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ABSTRACT

This work demonstrates the electromechanical behavior of pi-
ezoelectric laminated composite beams using the differential quadra-
ture method (DQM).  The Chebyshev-Gauss-Lobatto sample point
equation is used to select the sample points.  The electromechanical
responses of piezoelectric laminated composite beams with various
boundary conditions are determined.  The transient responses of the
derived systems are calculated using the Wilson-method.  In this
approach, only nine sample points are required to obtain convergence.
Numerical results indicate that the DQM is valid for a piezoelectric
laminated composite beam formulation.

INTRODUCTION

To extend the engineering applications for piezo-
electric materials, the composite structure is preferred
in future design concept.  With the development of
stable responses and high performance piezoelectric
laminated composite beams have become very important.
Piezoelectric material has been extensively applied in
sensors and actuators.  Wu [33] presented a general
approach for examining the electromechanical responses
of piezoelectric materials.  Huang and Dai [15] pro-
posed a theoretical model to examine the static and
dynamic electromechanical responses of piezoelectric
transducers that are treated as a beam.  Chen et al. [10]
studied the dynamic instability problems of a composite
beam with piezoelectric material layers subjected to
periodic axial compressive loads.  Weinberg [32] solved
a closed form solution for bending of Euler Bernoulli

piezoelectric beam and neglected the effect of trans-
verse shear on the deformation of the beam.  Tadmor
and Kosa [28] extended the Weinberg analysis to mate-
rials with arbitrary electromechanical coupling coeffi-
cients by accounting for the variation of electric field in
the beam layers.  Yang and Huang [34] investigated a
three-dimensional, infinitely extended, anisotropic pi-
ezoelectric solid containing a flat ellipsoidal crack with
emphasis laced on when one of the principal axes of the
crack becomes zero.  Saitoh and Koshiba [23] formu-
lated a stress method considering piezoelectric effects
based on the finite element method, which can be ap-
plied to arbitrarily anisotropic material based optical
wave-guide devices.  In this work, the electromechani-
cal behavior equations of the piezoelectric laminated
composite beam are derived using the differential quadra-
ture method (DQM).  The calculated accuracy and in-
tegrity of this problem solved using DQM is demon-
strated by a series of case studies.

DIFFERENTIAL  QUADRATURE  METHOD

There are many computational methods available
for electromechanical analysis.  In this work, the elec-
tromechanical responses of the piezoelectric laminated
composite beams are investigated using the DQM.
Bellman and Casti [1] and Bellman et al. [2] proposed
originally DQM.  This method reduces the partial dif-
ferential equations into a set of algebraic equations and
has been used extensively to solve a variety of problems
in different fields of science and engineering.  The
DQM has been shown to be a powerful contender in
solving initial and boundary value problems and has
thus become an alternative to the existing methods.  One
of the fields among which one can find extensive DQM
applications is structural mechanics.  Bert and Malik [4-
6] and Bert et al. [3, 7, 8] analyzed the static and free
vibration of beams and rectangular plates using the
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DQM.  Jang et al. [16] proposed the   technique.  The
boundary points are chosen at a small distance.  The
technique can apply to the double boundary conditions
of plate and beam problems.  The   cannot be enlarged
for solution accuracy.  The solutions oscillate when the
is too small.  Wang and Bert [31] took the boundary
conditions into account in the DQ coefficients.  Malik
and Bert [19] solved the free vibration of the plates and
showed that the boundary conditions can be built into
the DQ coefficients.  In the formulation, the multiple
boundary conditions are directly applied to the DQ
coefficients and thus it is not necessary to select a
nearby point as the δ-interval method does.  In other
words the accuracy of the calculated results will be
independent of the value of δ-interval.  The DQ coeffi-
cients can be obtained by multiplication of the inverse
matrix.  Quan and Chang [21, 22] derived the weighting
coefficients in a more explicit way.  The explicit formu-
lae are more convenient.  Sherbourne and Pandey [24]
solved buckling problems using the DQM.  Feng and
Bert [14] solved the flexural vibration analysis of a
geometrically nonlinear beam using the DQM.  Liew et
al. [18] presented the analysis of the rectangular plates
resting on Winkler foundations using the DQM.  Liew et
al. [17] presented the static analysis of laminated com-
posite plates subjected to transverse loads using the
DQM.  Du et al. [13] used DQM for buckling analysis.
Shu and Du [25] solved the free vibration of laminated
composite cylindrical shells using the DQM.  Tomasiello
[30] solved initial-boundary-value problems using the
DQM.  Sun and Zhu [27] solved the incompressible
viscous flow using the DQM.  Choi et al. [12] solved the
dynamic characteristics of a spinning Timoshenko beam
using DQM.  Tanaka and Chen [29] applied the DQM to
the second-order time derivative in the elastodynamic
formulations.  The differential quadrature element
method is used to discretize the differential equations
and to analyze the structure problems with discontinu-
ous loading and discontinuous boundary.  Striz et al.
[26] used the quadrature element method for static
analysis.  Chen [9] presented the application of the
differential quadrature element method for the warping
torsion bar model.  Chen et al. [11] successfully solved
two dimensional plane stress and plate bending prob-
lems using the quadrature element method.  From what
we mentioned above, it is undoubtedly that for the past
twenty years, the DQM had been used extensively as an
effective way to solve a variety of problems in different
fields of science and engineering.

The efficiency and accuracy of the Rayleigh-Ritz
method are dependent on the number and accuracy of
the selected comparison functions.  DQM does not
involve such a difficulty, in terms of selecting the
suitable comparison functions.  The core of the DQM is

that the derivative of a function at a sample point is
approximated by a weighted linear sum of the func-
tional values at all the points sampled in the domain.
This method approximates the mth order partial derivate
of f(x, t) with respect to x as the following equation:

∂m

∂x m

f (x 1, t )
f (x 2, t )

..

..
f (x N , t )

≅ D ij
(m )

f (x 1, t )
f (x 2, t )

..

..
f (x N , t )

for i, j = 1, 2, ..., N (1)

where f(xi, t) is the functional value at the sample point
xi, and D ij

(m ) are the DQ coefficients of the mth order
differentiation attached to these functional values.

The DQ coefficients are difficult to obtain, be-
cause they may be ill conditioned.  Quan and Chang [21,
22] established a set of algebraic expressions to calcu-
lated the DQ coefficients to overcome the numerical ill-
conditioning in determining the DQ coefficients D ij

(m ),
namely:

f (x , t ) ≅ Σ
i = 1

N M (x )
(x – x i ) M 1(x i )

f (x i , t ) (2)

where

M (x ) = Π
j = 1

N

(x – x j ) (3)

M 1(x i ) = Π
j = 1, j ≠ i

N

(x i – x j ) for i = 1, 2, ..., N          (4)

Substituting equation (2) into equation (1) yields:

D ij
(1) =

M 1(x i )
(x i – x j ) M 1(x j )

 for i, j = 1, 2, ..., N and i ≠ j
(5)

and

D ij
(1) = – Σ

j = 1, j ≠ i

N

D ij
(1)

 for i = 1, 2, ..., N (6)

The second-order and higher-order derivatives of
the DQ coefficients can also be obtained by matrix
multiplication [19], thus:

D ij
(2) = Σ

k = 1

N

D ik
(1)D kj

(1) for i, j = 1, 2, ..., N (7)

D ij
(3) = Σ

k = 1

N

D ik
(1)D kj

(2) for i, j = 1, 2, ..., N (8)

D ij
(4) = Σ

k = 1

N

D ik
(1)D kj

(3) for i, j = 1, 2, ..., N (9)

.

.
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D ij
(4) = Σ

k = 1

N

D ik
(1)D kj

(m – 1) for i, j = 1, 2, ..., N (10)

The most convenient method is to pick up the
sample points in an equally spaced sample point
distribution.  Very poor accuracy results are obtained
using an equally spaced distribution.  Chebyshev-Gauss-
Lobatto sample points [4-6], which form an unequally
spaced sample point distribution, have been used to
improve the calculation accuracy.  The unequally spaced
sample points of each beam using the Chebyshev-Gauss-
Lobatto distribution in the present computation are
chosen as:

x i = 1
2

1 – cos
(i – 1) π
N – 1

 for i, j = 1, 2, ..., N   (11)

ELECTROMECHANICAL  BEHAVIOR  OF
PIEZOELECTRIC  LAMINATED  COMPOSITE

BEAMS

Consider a piezoelectric composite beam with elec-
tric faces normal to thickness h.  The stresses and
electric fields are taken as independent variables in the
piezoelectric constitutive equations.  The piezoelectric
constitutive equation coupled the mechanical and elec-
tric fields are given as following equations [33]:

σ 11
σ 22
σ 33
σ 23
σ 13
σ 12

D 1

D 2

D 3

=

C 11 C 12 C 13 0 0 C 16 0 0 e 31

C 12 C 22 C 23 0 0 C 26 0 0 e 32

C 13 C 23 C 33 0 0 C 36 0 0 e 33

0 0 0 C 44 C 45 0 e 14 e 24 0
0 0 0 C 45 C 55 0 e 15 e 25 0

C 16 C 26 C 36 0 0 C 66 0 0 0
0 0 0 e 14 e 15 0 κ 11 κ 12 0
0 0 0 e 24 e 25 0 κ 12 κ 22 0

e 31 e 32 e 33 0 0 e 36 0 0 κ 33

ε11
ε22
ε33
γ23
γ13
γ12

E 1

E 2

E 3

(12)

where Cij is the elastic constant, εij is the strain, γij is
engineering shear strain, σij is the stress, Ei is the
electric field, Di is the electric displacement and κij is
the dielectric constant measured at a constant stress.  A
piezoelectric Euler Bernoulli beam is considered and
the effect of transverse shear on the deformation of the
beam is neglected.  The beam is loaded mechanically by

application of distributed loads normal to the beam axis,
parallel to the beam axis and electrically by application
of voltages across the piezoelectric beam.  Electric
potential can be described as the following equation:

φ(x, t) = φ(0)(x, t) + xφ(1)(x, t) + x2φ(2)(x, t)       (13)

where φ is the electric potential, φ(0), φ(1) and φ(2) are the
electric potential parameters.  A piezoelectric beam
subjected a prescribed surface traction Pi, a surface
charge per unit area σ  and a prescribed electrical
potential φ  on the surface, Hamilton’s principle can be
described as the following equation [33]:

δ
t 0

t 1
1
2

ε ijσ ij – E i D i – ρ ∂u
∂t

dV

– (P i u i – σ φ) ds – n i D i (φ – φ ) ds dV = 0

(14)

where ρ is the density of the piezoelectric material, ni is
outwardly direct unit normal, V represents the volume
of the piezoelectric beam and s stands for the surface.
The differential equations governing the piezoelectric
laminated composite beams can be expressed as [33]:

C 11A
∂2u
∂x 2

+ e 31A
∂φ (1)

∂x – ρA ∂2u

∂t 2
+ b P x = 0        (15)

C 11I
∂4w
∂x 4

– 2e 31I
∂2φ (2)

∂x 2
+ ρA ∂2w

∂t 2
– b P z = 0     (16)

κ 11I
∂2φ (2)

∂x 2
+ κ 11A

∂2φ (0)

∂x 2
+ b σ = 0 (17)

e 31A
∂u
∂x + κ 11I

∂2φ (1)

∂x 2
– κ 33Aφ (1) + b σ = 0

(18)

2e 31I
∂2w
∂x 2

– κ 11I
∂2φ (0)

∂x 2
– κ 11J

∂2φ (2)

∂x 2

+ 4κ 33Iφ
(2) – b σ = 0 (19)

where u is the deflection parallel to the beam axis, w is
the deflection normal to the beam axis, e31 is the piezo-
electric constant, κ11 and κ33 are the dielectric constants,
A is the section area, b is the width of the beam, Px is the
loads parallel to the beam axis, Pz is the loads normal to
the beam axis.  By employing DQM, equation (1) is
substituted into equations (15) to (19).  For electrome-
chanical analysis of a fixed-fixed supported piezoelec-
tric beam, the governing differential equation can be
discretized in matrix form with respect to the sample
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points as the following equation:

[M ]
∂2y

∂t 2
+ [K ]{y} = {F } (20)

where

y (x 1, t )
y (x 2, t )

..
y (x N , t )

y (x N + 1, t )
y (x N + 2, t )

..
y (x 2N , t )

y (x 2N + 1, t )
y (x 2N + 2, t )

..
y (x 3N , t )

y (x 3N + 1, t )
y (x 3N + 2, t )

..
y (x 4N , t )

y (x 4N + 1, t )
y (x 4N + 2, t )

..
y (x 5N , t )

=

u (x 1, t )
y (x 2, t )

..
u (x N , t )
w (x 1, t )
w (x 2, t )

..
w (x N , t )

φ (0)(x 1, t )

φ (0)(x 2, t )
..

φ (0)(x N , t )

φ (1)(x 1, t )

φ (1)(x 2, t )
..

φ (1)(x N , t )

φ (2)(x 1, t )

φ (2)(x 2, t )
..

φ (2)(x N , t )

In this study, the electromechanical behavior of
the piezoelectric beams is solved using the Wilson-
method [20].  The Wilson-θ method assumes that the
acceleration terms vary linearly between consecutive
sampling instants.

NUMERICAL  RESULTS  AND  DISCUSSION

The material and the geometric parameters of
the piezoelectric laminated composite beams are [33]:

C11 = 107.6 × 109 N
m2 , e31 = −9.522 C

m2
, κ11 = 9.832 ×

10−9 F
m, κ33 = 8.185 × 10−9 F

m, b = 0.005 m, h = 0.005 m,

and L = 0.05 m.  Figures 1, 2, and 3 show the variation
of displacement w of piezoelectric beam with various Pz

and boundary conditions.  Three types of boundary
condition examples are presented to demonstrate the
piezoelectric effect.  The first example is a fixed-fixed
supported beam subjected a surface traction Pz.  The
second example is a fixed-simple supported beam sub-
jected a surface traction Pz.  The third example is a
fixed-free supported beam subjected a surface traction
Pz.  The boundary conditions influence the elastic dis-
placement of the piezoelectric beam significantly.  The
fixed-fixed beam deformation shapes are symmetric
about the geometric center.  The results show that the
elastic displacements of the piezoelectric beam are gen-
erally smaller than that of the same material without
piezoelectric coupling effects.  Figures 4, 5 and 6 illus-
trate the variation of electric potential parameters φ(0) of
fixed-fixed supported beam with various surface trac-
tions Pz and boundary conditions.  It is interesting to
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Fig. 1.  The displacement w of fixed-fixed supported piezoelectric beam with various surface tractions Pz.
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Fig. 2.  The displacement w of fixed-simple supported piezoelectric beam with various surface tractions Pz.

Fig. 3.  The displacement w of fixed-free supported piezoelectric beam with various surface tractions Pz.

study the influence of the different boundary conditions
on the voltage response.  The boundary conditions
influence the electric potential  parameters φ (0)

significantly. The electric potential parameters φ(0) are
zero at the boundary points of the piezoelectric beam.
This is because the boundary points are ground
connection.  Figures 7, 8, and 9 reveal the variation of
electric potential parameters φ(2) of piezoelectric beam
with various surface tractions Pz and boundary
conditions.  Maximal electric potential parameters φ(2)

are near the center point of the beam for the fixed-fixed
supported boundary condition and fixed-simple sup-
ported boundary condition.  Figure 10 indicates the
deflection w at the center point of the piezoelectric

beam with surface traction Pz = 3000 sin(2πt/100) and
various boundary conditions.  In order to characterize
the boundary condition effect, three types of boundary
condition examples are presented to demonstrate the
piezoelectric effect.  The results describe the effect of
load and boundary conditions on the vibration charac-
teristics of the piezoelectric beam.  Figure 11 presents
the electric potential parameters φ(0) at the center point
of the piezoelectric beam with surface traction Pz =
3000 sin(2πt/100) and various boundary conditions.
Such an effect becomes significant for different bound-
ary conditions.  Figure 12 introduces the electric poten-
tial parameters φ(2) at the center point of the piezoelec-
tric beam with surface traction Pz = 3000 sin(2πt/100)



M.H. Hsu: Electromechanical Analysis of Piezoelectric Laminated Composite Beams 153

3

2

1

0

-1

-2

-3

-4

-5

Pz = 1000

Pz = 10000

Pz = 20000

Pz = 30000

Position (m)

(0)φ

0

0.
00

5

0.
01

0

0.
01

5

0.
02

0

0.
02

5

0.
03

0

0.
03

5

0.
04

0

0.
04

5

0.
05

0

6

4

2

0

-2

-4

-6

-8

Pz = 1000

Pz = 10000

Pz = 20000

Pz = 30000

Position (m)

(0)φ

0

0.
00

5

0.
01

0

0.
01

5

0.
02

0

0.
02

5

0.
03

0

0.
03

5

0.
04

0

0.
04

5

0.
05

0

0

-5

-10

-15

-20

-25

-30

-35

Pz = 1000

Pz = 10000

Pz = 20000

Pz = 30000

Position (m)

(0)φ

0

0.
00

5

0.
01

0

0.
01

5

0.
02

0

0.
02

5

0.
03

0

0.
03

5

0.
04

0

0.
04

5

0.
05

0

20000000

15000000

10000000

500000

0

-500000

-1000000

-1500000

Pz = 1000

Pz = 10000

Pz = 20000

Pz = 30000

Position (m)

(2)φ

0

0.
00

5

0.
01

0

0.
01

5

0.
02

0

0.
02

5

0.
03

0

0.
03

5

0.
04

0

0.
04

5

0.
05

0

Fig. 4. The electric potential parameters φ(0) of fixed-fixed supported
piezoelectric beam with various surface tractions Pz.

Fig. 5. The electric potential parameters φ(0) of fixed-simple supported
piezoelectric beam with various surface tractions Pz.

Fig. 7. The electric potential parameters φ(2) of fixed-fixed piezoelec-
tric supported beam with various surface tractions Pz.

Fig. 6. The electric potential parameters φ(0) of fixed-free supported
piezoelectric beam with various surface tractions Pz.
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Fig. 8. The electric potential parameters φ(2) of fixed-simple supported
piezoelectric beam with various surface tractions Pz.

Fig. 9. The electric potential parameters φ(2) of fixed-free supported
piezoelectric beam with various surface tractions Pz.
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and various boundary conditions.  Three types of bound-
ary condition examples are presented to demonstrate the
piezoelectric effect.

CONCLUSION

In this work, the DQM formulation of the electro-
mechanical problems of piezoelectric laminated com-
posite beams as sensors and actuators are proposed and
investigated.  Using the DQM, the differential equa-
tions are transformed into a system of linear algebraic
equations.  The electromechanical behavior of piezo-
electric composite beam with various boundary condi-
tions has been shown.  The simplicity of this formula-
tion makes it a desirable candidate for modeling piezo-
electric laminated composite beams.  The formulation
present that the DQM is convenient for solving prob-
lems governed by forth or higher order differential
equations.
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