, MU, and CU are the higher
accumulated content.

According to the Unified Soil Classification Sys-
tem (USCS), the grain size of gravel is over 4.75 mm
(sieve no. 4), sand is between 0.075 mm (sieve no. 200)
and 4.75 mm, and fine grain is under 0.075 mm.  Then
according to the American Association of State High-
way and Transportation Officials (AASHTO), the fine
grain size is divided into silt size (between 0.002 mm
and 0.075 mm) and clay size (under 0.002 mm).  The
simplified distribution curves of fuzzy soil classes were
obtained by FKM from Chen et al. [2].  The accumu-
lated contents of grain size of fuzzy soil class are listed
in Table 1.  The procedure of FSGSD is illustrated with
an example as follows.  If a soil sample is defined SM by
USCS and the accumulated grain-size contents of gravel,
sand, silt, and clay are 100%, 100%, 19%, and 1%,
respectively.  In the fuzzy gravel class, the accumulated
grain-size contents of gravel, sand, silt, and clay are
100%, 64.36%, 26.58%, and 11.43%, respectively.  The
transformed distribution curves can be obtained by com-
paring the two curves.  The curve of maximum value

consists of the higher accumulated content, and the GU,
SU, MU, and CU are 100%, 100%, 26.58%, and 11.43%,
respectively.  The curve of minimum value consists of
the lower accumulated content, and the GL, SL, ML, and
CL  are 100%, 64.36%, 19%, and 1%, respectively.  Then
the degree of similarity between this sample and fuzzy
gravel class can be evaluated by Eq. (1), and the degree
is 0.7343.  The other degrees of similarity for fuzzy
sand, fuzzy silt, and fuzzy clay class are 0.9554, 0.7335,
and 0.6507, respectively.  Finally this sample will be
classified to the class of the highest degree of similarity,
i.e. fuzzy sand class.

PRINCIPAL  COMPONENT  ANALYSIS

PCA is concerned with explaining the variance-
covariance structure through a few linear combinations
of the original variables.  PCA can conduct the orthogo-
nal transformation of a coordinate system and removes
linear correlations among the data.  The new coordinate
axes are called as principal components.  PCA can
efficiently represent data distributed on a linear hyper
plane and retain as much information as possible in
fewer components instead of the original variables.  The
PCA need to evaluate the eigenvalues and eigenvectors
form the correlation matrix of data.  The eigenvalues
represent the ability of explained variance.  The eigen-
vectors are the coefficient of transformation of the
coordinate system.  Therefore, the eigenvector in maxi-

Fig. 1.  The max. and min. value curves of grain-size distribution.

Table 1.  The accumulated contents of grain size of fuzzy soil class form FKM

Fuzzy soil class
Accumulated contents of grain size

Gravel size Sand size Silt size Clay size

Gravel 100% 64.36% 26.58% 11.43%
Sand 100% 99.75% 25.10%   4.12%
Silt 100% 99.89% 75.79% 10.27%
Clay 100% 99.67% 89.63% 40.66%
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mum eigenvalue is the coefficient of transformation of
first principal component.  In this paper, the PCA with
correlation matrix is conducted by MINITAB software
[10].  The PCA is applied in FSGSD and in FKM, and
the first two components are required.

ANALYSIS  OF  A  DATABASE

For establishing the index of fuzzy soil clas-
sification, the PCA is performed with a database.  The
database includes 650 boreholes, 9,260 samples, in
Kaohsiung city.  The depth was from 0 to 30 meters and
the statistic of soil classes are listed in Table 1.  From
Table 1, the number of gravel, sand, silt, and clay soil
are 103 (1.11%), 5,892 (63.63%), 1,534 (16.57%) and
1,731 (18.69%), respectively.  The soil classes in the
soil database mainly are sandy soil (63.63%); the gravel
is relatively little (1.11%) and in some sub-groups there
is no sample.

In FSGSD, the four eigenvalues are 3.3907,
0.4577, 0.1095, and 0.0421, respectively.  The ratio of
an eigenvalue to the sum of eigenvalues is called as the
ratio of explained variance.  Therefore, the first compo-
nent is able to explain the variance up to 84.7%.  The
values in the new coordination system are called as the
component scores.  The scatter plot of the first and the
second component scores in FSGSD is illustrated in
Figure 2; the soil classes are obviously clustered.

For establishing the index of fuzzy soil clas-
sification, the distribution of the first component scores
is shown in Figure 3, and the difference soil classes can
be readily identified.  Therefore the first component is
regarded as the index of fuzzy soil classification (Ifc).
The formula of first component (or called as the index
of fuzzy soil classification) is as follows.

I FC = 0.50206 ×
S G – 0.69251

0.07939
+ 0.50124 ×

S S – 0.86416
0.11174

– 0.46345 ×
S M – 0.81305

0.08546
– 0.53096 ×

S C – 0.75734
0.12091

(2)

where SG, SS, SM, and SC are the degrees of similarity of
a soil sample belonging to fuzzy gravel, fuzzy sand,
fuzzy silt, and fuzzy clay class, respectively.  The
coefficient of Eq. (2) is the eigenvector of first
component.  The following, (SG-0.69251)/0.07939, (SS-
0.69251)/0.07939, (SM-0.69251)/0.07939, and (SC-
0.69251)/0.07939, are the normalized scores.  Accord-
ing to the distribution of the first principal component
score, the intervals of the index of fuzzy soil classifica-
tion can be properly defined for each soil class: gravel
soil is greater than 1.81, sand soil between 1.81 and

-0.4, silt soil between -0.4 and -2.71, and clay soil is less
than -2.71.  The result of classification by the index is
listed in Table 2 and the rate of accuracy of gravel, sand,
silt, and clay soil are 75.73%, 98.23%, 80.70%, and
80.13%, respectively.  The overall accuracy is 91.70%
on the average.

In FKM the scatter plot of the first and the second
component scores is illustrated in Figure 4; the soil
classes are not obviously clustered.  The distribution of
the first component score is quite extreme as shown in
Figure 5 and the soil classes cannot be identified.

RESULTS  AND  DISCUSSION

This study selects a regular 100 m × 100 m area as
demonstrated case and collects a total of 15 boreholes
(including 195 soil samples, at 1.5 m depth intervals
between 0 to 20 m) as shown in Figure 6.  Among these,
11 boreholes (143 soil samples) are used as the trained
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Fig. 2. The scatter plots of the first and second component scores in
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data and 4 boreholes (52 soil samples) as the verified
data.  Two procedures are presented to establish 3-D
soil class map.  The details described as following
paragraphs.

1. The 3-D soil class map integrated from 2-D member-
ship degree maps

In this demonstrated site, the soil horizontal layers
are internally uniform corresponding the strata units but
the profiles in vertical are discontinuous relatively.
Hence, 2-D ordinary kriging is used to interpolate the
spatial distribution of membership degree of fuzzy soil
classes in each horizontal layer [4].  The global
variograms with the exponential model are taken in the
geostatistics and the number of 2-D soil maps is 52, four
fuzzy classes at 13 depths.  The class memberships are
integrated into an index of fuzzy soil classification.  The
geostatistical analysis was conducted by Vesper soft-
ware [9] for each grid-sampling interval. Vesper is
developed by the Australian Center of Precision Agri-

culture (ACPA) for spatial prediction that is capable of
performing ordinary kriging with local variograms.  The
3-D soil class map is visually illustrated by GridSTAT
software [1] as shown in Figure 6.  The coordinate
system in the figure is the 2-degree transverse Mercator
projection with Taiwan Datum 1997.

The results of verified data are listed in Table 3.
The accurate rates of sand, silt and clay are 95.83%,
85.71%, and 61.9%, respectively.  The overall accurate
rate is 80.77%.

2. The 3-D soil class map generated by 3-D ordinary
kriging

The procedure that described above is complicated
since the degrees of class membership need to be inter-
polated individually in each layer and to be transformed
into the index of fuzzy soil classification.

Hence, a comparatively easy procedure is
presented.  The 3-D kriging is used directly to estimate
the index of fuzzy soil classification in 3-D geological
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FKM.

Table 2.  The result of classification identified by the first principal component in FSGSD

Number (percent) Classification by USCS
Sum

Predict groups Gravel Sand Silt Clay

Gravel
78 66 0 0 144

(75.73%) (1.12%) (0%) (0%)

Sand
24 5788 84 2 5898

(23.30%) (98.23%) (5.48%) (0.12%)

Silt
1 38 1238 342 1619

(0.97%) (0.64%) (80.70%) (19.76%)

Clay
0 0 212 1387 1599

(0%) (0%) (13.82%) (80.13%)
Sum 103 5892 1534 1731 9260

Fig. 5.  The histograms of the first component score in FKM.



J.W. Chen & C.H. Chen: Application of Fuzzy Soil Classification in Visualizing 3-D Soil Strata 269

Table 3.  The result of classification predict by 2-D ordinary kriging

Number (percent) Classification by USCS
Sum

Predict groups Sand Silt Clay

Sand
23 1 3 27

(95.83%) (14.29%) (14.29%)

Silt
1 6 5 12

(4.17%) (85.71%) (23.81%)

Clay
0 0 13 13

(0.00%) (0.00%) (61.90%)
Sum 24 7 21 52

space.  The procedure is conducted by GridSTAT Pro
software, and the parameters of anisotropy ellipse are
used in the variograms.  After calculating by GridSTAT
Pro, the major correlation length is 231 m, the minor is
192 m, vertical is 18 m, and the direction of greatest
continuity is 53.906 degrees in clockwise from the
north.  Since the 3-D kriging consider the correlation of

vertical variation, it is more suitable to interpolate the
non-homogeneous layers in vertical direction.  The 3-D
soil class map estimated by 3-D ordinary kriging is
shown in Figure 7.  This soil map is different from the
map integrated by 2-D membership degree maps (see
Figure 6), and its the vertical variation is stronger.

The results of verified data are listed in Table 4.
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Fig. 6. The 3-D soil map integrated from 2-D memberships (vertical
exaggeration is 5).

Fig. 7. The 3-D soil maps interpolated by 3-D ordinary kriging (vertical
exaggeration is 5).

Table 4.  The result of classification predicted by 3-D ordinary kriging

Number (percent) Classification by USCS
Sum

Predict groups Sand Silt Clay

Sand
23 5 4 32

(95.83%) (71.43%) (19.05%)

Silt
1 1 4 6

(4.17%) (14.29%) (19.05%)

Clay
0 1 13 14

(0.00%) (14.29%) (61.90%)
Sum 24 7 21 52



Journal of Marine Science and Technology, Vol. 13, No. 4 (2005)270

The accurate rates of sand, silt and clay are 95.83%,
14.29%, and 61.00%, respectively.  The small accurate
rate of silt maybe results from the small number of silt
samples, the error of spatial interpolation, and the error
the identification by index.  The overall accurate rate is
71.15%, which is inferior to the result of the 3-D soil
map integrated by 2-D membership degree maps.  The
demonstrated area in the study is internally uniform in
horizons; thereby the 2-D kriging model is the better.
However, 3-D kriging model is comparatively easy and
considers the correlation of vertical variation; it is more
suitable to the strata relatively continuous in vertical.

CONCLUSION

Fuzzy soil classification can express quantitative
information of soil properties.  In order to establish
continuous class soil maps, the index of fuzzy soil
classification is presented and the accurate rate is up to
91.7% in a soil database from Kaohsiung city.

Two procedures are presented to establish the 3-D
soil class map. One is to integrate 2-D membership
maps into 3-D soil class map.  The other is to interpolate
the index of fuzzy soil classification directly by 3-D
ordinary kriging and comparatively easy to be con-
ducted.  Since the 3-D kriging model considers the
correlation of vertical variation, it is more proper in the
strata that are relatively continuous in vertical.  But in
the demonstrated area the strata are internally uniform
in horizontal, the accurate rate of the 3-D kriging model
is only 71.15%, which is inferior the result of 2-D
kriging model, 80.77%.  The both two procedures are
quite effective, however they should be chosen properly
for the different strata situation.  The 2-D kriging model
is proper for alluvium, and 3-D kriging model could be
proper for diluvium.
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