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ABSTRACT

In recent years, advances in hardware and software technology
had brought to significant improvement of NDT (Non-Destructive
Test) equipment.  In the field of evaluation and designs for the airfield
pavement, NDT has been extensively used.  NDT is an efficient
methodology for assessing the structural condition of an airfield
pavement, in the meantime, engineers need to carry other methods for
assessing pavement performance, such as visual condition, roughness,
and friction characteristics in completing the overall pavement
evaluation.  In this research, a model combined neuro-fuzzy system,
PCI method (pavement condition index, visual inspection) and NDT
(Heavy Falling Weight Deflectometer, HWD, structural condition)
data are used to evaluate an airfield pavement potential distress.  With
the help of case studies, it is shown that the proposed model is capable
to predict possible area of pavement damage potentials.

INTRODUCTION

Before NDT technology had been developed, pave-
ment structural data must be obtained from many borings,
cores, and excavation pits on an existing airfield
pavement, those works will be disruptive to airport
operations.  For example, to conduct a plate load test
in order to get in-situ modulus of subgrade reaction k of
a jointed plain Portland Cement Concrete (PCC), it
needs a 1.2 m by 1.8 m pits, and needs to remove each

pavement layer until the subgrade is exposed.  After the
plate-bearing test is completed, it would then need to
spend a lot of money to repair the test pit, and may keep
the test area closed for several days [13, 24].  In recent
years, advances in hardware and software technology
had brought to significant improvement of NDT
(Nondestructive test) equipment.  And NDT has been
extensively used in the field of evaluation and designs
for the highways and airfield pavement [2, 4-7, 15, 18,
19, 23, 25, 26].  There are many advantages in using
NDT which could replace or supplement traditional
destructive tests in the airfield, under close contact with
Air Traffic Control, it will then eliminate the interfer-
ence with the operation of airport.  The record shows
that NDT (FWD) operation can obtain in-situ structural
data within 2 to 3 minutes.  On regular highway (mainly
with Asphalt Concrete pavement) may collect FWD
data up to 250 locations per day.

HWD testing is an efficient methodology for as-
sessing the structural condition of an airfield pavement,
in the meantime, engineers need to carry other methods
for assessing pavement performance, such as PCI
(Pavement Condition Index) [3, 11, 21], GPR (Ground
Penetrating Radar) [25, 26], roughness, and friction
characteristics in completing the overall pavement
evaluation.  PCI method was widely used in the earlier
stage to evaluate the pavement condition.  However,
limitation of PCI data is that the systems have a ten-
dency to determine PCI values which does not really
describe the distress type during visual inspection
procedures, as is well known, it is possible to have two
pieces of pavement with the same PCI value, but totally
different distress types.

For developing a pavement maintenance and reha-
bilitation strategy, the correlation between structural
and functional performances is important.  For example,
due to environmental distress, a pavement may have a
low PCI value, but it still has sufficient strength to
accommodate structural loading.  It would be essential
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to cross check the NDT (FWD) data with PCI value, so
as to determine the structural analysis when mainte-
nance works are necessary.  A pavement having load
related distress would then be repaired with structural
overlay or re-construction; and a pavement with severe
raveling without load related damage could have a
patching, seal coat or minor overlay.  An efficient
pavement management not only makes engineering
progresses but also economic savings.

Because of the wide range of pavement types,
loading and local environmental conditions, there are so
many parameters influence the pavement performance,
it seems that a neuro-fuzzy system may solve this com-
plex problems.  In fact, the neuro-fuzzy system had
successfully to analysis different problems in civil en-
gineering field, such as the driven piles [1], the stress-
strain modeling of sands [10], the liquefaction potential
[8, 12, 17, 22] and the slope failure potential [16, 20].

In this research a neuro-fuzzy system is attempted
to solve this problems, the PCI investigating record data
as well as Heavy-Falling Weight Deflectometer (HWD)
data are used to evaluate pavement strength condition
that induced pavement damage potentials.  In the case
study, it is shown that the proposed model is able to
predict pavement damage potentials.

OVERVIEW  OF  NEURAL  NETWORKS

A neural network consists of a number of intercon-
nected proceeding units commonly referred to as
neurodes or neurons.  Each neuron receives an input
signal from neurons to which it is connected.  Each of
these connections has numerical weights associated
with it.  These weights determine the nature and strength
of the influence between the interconnected neurons.
The signals from each input are then processed through
a weighted sum of the inputs, and the processed output
signal is then transmitted to another neuron via a trans-
fer or activation function.  A typical transfer function is
the sigmoid transfer function.  The sigmoid function
modulates the weight sum of the inputs so that the
output approaches unity when the input gets larger and
approaches zero when the input gets smaller.

Figure 1 shows the architecture of a typical neural
network consisting of conventional three layers of in-
terconnected neurons.  Each neuron is connected to all
the neurons in the next layer.  There is an input layer that
holds the response of the network to the input.  It is the
intermediate layers, also known as hidden layers that
enable these networks to respect and compute compli-
cated associations between patterns.  A single hidden
layer is common used in most conventional neural
networks.

Training of the neural network is essentially car-

ried out through the presentation of a series of example
patterns of associated input and output values.  The
neural network learns what it is to compute through the
modification of the weight of the interconnected neurons.
Among many learning systems, back-propagation model
is the most commonly used one.  The learning algorithm
processes the patterns in two stages.  In the first stage,
the input pattern generates a forward flow of signals
from the input layer to the output layer.  The error of
each output neuron is then computed from the differ-
ence between the computed and the desired output.  The
second stage involves the readjustment of the weights in
hidden and output layers to reduce the difference be-
tween the actual and desired output.  Training is carried
out iteratively until the root mean squared errors (RMSE)
over all training patterns are minimized.

Once the training phase is computed satisfactorily,
verification of the performance of the neural network is
then carried out the using patterns that were not in-
cluded in the training set.  It will then determine the
quality of the predictions in comparison to the desired
outputs.  This is often called the testing phase. No
additional learning occurs during this phase.

Before presenting the input patterns to the neural
network, some preprocessing of the data is necessary.
This usually involves scaling or normalization of the
input patterns to values in the range 0 to 1.  This is
required because the sigmoid transfer function modu-
lates the output to values between 0 and 1.

1. The structure of neuro-fuzzy system

Figure 2 shows the structure of fuzzy system,
consisting of fuzzification, fuzzy rule base, fuzzy infer-
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Fig. 1.  Typical neural-network architecture.
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ence engine and defuzzification function systems in this
paper.  Figure 3 shows the structure of neuro-fuzzy
system in this research, using Fuzzy C-Means (FCM)
algorithm to extract the fuzzy rule and divide input
patterns into similar clusters, and finds the prototype, i.
e. cluster center.  Each cluster in this system will map to
a relative subnetwork, and the membership function is
used to examine the degree of membership between
each cluster and pattern.  If the degree of membership is
over the threshold, then the subnetwork will be fired.  If
there were many different subnetworks actived at the
same time, all of the actived subnetworks were fired.
Finally, we use the weighted average method to defuzzy,
and use hyperbolic tangent function to transfer output
value between −1 to 1.

2. Fuzzy rule

The fuzzy rule can be presented by Equation (1)

IF xj is v1 THEN y = NN1

IF xj is v2 THEN y = NN2

.

.

.
IF xj is vc THEN y = NNc (1)

where xj is input vector, xj = [x j
1, x j

2, , x j
n], vc is the

prototype of cluster c, vc = [v c
1, v c

2, , v c
n], and NNc is the

neuro network relative to cluster c.

3. Determine the cluster center and membership matrix

The FCM algorithm determines the cluster center
and membership matrix U using the following steps
[14]:
Step 1 Initialized the membership matrix U with a

random values between 0 and 1 such that con-
straints in Equations (3) to (5) are satisfied.

U = [uij]i = 1, ..., c; j = 1, ..., n (2)

Σ
i = 1

c

u ij = 1, for j = 1, 2, ..., n. (3)

0 < Σ
j = 1

n

u ij < n , for i = 1, 2, ..., c. (4)

uij ∈ [0, 1], for i = 1, ..., c; j = 1, ..., n. (5)

where c, i are number of cluster, n, j are number of
element, and uij is degree of membership, between
element xj and cluster i.
Step 2 Calculate the fuzzy cluster center

v i = 1

Σ
j = 1

n

(u ij )
m
Σ

j = 1

n

(u ij )
mx j , for i = 1, 2, ..., c.

(6)

where the vi is the cluster center, xj, input vector.
Step 3 Calculate the objective function according Equa-

tion (6).  Stop the iteration if its improvement
over previous iteration is small than a certain
threshold or a certain tolerance value

J (u ij , v i ) = Σ
i = 1

c

Σ
j = 1

n

(u ij )
m x k – v i

2
(7)

where m ∈ [1, ∞] is a weight exponential, vi is the cluster
center.  ||•|| is Euclidean metric.
Step 4 Compute a new membership function U.  Go to

Step 2

u ij = 1

Σ
k = 1

c

x j – v i

2
/ x j – v k

2
1

m – 1

,

for i = 1, 2, ..., c; j = 1, 2, ..., n. (8)

In this research we use the FCM function in the
fuzzy logic toolbox of Matlab.

4. Defuzzification

After clustering procedure, the input vectors di-
vide into different subnetworks.  As shown in Figure 4,
the subnetwork contains one hidden layer, a logic func-
tion works here as an activation function. Using a defuz-
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Fig. 2.  Typical structure of fuzzy system.

Fig. 3.  Structure of neuro-fuzzy system.
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zification process, a fuzzy system transfers the input
(fuzzy set) to a crisp output value.  The defuz-zification
uses the following steps:
Step 1 Calculate the fired value of neurons at hidden

layer, and outputs of neurons in hidden layer.

vj(n) = wji(n)xi(n) (9)

yj(n) = fj(vj(n)) = 
1

1 + exp ( – v j (n )) (10)

where vj is fired value of neurons in hidden layer, wji is
the weight between input layer and hidden layer, xi is
output of input layer, yj is output of neuron, and fj(.) is
a logic function.
Step 2 Calculate the fired value of neurons at output

layer, and outputs of neurons in output layer.

vk(n) = wkj(n)yj(n) (11)

yk(n) = fk(vk(n)) = vk(n) (12)

where vk is fired value of neurons in output layer, wkj is
the weight between output layer and hidden layer, and yk

is output value of the output layer, and fk(•) is linear
activation function
Step 3 In the output layer, use the weighted average

method to together those output value from all
subnetwork.

v (n ) =
Σ

p = 1

c

m p ⋅ y kp (n )

Σ
p = 1

c

m p

(13)

where v (n ) is the defuzzification value in the output
layer, p is Pth fuzzy rule, c is the total number of fuzzy
rule, ykp is output value of the Pth fuzzy rule, and mp is
the degree of membership that is greater than the vigi-
lance value of Pth fuzzy rule.

Step 4 Use hyperbolic tangent function transfers out-
put value between −1 to 1.

y (n ) = f (v (n )) =
exp (v (n )) – exp ( – v (n ))
exp (v (n )) + exp ( – v (n )) (14)

where f ( ⋅ ) is the hyperbolic tangent function.

5. Learning in subnetwork

Each subnetwork learns with a least-mean-squared
(LSM) method or delta rule, in this paper the weights are
updated to minimize the mean-squared error between
the actual output and the desired output, the objective
function is:

E (n ) = 1
2

[y (n ) – y (n )]2 (15)

where y is the desired output, y  is the network output
signal.

The learning algorithm is described in the follow-
ing steps:
Step 1. Initialized the weights with small random values.
Step 2. Update the weight in output layer of subnetwork.

∆w kj (n ) = – η ⋅
∂E (n )
∂w kj (n )

= – η ⋅
∂E (n )
∂y (n )

⋅
∂y (n )
∂v (n )

⋅
∂v (n )
∂y k (n )

⋅
∂y k (n )
∂v k (n )

⋅
∂v k (n )
∂w kj (n )

= – η ⋅ [ – (y (n ) – y (n ))] ⋅ (1 – y 2)) ⋅
m p

m 1 + m 2 + m c

⋅ 1 ⋅ y j (n ) (16)

where η is learning parameter, n is iterative number, mp

is the degree of membership that is greater than the
vigilance value of the pth fuzzy rule, c is the total
number of fuzzy rule, yj is output value of the hidden
layer of subnetwork.
Step 3. The weight update of subnetwork hidden layer

∆w ji (n ) = – η ⋅
∂E (n )
∂w ji (n )

= – η ⋅
∂E (n )
∂y (n )

⋅
∂y (n )
∂v (n )

⋅
∂v (n )
∂y k (n )

⋅
∂y k (n )
∂v k (n )

⋅
∂v k (n )
∂y j (n )

⋅
∂y j (n )

∂v j (n )
⋅
∂v j (n )

∂w ji (n )

= – η ⋅ [ – (y (n ) – y (n ))] ⋅ (1 – y 2(n ))

⋅
m p

m 1 + m 2 + m c
⋅ 1 ⋅ w kj (n ) ⋅ [y j (n )

Input

Input
layer

Hidden
layer

Output
layer

Output

Fig. 4.  Structure of subnetwork.
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⋅ (1 – y j (n ))] ⋅ x i (n ) (17)

where wkj is the weight between output layer and hidden
layer, and xj is input value of the subnetwork.  In the
back-propagation neural network we use a local gradi-
ent parameter δ to modify the weight.

∆wkj(n) = η • δk(n) • yj(n) (18)

∆wji(n) = η • δj(n) • xi(n) (19)

δk (n ) = [y (n ) – y (n )] ⋅ (1 – y 2(n )) ⋅
m p

m 1 + m 2 + m c

(20)

δ j (n ) = [y (n ) – y (n )] ⋅ (1 – y 2(n )) ⋅
m p

m 1 + m 2 + m c

• [yj(n) • (1 − yj(n))]

= dk(n) • wkl(n) • [yj(n) • (1 − yj(n))]      (21)

OVERVIEW  OF  NDT

1. Categories of NDT equipment

Nondestructive testing equipment for airport pave-
ments can be broadly classified as nondeflection and
deflection testing equipment [24].  Nondeflection mea-
suring equipment includes ground-penetrating radar,
infrared thermography, dynamic cone penetrometer,
and devices that measure surface friction, roughness,
and surface waves.  Deflection measuring equipment
can be broadly classified as static or dynamic loading
devices.  Static loading devices are such as Benkelman
Beam and other types of plate bearing tests.  Dynamic
loading equipment can be further classified to vibratory
and impulse devices.  Steady-state vibratory devices are
including Dynaflect and Road Rater.  Impulse load
devices are such as the FWD or Heavy- Falling Weight
Deflectometer (HWD).  The manufacturers including
KUAB America, Dynatest Group, Phoenix Scientific
Inc., Foundation Mechanics Inc., and Viatest.  The
impulse load devices are most popular and widely used
in the world.

2. Theory of heavy-falling weight deflectometer

Early use of deflection data typically involved
consideration of maximum deflection directly under the
load, relative to experimental standards.  Usually some
statistical measure of deflections on a pavement section
is compared with an “allowable” deflection level for
that section under the expected traffic.

The HWD equipment measures pavement surface
deflections from an applied dynamic load that simulates
a moving wheel, pavement deflections are recorded
directly beneath the load plate and the outermost sensor
provides an indication of subgrade strength data.  The
moduli derived in this way are considered representa-
tive of the pavement response to load, and can be used
to calculate stresses or strains in the pavement structure
for analysis purposes.  Calculations of theoretical
deflections, and the subsequent stress or strain
calculations, currently typically involve linear elastic
theory.  Empirical use of deflection basin data usually
involves one of the “basin parameters” which combine
some or all of the measured basin deflections into a
single number.

Application of elastic theory may be through the
use of:
1. Traditional layered elastic programs based on nu-

merical integration procedures such as ELSYM5,
CHEVRON (various versions), BISAR and WESLEA.

2. The Odemark-Boussinesq transformed section ap-
proach rather than numerical integration.

3. Finite element programs, either those that have been
specifically oriented towards pavement analysis, such
as ILLI-PAVE or MICHPAVE, or general structural
analysis programs such as SAP (various versions),
ANSYS, ABACUS, ADINA, etc.

4. Plate theory such as the Westergaard solutions for
PCC pavements.

3. Impulse stiffness modulus

Pavement stiffness is defined as the dynamic force
divided by the pavement deflection at the center of the
load plate.

I (D )SM = L
d o

(22)

Where I(D)SM is impulse (dynamic) stiffness modulus
(kips/inch), L is applied load (kips) and d0 is maximum
deflection of load plate (inches).

4. Back-calculation

Structural evaluation of pavement deflection re-
sponse using Non-Destructive Test (NDT) data has
been growing since the introduction of the Benkelman
Beam at the WASHO Road Test in the early 1950’s.
Developments in analytical techniques, coupled with
improved deflection measurement capabilities, have
resulted in the current so-called back-calculation tech-
niques widely employed in pavement evaluation [9, 24].

Briefly, the back-calculation procedure involves
calculation of theoretical deflections under the applied
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load using assumed pavement layer modulus.  These
theoretical deflections are compared with measured
deflections and the assumed modulus are then adjusted
in an intricate procedure until theoretical and measured
deflection basins match acceptably well.

Since empirical rules are difficult to generalize
across a wide range of pavement types, loading and
local environmental conditions, newly developed soft-
ware tend to reduce the reliance on empirical approaches.
Instead, pavements can be analyzed like most other civil
engineering structures, i.e., through the use of calcu-
lated and allowable stresses and strains at critical points
within the pavement structure, under load.  The rela-
tionships between allowable stresses and strains, and
pavement distress, remain essentially empirical.  The
calculation of existing stresses and strains within the
pavement structure can be accomplished through an
analytical or mechanistic approach.

5. PCC joints analysis

It is very important to analyze the load transfer
efficiency between adjacent PCC slab joints, because
the load transfer efficiency can significantly impact the
structural capacity of the pavement.  In this paper
equation has been adopted to define deflection load
transfer efficiency.

LTE ∆ =
∆unloaded _slab

∆loaded _slab
100% (23)

Where LTE∆ is deflection load transfer efficiency
(percent), ∆loaded_slab is deflection on loaded slab nor-
mally under load plate (mils), and ∆unloaded_slab is deflec-
tion on adjacent unloaded slab (mils).

CASE  STUDIES

In this research, HWD test data were collected
using the equipment made by Dynatest Group, and a
back-calculation program Elmod 4.5 was adopted for
data analysis.  Total 331 records combined HWD test
and PCI investigation were used in the case study, 280
of these case records are used for the training case, and
51 for the testing phase.  Details are shown in Table 1
and 2, respectively, input parameters include layer thick-
ness of PCC, thickness of subbase, ISM, E modulus of
PCC, E modulus of subbase, E modulus of subgrade,
subgrade reaction at center, subgrade reaction at corner,
joint load transfer, and pavement surface condition.  As
shown in Table 3, there are 12 types of pavement surface
distress, in this research we set the input value equal 1
when the pavement surface exists any surface distress.

A hyperbolic tangent function transfers output value
between −1 to 1, the value −1 means the pavement
condition is well, and value 1 means the pavement slab
has some problem about cracks, distress of joint, or
distress of surface.

The results of the predications using this neuro-
fuzzy system would have been tabulated in Table 1 and
2 alongside the actual field performance, the training
rate and learning curve are shown in Figures 5 and 6
individually.  There are 28 errors in the training data and
16 errors in testing data (90% success rate in training
and 68.6% success rate in testing, overall 86.7%, as
shown at Table 4).  This indicates that the present neuro-
fuzzy system with the ability for evaluating pavement
failure potential.

CONCLUSION

For developing a pavement maintenance and reha-
bilitation strategy, the correlation between structural
and functional performances is important.  For example,
due to environmental distress, a pavement may have a
low PCI value, but it still has sufficient strength to ac-
commodate structural loading.

In this research a neuro-fuzzy system network has
been used to model the complex relationship between
rigid pavement, subbase, subgrade, joint load transfer,
and in-situ condition, and 90% success rate in training
and 68.6% success rate in testing, overall 86.7%.  In the
Table 4 we find the error rate of “predicting to damage
but actually not” significant increase in testing phase,
but the locations are random distributed in the airport
area, as shown in Figure 7.  In this research, we have 10
input parameters but only have 240 training records, it
seems that in the future research needs more training
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Table 1.  Field behavior data for training set

(1: damage, −1: no damage)   The shadow determinates the error of prediction

Layer Subgrade Load Field Trainning
No. thickness ISM E modulus (Mpa) reaction transfer behavior result

(mm) (kPa/ mm)

PCC Subbase (kN/mm) Concrete Subbase Subgrade kc kj (%)

1 380 200 930 18356 949 427 91 168 98.4 1 0.775
2 380 200 1251 34746 565 473 77 73 27.2 1 0.767
3 380 200 1042 32600 451 329 77 78 28.0 1 0.762
4 380 200 1160 48381 779 323 64 52 54.8 1 0.909
5 380 200 921 29700 566 257 64 42 17.3 -1 -0.576
6 410 200 1227 32588 456 354 87 42 88.5 1 0.192
7 380 200 1104 32496 595 327 84 43 70.9 1 -0.223
8 380 200 1222 30825 604 547 108 117 51.9 1 0.843
9 380 200 888 19863 935 370 66 61 68.5 1 0.298

10 380 200 922 25093 1182 213 67 28 5.8 1 0.661
11 380 200 834 23063 722 244 63 45 25.1 1 0.319
12 380 200 1021 31155 563 307 75 14 51.6 -1 -0.861
13 380 200 990 32353 420 278 69 44 15.7 1 0.661
14 380 200 1126 38278 592 382 76 89 95.3 1 0.681
15 380 200 1126 29003 629 410 100 100 95.6 1 0.716
16 380 200 1123 29751 502 410 95 82 95.5 1 0.889
17 410 200 1339 31613 620 436 103 26 69.6 -1 -0.601
18 410 200 1061 30366 376 333 71 117 98.6 -1 0.057
19 410 200 1007 27064 388 341 71 133 97.4 -1 -0.309
20 410 200 932 22367 472 334 70 85 97.2 1 0.644
21 380 200 956 33081 359 333 66 45 85.7 -1 -0.986
22 380 200 1090 35734 578 261 76 45 85.9 1 0.208
23 380 200 1149 35597 550 328 85 81 73.4 1 -0.843
24 380 200 1021 29378 517 381 80 75 93.9 1 -0.290
25 380 200 1032 32372 564 298 74 86 91.5 1 0.875
26 380 200 1099 33575 578 324 81 105 97.8 1 -0.772
27 380 200 1098 33256 483 319 84 108 91.3 1 -0.172
28 380 200 1021 31747 461 293 76 120 96.8 1 0.019
29 380 200 928 31008 732 237 60 119 97.6 -1 -0.957
30 380 200 1026 31087 431 293 78 140 97.8 1 0.120
31 380 200 976 31485 608 273 67 123 95.1 1 -0.586
32 380 200 1005 34808 395 284 69 127 96.6 -1 -0.851
33 380 200 906 33266 376 242 59 77 97.5 -1 -0.963
34 380 200 1067 33945 405 285 79 58 87.3 -1 -0.671
35 380 200 1105 32008 550 317 86 127 94.1 -1 -0.864
36 380 200 1167 34509 485 293 91 138 89.7 -1 -0.860
37 380 200 1237 36383 557 441 96 99 91.8 1 0.367
38 380 200 1293 33714 569 483 112 91 84.0 -1 -0.848
39 380 200 1288 30382 728 596 118 118 81.4 1 0.897
40 380 200 1333 42353 565 462 98 110 91.2 -1 -0.727
41 410 200 1464 32373 381 669 127 166 93.6 1 0.956
42 410 200 1278 29247 718 370 99 63 88.2 -1 -0.829
43 410 200 1058 25823 658 309 76 92 92.4 1 0.075
44 380 200 1089 31388 615 258 84 84 87.6 1 0.608
45 380 200 1103 29790 608 328 90 120 96.5 -1 -0.972
46 380 200 1063 28768 752 288 84 86 78.6 1 -0.469
47 380 200 924 26413 723 234 69 67 93.1 -1 -0.670
48 380 200 1046 28161 743 363 83 117 88.7 -1 -0.731
49 380 200 1050 29069 819 312 80 97 93.3 -1 -0.914
50 380 200 1181 28419 713 528 105 79 84.3 1 0.757
51 380 200 1126 36564 873 289 75 84 92.5 1 0.768
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Table 1.  Field behavior data for training set (continued)

(1: damage, −1: no damage)   The shadow determinates the error of prediction

Layer Subgrade Load Field Trainning
No. thickness ISM E modulus (Mpa) reaction transfer behavior result

(mm) (kPa/mm)

PCC Subbase (kN/mm) Concrete Subbase Subgrade kc kj (%)

52 410 200 1218 21716 573 574 119 143 95.1 -1 -0.744
53 410 200 1461 34639 780 436 110 84 91.0 1 0.705
54 410 200 1306 30603 805 399 98 38 97.9 -1 -0.922
55 410 200 1236 30407 868 369 87 71 80.8 -1 -0.841
56 410 200 1353 35762 674 367 94 80 90.8 -1 -0.952
57 410 200 1109 34168 274 277 72 105 82.4 -1 -0.730
58 410 200 1259 30823 648 438 93 130 95.8 -1 -0.924
59 380 200 1227 33487 495 468 103 88 76.8 -1 -0.796
60 380 200 809 30005 329 225 52 84 84.4 -1 -0.992
61 380 200 996 35195 500 265 65 60 59.2 -1 -0.918
62 380 200 896 26661 410 219 69 64 52.4 -1 -0.665
63 380 200 941 30297 405 314 68 83 89.3 -1 -0.949
64 380 200 996 32492 422 259 71 85 81.3 -1 -0.965
65 380 200 1289 39048 488 350 100 111 50.1 -1 -0.868
66 410 200 1042 36614 438 223 57 51 58.2 1 0.716
67 410 200 939 28729 352 209 53 184 43.2 1 0.788
68 410 200 974 38793 417 175 48 73 84.6 1 0.577
69 410 200 852 33868 406 202 41 32 25.1 1 0.366
70 410 200 965 40650 463 198 44 5 42.5 1 0.677
71 410 200 925 35815 543 183 45 64 55.4 1 0.797
72 410 200 772 26966 382 169 42 59 31.9 1 0.606
73 410 200 744 29352 446 192 36 22 73.1 -1 -0.829
74 410 200 1081 43688 380 196 53 100 93.2 -1 -0.859
75 410 200 1081 43688 380 196 53 100 93.2 -1 -0.859
76 410 200 1151 24455 668 504 95 90 97.3 -1 -0.908
77 380 200 804 31370 589 176 46 74 97.7 -1 -0.997
78 380 200 1011 31907 817 264 66 100 97.4 -1 -0.903
79 380 200 983 28922 577 287 74 113 97.7 -1 -0.759
80 380 200 1056 28716 675 295 84 123 98.0 -1 -0.922
81 380 200 1024 30975 607 256 75 84 98.9 -1 -0.264
82 380 200 1119 33629 761 381 81 102 98.0 -1 -0.928
83 380 200 978 26966 592 299 78 99 96.4 -1 -0.753
84 410 200 1192 29433 796 326 85 95 95.2 -1 -0.997
85 410 200 1098 23523 868 403 86 136 95.3 -1 -0.823
86 410 200 1090 24787 505 466 87 114 98.8 -1 -0.684
87 380 200 1236 43251 607 401 82 117 97.4 1 0.820
88 380 200 1135 30702 705 417 91 140 98.8 1 0.112
89 380 200 1077 37730 426 314 73 107 99.3 -1 -0.743
90 380 200 945 34203 495 246 60 61 94.3 -1 -0.952
91 380 200 1028 33507 525 294 72 86 99.8 -1 -0.815
92 380 200 985 26360 597 360 80 65 97.3 -1 -0.870
93 380 200 1017 27859 531 418 83 105 99.4 -1 -0.836
94 380 200 917 30731 507 242 62 115 97.9 -1 -0.931
95 380 200 979 33815 415 258 67 106 97.1 -1 -0.926
96 380 200 942 29055 482 265 69 89 69.9 -1 -0.949
97 380 200 1130 31965 654 321 88 157 98.2 -1 -0.917
98 380 200 1136 33988 578 309 86 81 73.4 -1 -0.620
99 380 200 1010 32836 455 260 72 84 94.1 1 -0.689

100 380 200 1233 34296 579 445 100 117 70.3 -1 -0.652
101 380 200 1121 36533 573 331 79 77 95.3 -1 0.142
102 380 200 1414 41055 416 511 116 201 94.6 1 0.928
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Table 1.  Field behavior data for training set (continued)

(1: damage, −1: no damage)   The shadow determinates the error of prediction

Layer Subgrade Load Field Trainning
No. thickness ISM E modulus (Mpa) reaction transfer behavior result

(mm) (kPa/mm)

PCC Subbase (kN/mm) Concrete Subbase Subgrade kc kj (%)

103 410 200 1368 32977 541 434 105 166 97.9 1 -0.133
104 410 200 1022 29894 304 270 68 68 17.2 1 -0.069
105 410 200 1167 35244 376 387 75 57 80.6 -1 -0.162
106 380 200 1067 47404 234 328 62 42 84.6 -1 -0.940
107 380 200 1140 38046 268 372 85 76 31.3 -1 -0.663
108 380 200 947 34721 255 312 64 58 27.2 -1 -0.310
109 380 200 957 39439 237 248 59 49 25.2 -1 -0.463
110 380 200 1080 41107 255 290 71 67 24.9 1 0.326
111 380 200 1156 41124 373 319 79 58 23.4 -1 -0.403
112 380 200 752 28611 188 186 49 50 11.2 -1 -0.963
113 380 200 1065 33511 287 429 82 60 53.4 1 0.993
114 380 200 1002 36942 331 326 66 62 22.1 1 0.502
115 380 200 950 37611 219 255 61 56 21.4 -1 -0.611
116 380 200 889 34544 450 215 54 38 19.3 -1 -0.818
117 380 200 1245 42660 347 438 89 39 34.9 1 0.983
118 380 200 1050 38722 297 323 70 46 14.3 1 0.249
119 380 200 965 35437 231 304 66 47 17.3 -1 -0.433
120 380 200 1133 40437 363 300 77 49 14.5 -1 -0.643
121 380 200 1266 43401 439 452 89 45 39.9 1 0.613
122 410 200 1278 42500 339 326 77 38 15.0 -1 -0.952
123 410 200 1207 33324 288 474 87 64 95.7 1 0.960
124 380 200 920 30691 325 312 66 24 48.4 -1 -0.609
125 380 200 1025 36843 318 280 70 65 28.7 1 -0.008
126 380 200 932 37684 216 293 58 34 94.9 -1 -0.997
127 380 200 901 34715 261 220 58 47 14.1 -1 -0.983
128 380 200 1055 37160 363 284 72 78 22.5 -1 -0.061
129 380 200 936 33771 237 225 95 25 57.3 1 0.849
130 380 200 870 30704 327 238 59 48 76.6 -1 -0.871
131 380 200 1000 35424 243 334 70 47 93.3 -1 -0.898
132 380 200 1021 35934 319 290 71 80 96.2 -1 -0.958
133 380 200 1171 42950 339 338 79 84 95.3 1 0.355
134 410 200 1053 27463 381 316 76 86 97.7 1 0.283
135 410 200 1137 33033 296 324 77 53 89.0 -1 -0.437
136 380 200 1130 35264 455 312 85 43 96.0 -1 -0.565
137 380 200 867 31903 532 241 54 61 85.0 -1 -0.995
138 380 200 938 27991 543 255 70 73 40.7 -1 -0.790
139 380 200 1021 30679 502 342 77 45 83.5 1 0.208
140 380 200 470 14440 483 102 32 51 35.6 -1 -0.541
141 380 200 923 27847 557 262 68 77 97.0 1 -0.250
142 380 200 1134 37279 557 308 79 43 59.8 -1 -0.909
143 380 200 1046 34735 470 291 73 42 81.9 -1 -0.749
144 380 200 1199 33865 925 361 90 120 94.5 -1 -0.894
145 380 200 996 29542 281 404 81 67 99.1 -1 -0.616
146 380 200 1252 39966 349 383 95 73 94.6 -1 -0.703
147 380 200 969 23993 1114 282 77 77 20.4 -1 -0.723
148 380 200 1076 36541 145 338 82 62 84.9 1 0.125
149 380 200 898 38474 85 246 57 44 16.0 -1 -0.882
150 410 200 1122 29785 659 353 76 99 96.0 -1 -0.967
151 410 200 1102 28350 694 356 76 123 97.2 -1 -0.812
152 410 200 1017 29949 272 342 68 97 91.9 -1 -0.682
153 410 200 1510 32248 2201 534 108 105 88.5 1 -0.318
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Table 1.  Field behavior data for training set (continued)

(1: damage, −1: no damage)   The shadow determinates the error of prediction

Layer Subgrade Load Field Trainning
No. thickness ISM E modulus (Mpa) reaction transfer behavior result

(mm) (kPa/mm)

PCC Subbase (kN/mm) Concrete Subbase Subgrade kc kj (%)

154 410 200 1097 30673 743 296 70 95 96.8 -1 -0.924
155 410 200 1017 29949 272 342 68 97 91.9 -1 -0.682
156 410 200 1510 32248 2201 534 108 105 88.5 -1 -0.318
157 410 200 1103 28733 424 392 80 137 98.9 -1 -0.970
158 410 200 1135 28740 388 458 85 124 98.3 1 -0.699
159 410 200 1203 36977 324 391 78 79 87.5 1 -0.073
160 410 200 1141 35081 324 369 73 53 95.4 1 -0.264
161 410 200 1164 35535 332 385 73 80 76.5 -1 -0.814
162 410 200 1071 29063 490 362 75 76 72.2 -1 -0.947
163 410 200 1189 35820 340 384 78 51 68.1 1 -0.263
164 410 200 1101 27920 485 407 80 93 82.1 -1 -0.960
165 410 200 489 12504 190 142 36 140 79.9 -1 -0.995
166 410 200 711 16628 197 315 58 56 49.1 1 0.406
167 410 200 879 30443 119 330 54 40 36.9 1 0.785
168 410 200 906 35094 240 232 48 45 78.3 1 0.749
169 410 200 978 36549 253 216 53 55 84.3 -1 -0.389
170 410 200 858 24726 240 280 58 51 44.3 1 0.950
171 410 200 955 34522 171 266 55 43 29.6 1 0.023
172 410 200 1071 46295 215 218 52 45 80.1 1 0.736
173 410 200 756 21452 176 246 53 60 54.3 -1 0.679
174 410 200 952 30278 161 252 62 52 80.1 1 0.772
175 410 200 995 36450 240 252 55 44 77.4 1 0.697
176 410 200 771 28371 386 158 40 23 8.3 -1 -0.821
177 410 200 845 36294 490 177 37 23 53.6 -1 0.159
178 410 200 658 22105 328 220 37 28 35.5 1 0.493
179 410 200 923 44398 466 178 38 28 43.7 1 0.700
180 410 200 767 27660 365 155 41 33 55.1 1 0.224
181 410 200 661 20263 368 163 40 30 68.5 -1 -0.778
182 410 200 769 25348 332 169 44 28 32.9 -1 0.423
183 410 200 677 16999 260 159 50 60 74.6 -1 -0.702
184 410 200 1460 37666 623 433 105 188 94.3 -1 -0.808
185 410 200 1389 47722 583 377 78 100 92.8 -1 -0.834
186 410 200 1204 36195 445 372 77 136 96.8 -1 -0.914
187 410 200 1157 27182 358 491 93 150 98.5 -1 -0.542
188 410 200 1042 32539 509 279 62 121 96.9 -1 -0.646
189 410 200 794 30454 545 198 63 52 99.6 -1 -0.832
190 410 200 1052 31212 371 320 68 121 97.3 1 0.324
191 410 200 1048 31984 446 310 65 116 97.2 1 -0.377
192 410 200 1046 26748 624 361 73 120 96.6 1 -0.544
193 410 200 1148 31924 490 389 77 131 95.1 -1 -0.977
194 410 200 1187 36805 507 369 73 134 97.8 -1 -0.879
195 410 200 910 34700 58 262 53 49 92.3 -1 -0.826
196 410 200 922 45803 4 206 46 26 91.4 1 0.992
197 410 200 923 42009 34 239 47 26 86.4 1 0.964
198 440 300 1121 27245 385 299 137 110 91.8 -1 -0.993
199 440 300 1452 36109 473 478 80 92 95.8 -1 -1.000
200 440 300 1152 25489 429 397 69 102 96.3 -1 -1.000
201 440 300 1112 23294 569 400 66 53 63.1 -1 -1.000
202 440 300 1447 38742 520 487 74 64 88.4 -1 -1.000
203 410 200 1319 28317 1345 333 121 67 48.3 1 0.941
204 410 200 1518 32885 968 466 121 56 52.4 1 0.733
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Table 1.  Field behavior data for training set (continued)

(1: damage, −1: no damage)   The shadow determinates the error of prediction

Layer Subgrade Load Field Trainning
No. thickness ISM E modulus (Mpa) reaction transfer behavior result

(mm) (kPa/mm)

PCC Subbase (kN/mm) Concrete Subbase Subgrade kc kj (%)

205 410 200 1118 28690 1077 309 73 81 90.2 -1 -0.989
206 410 200 1071 40983 11 236 67 96 97.5 -1 -0.976
207 410 200 987 28847 128 292 71 83 95.3 1 0.148
208 410 200 1204 26813 1283 483 87 44 72.7 -1 -0.886
209 410 200 1057 22404 886 251 83 66 84.4 -1 -0.976
210 410 200 1510 35227 1297 326 109 134 93.8 -1 -0.935
211 410 200 831 33174 22 161 49 49 99.5 1 0.953
212 410 200 1028 43289 26 213 69 26 12.6 -1 -0.991
213 410 200 1022 32127 151 327 68 38 82.1 1 0.654
214 410 200 1433 36951 760 399 101 90 69.1 1 0.245
215 410 200 1230 29781 557 418 93 72 78.0 1 -0.387
216 410 200 1194 33115 424 411 82 71 29.5 -1 -0.400
217 410 200 1070 30673 360 297 72 65 17.4 -1 -0.135
218 410 200 1137 32104 482 379 76 77 63.5 -1 -0.887
219 410 200 1180 31577 520 312 82 94 82.2 -1 -0.934
220 380 200 1179 34972 638 307 89 81 86.9 -1 -0.801
221 380 200 1308 44097 574 329 91 84 36.3 -1 -0.988
222 380 200 1526 37634 760 511 137 100 54.2 -1 -0.388
223 380 200 1072 35568 724 298 72 77 84.8 1 -0.049
224 380 200 1209 29125 495 566 113 113 29.1 1 0.771
225 380 200 1265 35163 754 387 100 95 42.8 -1 -0.650
226 380 200 1468 36965 912 398 126 131 83.8 1 0.628
227 410 200 1479 28781 1095 388 127 133 82.4 1 0.777
228 410 200 1532 35282 800 426 119 142 85.9 1 0.872
229 410 200 1548 36716 814 452 117 81 16.1 1 0.909
230 380 200 1051 33191 338 315 80 56 40.0 1 0.272
231 380 200 1314 29777 320 677 137 144 90.1 1 0.970
232 380 200 780 25192 339 198 56 67 89.9 1 0.720
233 380 200 995 33802 342 267 70 68 20.7 1 0.470
234 380 200 1196 35312 678 350 90 84 86.8 -1 -0.907
235 380 200 1177 32570 433 426 99 62 89.6 1 0.701
236 410 200 1166 34224 489 321 75 91 79.3 1 -0.473
237 410 200 1030 28589 428 294 70 86 30.3 -1 -0.288
238 410 200 1051 29556 557 301 68 86 94.6 -1 -0.416
239 410 200 1276 28727 475 407 105 120 34.5 1 0.919
240 410 200 1268 30815 724 508 93 97 70.8 -1 -0.903
241 410 200 1208 40930 659 324 67 54 37.1 1 0.710
242 410 200 1244 30143 725 437 91 83 35.9 -1 -0.332
243 410 200 1254 31465 545 466 92 102 31.5 1 0.140
244 410 200 1319 35266 551 445 92 84 88.7 -1 -0.137
245 410 200 1446 47971 493 436 85 91 70.4 -1 -0.851
246 410 200 1248 31555 365 442 95 116 78.8 -1 -0.647
247 410 200 1365 36351 550 413 96 133 79.7 -1 -0.788
248 410 200 1254 32306 397 497 93 66 94.6 1 0.909
249 410 200 1261 34181 557 361 87 95 76.3 -1 -0.951
250 410 200 1276 28936 850 418 97 98 74.7 1 0.338
251 410 200 1310 38386 586 442 84 88 82.9 1 -0.374
252 410 200 1564 43311 699 638 105 123 71.7 1 0.805
253 410 200 1227 31218 517 395 90 84 67.3 -1 -0.595
254 410 200 1394 51331 421 431 76 125 98.4 1 0.628
255 410 200 1310 47915 605 349 69 118 99.7 1 0.299
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Table 1.  Field behavior data for training set (continued)

(1: damage, −1: no damage)   The shadow determinates the error of prediction

Layer Subgrade Load Field Trainning
No. thickness ISM E modulus (Mpa) reaction transfer behavior result

(mm) (kPa/mm)

PCC Subbase (kN/mm) Concrete Subbase Subgrade kc kj (%)

256 410 200 1533 41559 586 516 107 166 97.5 1 0.847
257 410 200 1378 40614 627 490 88 165 95.9 -1 -0.915
258 410 200 1326 41798 460 477 82 151 98.0 -1 -0.674
259 410 200 1397 42786 436 458 89 138 97.3 1 0.538
260 410 200 1259 35553 550 424 83 172 96.2 -1 -0.962
261 410 200 1484 43043 658 572 96 154 96.7 1 0.921
262 380 200 824 27938 593 202 54 78 81.5 -1 -0.933
263 380 200 1193 39164 585 292 84 97 85.5 -1 -0.405
264 380 200 1022 30203 532 304 78 82 82.3 -1 -0.270
265 410 200 994 23567 443 367 77 99 82.3 -1 -0.702
266 410 200 1197 28099 789 343 89 116 80.4 -1 -0.996
267 410 200 1162 20411 1596 289 99 195 66.1 -1 -0.917
268 410 200 1137 29210 709 288 79 90 77.9 -1 -0.927
269 450 300 1575 31238 735 458 94 90 91.5 -1 -1.000
270 450 300 1084 23582 400 297 62 77 88.4 -1 -1.000
271 450 300 1249 35569 710 395 53 56 47.2 -1 -0.997
272 450 300 1575 31238 735 458 94 90 91.5 -1 -1.000
273 450 300 1102 23925 760 396 57 63 65.7 -1 -0.999
274 450 300 1153 24264 306 447 71 77 90.6 -1 -0.999
275 410 200 1043 39335 543 249 55 37 46.2 -1 -0.190
276 410 200 1133 45290 495 282 56 51 58.0 -1 -0.863
277 410 200 1261 37393 543 408 80 76 51.7 1 0.449
278 410 200 1190 30965 335 470 96 85 47.4 -1 -0.947
279 410 200 1278 32174 461 522 70 69 56.6 -1 -0.737
280 410 200 1203 35592 446 365 78 78 50.7 -1 -0.782

Fig. 7. Part drawing of training and testing results at runway thresh-
old area.
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Fig. 6.  Learning rate of neuro-fuzzy system.

data to improve the accuracy.
Besides those parameters adopted in this paper,

the other factors, such as PCC slab warping and curling,
moisture contents in each of the layers, voids, loss of
support, settlement occurred beneath the pavement layer,
all of them also influence the deflection basins and get
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Table 2.  Field behavior data for testing set

Layer Subgrade Load Field Testing
No. thickness ISM E modulus (Mpa) reaction transfer behavior result

(mm) (kPa/mm)

PCC Subbase (kN/mm) Concrete Subbase Subgrade kc kj (%)

1 380 200 987 28228 484 346 78 66 22.9 -1 -0.437
2 380 200 1288 29697 1047 537 115 34 61.6 1 0.612
3 380 200 1282 40569 590 372 93 61 99.5 -1 -0.517
4 380 200 1115 32380 447 419 89 60 91.1 1 0.981
5 380 200 1161 35303 661 341 85 111 93.7 1 0.129
6 380 200 831 25962 444 233 60 132 95.8 1 -0.922
7 380 200 940 27622 495 277 72 101 98.3 1 -0.496
8 380 200 1316 37401 743 479 103 67 95.2 -1 0.426
9 410 200 1282 34408 432 370 91 124 88.4 -1 -0.784

10 380 200 1058 33227 1098 267 69 95 74.2 -1 -0.951
11 380 200 1108 31757 752 323 84 95 82.6 1 -0.157
12 410 200 1364 29446 627 537 114 93 82.3 -1 0.801
13 410 200 1114 35732 477 282 66 46 97.6 1 0.301
14 410 200 1246 33681 557 347 86 90 92.1 -1 -0.914
15 380 200 960 29527 602 312 69 78 94.0 -1 -0.482
16 380 200 868 25923 356 338 67 80 92.4 -1 -0.661
17 410 200 897 34573 495 172 44 67 48.4 -1 0.844
18 410 200 725 23381 405 176 42 81 95.6 1 -0.949
19 410 200 819 28324 490 188 44 26 86.5 -1 -0.845
20 380 200 1245 43155 705 326 82 125 96.8 -1 0.164
21 380 200 1033 30431 584 276 78 92 98.6 -1 -0.197
22 410 200 1211 29468 490 495 92 90 98.5 -1 -0.075
23 380 200 914 30990 507 275 61 74 95.5 1 -0.820
24 380 200 1215 43938 461 414 80 107 97.8 1 0.927
25 380 200 1087 34502 277 443 84 58 20.3 1 -0.911
26 380 200 1138 39130 340 378 81 60 91.0 1 0.880
27 380 200 1256 41300 340 491 93 57 80.1 1 0.661
28 380 200 972 31452 495 270 69 81 43.0 -1 -0.647
29 380 200 1284 35305 586 462 106 88 42.6 -1 -0.656
30 380 200 1275 38012 1100 366 90 65 97.9 1 0.005
31 410 200 1102 28350 694 356 76 123 97.2 -1 -0.736
32 410 200 1149 33769 357 370 76 129 98.2 -1 -0.896
33 410 200 1111 34446 308 360 72 89 97.0 -1 -0.539
34 410 200 811 26417 184 297 50 46 49.2 1 0.948
35 410 200 912 32664 208 274 52 40 56.5 -1 0.982
36 410 200 767 22944 333 183 48 30 49.3 1 0.738
37 410 200 1384 38776 376 452 99 99 96.2 -1 0.094
38 410 200 1139 35633 388 368 71 116 97.8 1 -0.495
39 440 300 1359 25575 429 573 95 50 91.3 -1 -0.997
40 410 200 1201 30157 235 486 96 98 98.6 1 0.706
41 410 200 1111 30717 802 298 71 69 86.6 -1 -0.572
42 410 200 1307 32072 450 453 101 105 82.1 -1 -0.003
43 380 200 871 33357 208 237 57 52 89.7 -1 -0.897
44 380 200 1154 32167 676 436 91 78 16.9 1 0.889
45 410 200 1382 39941 688 463 88 103 87.3 -1 -0.069
46 410 200 1225 31827 485 347 88 89 65.1 1 -0.850
47 410 200 1165 48652 431 304 55 85 96.9 1 -0.647
48 380 200 1155 35337 550 271 86 111 48.5 -1 -0.651
49 250 200 498 20111 743 197 70 79 76.4 1 -0.917
50 410 200 1183 36243 488 369 73 78 57.2 -1 -0.860
51 410 200 1208 33964 436 397 78 75 57.6 -1 -0.446
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Table 3.  Error of prediction

Actual behavior: Actual behavior:
damage No damage

Success rate(%)Model prediction: Model prediction:
No damage (%) damage (%)

Training set   8.2   1.8 90.0
(113**  167*)

Testing set 19.6 11.8 68.6
(22**  29*)

*Actual pavement behavior: no damage
**Actual pavement behavior: damage

Table 4.  Pavement surface condition of testing data

No.
Field Testing Longitudinal Transverse Corner Durability Joint Pumping

Blow-up Faulting Polishing Pothole Patchbehavior result cracks cracks breaks cracks spalling sealant loss

  1 -1 -0.437
  2  1 0.612 1 1
  3 -1 -0.517
  4  1 0.981 3
  5  1 0.129 1 1
  6  1 -0.922 2
  7  1 -0.496 2
  8 -1 0.426
  9 -1 -0.784
10 -1 -0.951
11  1 -0.157 2
12 -1 0.801
13  1 0.301 1 1
14 -1 -0.914
15 -1 -0.482
16 -1 -0.661
17 -1 0.844
18  1 -0.949 1
19 -1 -0.845
20 -1 0.164
21 -1 -0.197
22 -1 -0.075
23  1 -0.820 1
24  1 0.927 1
25  1 -0.911 1
26  1 0.880 1
27  1 0.661 1
28 -1 -0.647
29 -1 -0.656
30  1 0.005 2 1
31 -1 -0.736
32 -1 -0.896
33 -1 -0.539
34  1 0.948 1
35 -1 0.982 1
36  1 0.738
37 -1 0.094
38  1 -0.495 3
39 -1 -0.997
40  1 0.706 1
41 -1 -0.572
42 -1 -0.003
43 -1 -0.897
44  1 0.889 1
45 -1 -0.069
46  1 -0.850 1
47  1 -0.647 2
48 -1 -0.651
49  1 -0.917 1 1 2
50 -1 -0.860
51 -1 -0.446
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different results.  But, in fact, it is not easy to collect
those data from all pavement slabs.  Such as slab curling
occurs due to differences in temperature between the
top and bottom of the slab, the slab corners may lift off
the base during nighttime curling, and slab center may
lift off during daytime curling.

However, it seems the model combing a nonde-
structive testing and a neuro-fuzzy system is an eco-
nomical way to evaluate rigid pavement failure poten-
tial between the service performance and the structure
performance.

ACKNOWLEDGEMENTS

The authors would to thank the supports of the
Chiang Kai-Shek International airport authority for their
data and serves that were used in this research.

REFERENCES

  1. Abu, K.M.A., “General Regression Neural Networks
for Driven Piles in Cohesionless Soils,” J. Geotech.
Geoenviron., Vol. 124, No. 12, pp. 177-1185 (1998).

  2. ASTM, “D4695 Standard Test Method of Deflections
with a Falling Weight Type Impulse Load Device,” Vol.
4.03, Sec. 4, pp. 482-484 (1996).

  3. ASTM, “D5340 Standard Test Method for Airport
Pavement Condition Index Survey,” Vol. 4.03, Sec. 4,
pp. 552-599 (1996).

  4. ASTM, “Standard Guide for General Pavement Deflec-
tion Measurement,” D4695-96, pp. 485-487 (1996).

  5. Boutros, E.S., Mamlouk, M.S., and Trevor, G.P., “Dy-
namic Analysis of Falling Weight Deflectometer Data,”
Transportat. Res. Rec. 1070, pp. 63-68 (1986).

  6. Bush III, A.J. and Alexander, D.R., “Pavement Evalua-
tion Using Deflection Basin Measurements and Layered
Theory,” Transport. Res. Rec. 1022, pp. 16-29 (1985).

  7. Chang, D.W., Kang, V.Y., Roesset, J.M., and Stokoe,
K.H., “Effects of Depth to Bedrock on Deflection Basins
Obtained with Dynaflect FWD Test,” Transport. Res.
Rec. 1355, pp. 8-16 (1992).

  8. Chern, S.G., Hu, R.F., Chang, Y.J., and Tsai, I.F., “Fuzz-
ART Neural Networks for Predicting Chi-Chi Earth-
quake Induced Liquefaction in Yuan-Lin Area,” J. Mar.
Sci. Technol., Vol. 10, No. 1 (2002).

  9. Dater, M.I., Smith, K.D., and Hall, K.T., “Concrete
Pavement Backcalculation Results from Field Studies,”
Transport. Res. Rec. 1377, pp. 7-16 (1993).

10. Ellis, G.W., Yao, C., Zhao, R., and Penumadu, D.,
“Stress-Strain Modeling of Sands Using Artificial Neu-
ral Networks,” J. Geotech. Eng., Vol. 121, No. 5, pp.
429-435 (1995).

11. Fred, F., “Pavement Management Systems −Past, Present
and Future,” Public Roads, Vol. 62, No. 1, pp. 16-23
(1998).

12. Goh, A.T.C., “Seismic Liquefaction Potential Assessed
by Neural Network,” J. Geotech. Eng., Vol. 120, No. 9,
pp. 1467-1480 (1994).

13. Huang, Y.H., Pavement Analysis and Design, Prentice-
Hall, Inc., Englewood Cliffs, NJ (1993).

14. Jang, J.S., Sun, C.T., and Mizutani, E., Neural-Fuzzy and
Soft Computing, Prentice-Hall, Inc., Englewood Cliffs,
NJ (1997).

15. Johnson, R.F. and Rish III J.W., “Rolling Weight
Deflectometer with Thermal and Vibrational Bending
Compensation,” Transport. Res. Rec. 1540, pp. 77-82
(1996).

16. Juang, C.H., Chen, C.J., and Tien, Y.M., “Appraising
CPT-Based Liquefaction Resistance Evaluation
Methods: Artificial Neural Networks Approach,” Can.
Geotech. J., Vol. 36, No 3, pp. 443-454 (1999).

17. Juang, C.H., Lee, D.H., and Sheu, C., “Mapping Slope
Failure Potential Using Fuzzy Sets,” J. Geotech. Eng.,
Vol. 118, No. 3, pp. 475-494 (1992).

18. Kulkarni, A.D., Computer Vision and Fuzzy-Neural
Systems, Prentice-Hall, Inc., Englewood Cliffs, NJ (2001).

19. Mario, S.G. and Jim, W.H., “Comparative Study of
Selected Non-destructive Testing Devices,” Transport.
Res. Rec. 852, pp. 32-71 (1974).

20. Ni, S.H., Lu, P.C., and Juang, C.H., “A Fuzzy Neural
Network Approach to Evaluation of Slope Failure
Potential,” Microcomput. Civil Eng., Vol. 11, pp. 59-66
(1996).

21. Schwandt, G., “Airport Pavement Management System
Saves Millions,” Public Works, Vol. 127, No. 1, pp. 53-
55 (1996).

22. Tung, A.T.Y., Wang, Y.Y., and Wong, F.S., “As-
sessment of Liquefaction Potential Using Neural
Networks,” Soil Dyn. Earthq. Eng., Vol. 12, No. 6, pp.
325-333 (1993).

23. Ullidtz, P. and Coetzee,  N.F., “Analytical Procedure in
Nondestructive Testing Pavement Evaluation,”
Transport. Res. Rec. 1482, pp. 61-66 (1995).

24. U.S. Department of Transportation, Federal Aviation
Administration, Use of Nondestructive Testing in The
Evaluation of Airport Pavement (FAA/AC 150/5370-
11B), Washington, DC (2003).

25. Weil, G.J., “Non-destructive Testing of Bridge, High-
way and Airport Pavements,” Geol. Surv. Finland, Vol.
16, pp. 259-266 (1992).

26. Yang, C.H., Wang, C.Y., and Ko, C.M., “Detecting the
Structure of Flexible Pavement Using Ground Penetrat-
ing Radar,” NDT Sci. Technol., Vol. 18, No. 2, pp. 44-53
(2000). (in Chinese)


	A RESEARCH COMBINES NONDESTRUCTIVE TESTING AND A NEURO-FUZZY SYSTEM FOR EVALUATING RIGID PAVEMENT FAILURE POTENTIAL
	Recommended Citation

	A RESEARCH COMBINES NONDESTRUCTIVE TESTING AND A NEURO-FUZZY SYSTEM FOR EVALUATING RIGID PAVEMENT FAILURE POTENTIAL
	Acknowledgements

	SGC

