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ABSTRACT

The purpose of this research is to apply an adaptive fuel injection
control algorithm on a motorcycle engine and evaluate its performance.
A highly nonlinear switching type EGO sensor is used to measure the
air fuel ratio of the engine.  In the research, the nonlinear control
algorithm is developed based on a Lyapunov function.  Furthermore,
an observer is also applied to estimate the air flow rate into the
combustion room.  The results show that the air fuel ratio and engine
speed are stable under steady manoeuvres and the air-fuel ratio values
are satisfactory.

INTRODUCTION

Fuel injection control is an important tool for the
motorcycle to improve its emission and fuel efficiency
performance.  The main target of fuel injection control
is to achieve a desired Air-Fuel Ratio (AFR) such that
the engine power and emission can be compromised.
Another reason for AFR control is that the three-way
catalytic converter has best performance when the AFR
equals to 14.7.

The fuel injection control is basically a nonlinear
and time varying control task [11].  Many different
algorithms have been proposed to achieve desired con-
trol performance.  To derive a control algorithm, engine
dynamics model is usually required.  Previously, many
engine dynamics models have been developed.  These
models include sophisticated models and gray box
models.  The sophisticated models describe the mixture
formation phenomena including the intake manifold

dynamics, the torque generation dynamics, and fuel
flow dynamics [12].  On the other hand, the gray box
models were developed by [1, 7].  These models were
developed using system identification schemes and are
suitable for on-line AFR control operation.

As to the control system structure, feed-back in-
corporated with feed-forward control algorithms are
usually adopted.  The feed-forward control uses a look-
up table relating desired fuel injection rate to engine
loading and engine speed [2, 9].  On the other hand,
feed-back control loop receives feedback signal to cor-
rect the transient AFR error.  It is straight forward to use
AFR as the feedback signal and many researches were
focus on the accuracy of the AFR measurement [17].
For the feedback control loop, many algorithms to deal
with the engine nonlinearity were proposed.  Examples
are the sliding mode control algorithms [3, 10] and the
feedback linearizing AFR control algorithm [5].
Furthermore, since the engine characteristics are time
varying, [8, 13] include state observers, [4, 16] apply
adaptive system parameter identification law to im-
prove the transient dynamics.

The above control algorithms seem to work for car
engines.  However, they are complicated and may not
work for motorcycle engines.  This is because motor-
cycle engines usually operate at higher speed and there-
fore have different dynamics characteristics.  Therefore,
a suitable algorithm for the motorcycle engine fuel
injection control is the goal of this research.  The
following section introduces the dynamics model for
this research.  Section 3 discusses the proposed adaptive
control algorithm.  Section 4 presents the experiment
setup to validate the proposed adaptive control algorithm.
Finally, section 5 presents the results of the validation.

DYNAMICS  MODELS

1. Motorcycle longitudinal dynamics model

The motorcycle longitudinal dynamics can be de-
scribed by the bond graph model [14] in Figure 1.  In
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which, Te is the engine output torque, be is the crank
shaft bearing friction coefficient, ωe is the engine speed,
ωw is the motorcycle rear wheel speed, gr is the trans-
mission gear ratio, rw is the rear wheel radius, u is the
motorcycle forward speed, Tr is the rear wheel rolling
resistance, Jt is the moment inertia of the rear wheel, ms

is the motorcycle mass including the rider, F is the
interactive force between the tire and the ground, Fg is
the resistance due to slope, and Fa is the aero drag force.
Then the motion equation of the motorcycle longitudi-
nal dynamics can be written as

(J t + r w
2 m s)ωw = (T e – b eωe) g r – T r – r wF a – r wF g

(1)

2. Engine dynamics model

Engine dynamics includes intake manifold
dynamics, fuel flow dynamics, and torque generation
dynamics [12, 18].  These dynamics are discussed subse-
quently.

2.1. Intake manifold dynamics

Intake manifold dynamics can be expressed as

m a = m ai – m ao (2)

In which, m a  is the air flow rate in the intake
manifold volume, m ai  is the air flow rate into the intake
manifold, and m ao  is the air flow rate into the combus-
tion room.  The air flow rate into the intake manifold can
be expressed as

m ao = MAX × TC × PRI (3)

In Eq. (3), MAX is the maximum air flow rate, TC

accounts for the throttling effect, PRI is a function of the
air pressure before and behind the throttle.  Besides, the
air flow into the combustion room is described in Eq.
(4).  In which ηv is the volumetric efficiency, ωe is the
engine speed (rad/sec), c is defined in Eq. (5), Ve is the
cylinder volume.

m ao = cηvωem a (4)

c =
V e

4πV m
(5)

2.2. Torque generation model

Engine torque generation dynamics can be ex-
pressed as

T e = C T
m ao(t – ∆t it )
ωe(t – ∆t it )

AFI (t – ∆t it ) SI (t – ∆t st )     (6)

In Eq. (6), Te is the engine indicative torque, CT is
a constant, SI is a function of the fuel injection timing,
AFI is a function of AFR, ∆tit is the time delay between
air intake and torque generation, ∆tst is the time delay
between ignition and torque generation.

2.3. Fuel flow dynamics

The fuel flow dynamics can be expressed as

m ff = 1
τ ( – m ff + ξm fi ) (7)

m fv = (1 – ξ) m fi (8)

m fv = (1 – ξ) m fi (9)

In which, m fc  is the fuel rate into the combustion
room, m fi  is the fuel rate out of the nozzle, m ff  is the fuel
flow directly into the cylinder, m fv  is the fuel flow from
evaporation, ξ is the deposit rate, τ is the deposition

Fig. 1.  Motorcycle longitudinal dynamics model.
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coefficient.  This is because a portion of m fi  deposits on
the wall in stead of going into the combustion with the
intake air.  The deposit portion evaporates and then flow
into the combustion room in a later time.

ADAPTIVE  FUEL  INJECTION  CONTROL
ALGORITHM

1. Nonlinear control algorithm

Suppose an error indicator, s, is defined as the
following

s = m ao – β0m fc (10)

where β0 is the desired AFR.  On the other hand, the

actual AFR is defined as β =
m ao

m fc
 .  The error defined in

Eq. (10) may converge to zero if the following dynamics
can be achieved [15]

ss = – η s – 1
τ s 2 (11)

where η is a gain values chosen to be positive, τ is the
deposition coefficient which is always positive.  In
theory, η affect the convergence rate of the AFR control.

This is because s2 converge to zero if d
dt

(s 2) = ss < 0.

Furthermore, if s2 converge to zero,  also converges to
zero.   In Eq. (11), the right hand size is negative because
η, τ, |s|, and s2 are positive, ensuring ss < 0.  From (8),
(9), one can write

m fc = (1 – ξ) m fi + m ff (12)

By differentiating Eqs. (10) and (12) and then
rearrange the results, one can obtain

s = m ao – β0[(1 – ξ) m fi + 1
τ m fi – 1

τ m fc ] (13)

s = m ao – β0[(1 – ξ) m fi + 1
τ m fi – 1

β0τ
m ao] – 1

τ s

(14)

Since EGO sensor is used for most of the motor-
cycle for the reason of cost reduction.  This kind of
sensor generates switching type signal.  Thus, its output
signal is expressed as y = sgn(s).  For the purpose of
injecting fuel control, Eq. (11) is chosen as the control
algorithm.  This equation can be rearranged as

s = – η
s
s – s

τ = – ηsgn (s ) – s
τ = – ηy – s

τ (15)

Since y = sgn(s) is the feed-back signal in the real

application, the following equation, can be derived

– ηy = m ao – β0[(1 – ξ) m fi + 1
τ m fi – 1

τ m fc ]       (16)

Rearrange the above equation, one can obtain

m fi = – 1
τ(1 – ξ)

m fi +
m ao

τβ0(1 – ξ)
+ 1
β0(1 – ξ)

(m ao + ηy )

(17)

This equation ensures that the AFR converges to
the desired value.

2. Intake air flow rate observer

As shown in Eq. (17), injected fuel quantity is
decided by the air flow rate into the combustion room to
achieve desired AFR.  However, it is hard to measure air
flow rate.  Therefore, an observer is proposed to esti-
mate this value.

Suppose the estimate of m ao  is m ao , the estimate of

m ao  is m ao , then the following equation can be estab-
lished

m fi = 1
τ(1 – ξ)

[ – m fi + 1
β0

m ao + τ
β (m ao + ηy )]   (18)

Consequently, one can substitute Eq. (18) into
(14) to obtain

s = m ao – β0{
1
τ [ – m fi + 1

β0
m ao + τ

β0
(m ao + ηy )]

+ 1
τ m fi – 1

β0τ
m ao} – 1

τ s (19)

Then, rearrange the above equation to obtain

s = (m ao – m ao) + 1
τ (m ao – m ao) – ηy – 1

τ s        (20)

If the following Lyapunov function [15] is applied

V = s + 1
2

(ηv – ηv)2 (21)

where ηv is the volumetric efficiency and ηv  is its
estimate, the following equation can be obtained by
differentiating Eq. (21)

V = ssgn (s ) – (ηv – ηv
)ηv (22)

The Lyapunov function in Eq. (21) is a specially
designed function to facilitate our design of a nonlinear
controller under the use of a switching type EGO
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sensor.  This is because EGO sensor for measuring the
AFR only provide “too high” or “too low” information,
represented by “1” and “-1” relatively.  The above
signal from EGO sensor can be represented by sgn(s)
mathematically.  Thus, for the purpose of designing a
suitable adaptive law, a |s| is used in the Lyapunov

function.  Furthermore, the 
1
2

(ηv – ηv
)2

 term in Eq. (21)

is to ensure that the volumetric efficiency estimate
converges to the correct value as time goes to infinity.
Then, substitute Eq. (20) into Eq. (22) to acquire

V = [(m ao – m ao) + 1
τ (m ao – m ao) – ηy – 1

τ s ] sgn (s )v

– (ηv – ηv
)ηv (23)

Supposed the following adaptive law is selected

ηv = 1
τ cωem a sgn (s ) (24)

in which ωe, ma, and sgn(s) are measured variables from
relative sensors.  Eq. (23) can be rewritten as

V = [(m ao – m ao) – ηy – 1
τ s ] sgn (s ) (25)

When the engine is under minor operation, m ao  is
almost zero, which approximate m ao  to cηvωem a .
Furthermore, from Eq. (24), m ao  is always positive.
Thus, Eq. (25) can be written as

V = – m aosgn (s ) – ηsgn2(s ) – 1
τ s (26)

which is always a negative value due to the above
mentioned reason.  Furthermore, since Eq. (21) reveals
that   is always positive,  always converges to zero if Eq.
(26) is achieved.  This proves that the adaptive nonlin-
ear control algorithm is stable.

EXPERIMENTAL  SETUP

To validate the proposed algorithm, a hardware-
in-the-loop motorcycle longitudinal dynamics simula-
tor is applied.  The simulator features the dynamics of
KYMCO AFI125 motorcycle.  The specification of the
motorcycle is shown in Table 1.  This simulator includes
an engine, a transmission, and a rear wheel from a real
motorcycle.  A powder brake is rigidly coupled to the
rear wheel to generate effective road loading on the rear
wheel.  The effective road loading is expressed as

Teff = Tr + rwFg + rwFa (27)

A fly wheel is coupled to the rear wheel to account
for the effective inertia of the motorcycle.  A central

computer is applied to control the operation of the
system, including the operation of the throttle variation
and the powder brake torque generation.  The central
computer is also responsible for dynamics variables
measurement.  Another computer embedded with
Mathworks xPC is used to control the fuel injection.
The proposed adaptive control algorithm is realized
through Matlab/Simlink/State flow software.  A picture
of the motorcycle dynamics simulator is shown in
Figure 2.  On the dynamics simulator, sensors are in-
stalled to acquire the corresponding dynamics variables,
including a engine speed sensor, engine brake torque
sensor, rear wheel speed sensor.  Finally, a BOSCH
ETP-008.71 five gas emission analyzer was used to
measure the emission of the engine.

RESULTS  AND  DISCUSSIONS

To validate the proposed algorithm, several differ-

Table 1.  Specification of KYMCO AFI125

Body model SJ25AA
Height, width, length 1,115, 695, 1770 mm
Engine model AFI SR125
Engine type 4 stroke, air cooled, OHC
Engine bore, stroke 52.4, 57.8 mm
Engine fuel system Fuel injection
Engine no. of valves 2
Engine displacement volume 124.6 cc
Engine compression Ratio 9.8
Engine idle speed 1640 rpm
Engine ignition type CDI
Transmission CVT

Engine block

Muffler

Continuous variable
transmission

Fly wheel

Powder brake Powder brake driver

Fig. 2.  Motorcycle longitudinal dynamics simulator.
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ent simulations were conducted.  These simulations
characterize the performance of the intake air flow rate
observation.  Since the features of these simulations are
similar, only one simulation result is presented in this
paper.

The presented simulation has an initial 20° steady
state manoeuvring followed by a step throttling change
of 20° at 40 sec and maintain at 40° after the change.
Figure 3 shows the motorcycle speed variation in this
case.  In the initial stage, the vehicle speed rise to a
steady speed at about 24 km/h.  Then, at 40 sec the
motorcycle speed increase to a new steady speed.  Fig-
ure 4 shows the volumetric efficiency estimation using
the observation law.  Since the volumetric efficiency
has direct relation with the intake air flow rate, Figure
4 also characterizes the performance of intake air flow
observation.  In the simulation, the initial estimate has

a significant deviation from the real value.  Then, the
estimated volumetric efficiency converges to the cor-
rect value in about 20 sec.  At 40 sec, the estimate value
diverges from the correct value again due to the step
manoeuvring.  However, it converges to the correct
value in an instance.  It can be expected that after the
first convergence, the estimation error can be corrected
instantly.  Finally, Figure 5 shows the air-fuel ratio
variation in this case.  Initially, a substantial air-fuel
ratio deviation exists due to the initial intake air estima-
tion error.  Then, the AFR converge to the desired value
in about 20 sec, which is closely correlated to the
performance of the intake air estimation.  Finally, the
step manoeuvre at 40 sec also introduces an AFR
deviation.  The AFR control algorithm quickly corrects
the deviation.  The above figures show that the proposed
adaptive law is expected to perform well if the dynamics
can be modelled accurately.  However, modelling error
is expected and, thus, the adaptive law performance is
expected to degrade on real engine.

Subsequently, experiments were also conducted to
evaluate the performance of the control algorithm ap-
plying on motorcycle engine.  For the experimental
validation, several experiments were conducted and the
results are similar.  Therefore, some of the experiment
results are presented in this paper.  First of all, the
performance of volumetric efficiency observation is
evaluated.  A result corresponding to an idle speed
operation is shown in Figure 6.  This figure shows that
the observation starts at 30 sec and the volumetric
efficiency converges to a steady state value, with a
significant initial deviation.  This is reasonable since
the air flow rate is stable in steady state operation.  This
result validates the performance of the adaptation law.
Then, the performance of the adaptive nonlinear control
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law is compared with the open-loop control law used on
the KYMCO motorcycle.  The open-loop KYMCO con-
troller is basically a series of look-up table incorporated
with many logic rules to switch between different tables
for different operation condition.  Compensation rules
are also integrated in the controller to compensate for
environmental variation such as different environmen-
tal temperatures.  These tables are usually developed
through a tedious tuning in the cost of man-power and
development time period.  On the other hand, the adap-
tive nonlinear controller can adapt to different engine
and different operation condition in a short period.
Basically, it does not require pre-tuning of the engine.
Furthermore, for the open-loop type controller, re-tun-
ing is usually required for an aging engine, which does
not apply to the adaptive nonlinear controller.  Thus,
the adaptive nonlinear controller is a relatively better
control algorithm from the commercialization point of
view.

Figures 7 and 8 show the results in idle operation
of the KYMCO controller and the adaptive nonlinear
controller relatively.  In each figure, throttle, speed, and
air-fuel ratio variations are shown.  One can see that the
engine speeds in these two experiments are both stable,
which implies that the air-fuel ratio in both cases must
also be stable.  Measurements of the air-fuel ratio in
these two cases are also shown in Figures 7 and 8.  The
results show that the air-fuel ratios are stable as expected.
However, the air-fuel ratio of the adaptive nonlinear
controller is relatively smoother than the KYMCO
controller.  This is because the adaptive nonlinear con-
troller is capable of resolving the dynamics variation in
the system.

Furthermore, steady state operations featuring
engine speed roughly about 3000 rpm were also con-
ducted for both the KYMCO controller and the adaptive

nonlinear controller.  The results are shown in Figures
9 and 10.  Similar results as that shown in the idle
operation were obtained.  However, for the adaptive
nonlinear controller, two significant deviations can be
noticed between 25 and 30 sec.  This situation happens
due to the measurement error in the intake manifold
pressure, which causes an error in the calculation of ma,
and consequently, error in the calculation of ηv  in Eq.
(24).  This error introduces error in the calculation of
injecting fuel.  To improve this situation, an appropriate
filter may be used to get rid of the measurement noise in
the intake manifold pressure sensing.  Another way to
deal with this problem is to develop a robust controller
reduce the sensitivity of the close-loop system to the
measurement noise.

Finally, CO, HC, and NO are measured while
testing the adaptive nonlinear controller and the aver-
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age values in time history are shown in Table 2.  It shows
that the emission under this condition satisfies the Tai-
wan motorcycle emission regulation which is almost the
most rigorous around the world.

CONCLUSION

An adaptive nonlinear controller is applied in this
research to control the air-fuel ratio of a motorcycle
engine.  The engine dynamics is highly nonlinear be-
cause it involves sophisticated dynamics processes and
mutual-interaction.  Besides, EGO sensor is used to
measure the air-fuel ratio at exhaust pipe.  The EGO
sensor provides switching type feedback signal (−1 or
1) to the controller.  Thus, both the feedback signal and
system dynamics are nonlinear, introducing a nonlinear
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Table 2. Average values of the emission in idle operation and a
steady state operation for the adaptive nonlinear con-
troller

Experiments CO HC NO

Idle operation 0.543 120 54
Steady state operation 0.602 156 230

Fig. 10. Performance of the adaptive nonlinear motorcycle controller
in a steady state operation.

control problem in their nature.
The proposed algorithm is validated through simu-

lation and experiments.  For the simulation, a motor-
cycle longitudinal dynamics model is developed to quali-
tatively discuss the performance of the algorithm.  This
model features engine, transmission, motorcycle inertia,
and road load.  On the other hand, for the experimental
validation, an experimental setup featuring a real en-
gine and a transmission from a KYMCO fuel injection
type motorcycle was used.  Effective road loading and
inertia are also accounted in the setup.

The simulation results show that the proposed
adaptive algorithm can track the intake air flow
successfully, despite a substantial initial erroneous guess.
After then, the intake air flow observer can quickly
correct the estimate.  Subsequently, the AFR control can
obtain a good performance due to an accurate estimate
of the intake air flow.

Finally, the experimental results show that the
adaptive control algorithm introduces stable engine
dynamics and satisfactory emissions.  The idle speed
variation meets the requirement of the motorcycle
manufactures.  The steady manoeuvres also feature
stable engine speed.  Most importantly, the AFR stays
closely to the desired value and the emissions meet the
Taiwan regulation which is rigorous compared to other
regulations worldwide.  In conclusion, an adaptive non-
linear control algorithm is successfully applied on a
motorcycle engine for the control of air-fuel ratio.
Furthermore, due to the success in air-fuel ratio control,
the engine speed and emission including CO, HC and
NO can be maintained in a satisfactory level.  In the
future, more experiments featuring dramatic operation
must be done to evaluate the performance of the control
algorithm.
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