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ABSTRACT

This paper concerns a mass-spring-damper linear oscillator with
endstop system.  The parameter dependence of the impact oscillator
is studied and the techniques of the bifurcation diagram, phase
trajectory, impact map and Poincare map are applied.  For the driving
frequency ranges that no explicit solutions in analytical method, a
complete bifurcation diagram is plotted using numerical solutions.
Consequently, the phenomena of the complete, incomplete and cha-
otic chattering are classified as m-impact period-n motion using
impact map and Poincare map.

INTRODUCTION

The impact oscillators arise whenever the compo-
nents of a vibration system collide with rigid endstop or
with each other.  These oscillators widely occur in
applications, such as the rattling gears [9], the vibra-
tions of helicopter rotor blades [5], the fluctuation
between the workpiece and cutting tool [4], the oscilla-
tions of the thermal expansion in pipe and tubes [7], the
motion of a ship impacting against a harbor wall [14]
and the motion of rigid blocks in an earthquake [8].

In references [1-3, 12-13, 15-16], researches were
interested in the fundamentals of impact dynamics,
particularly in the ensuing chaotic motion.  Bifurcation
theory was applied to investigate the stability of system
behavior as parameter changed.  Recently, the experi-
mental signals of impacting system were investigated to
confirm the previous results of the bifurcation diagram
[10-11].  The recover (“clean”) signals can be compared
to the known phenomena to determine their origin.
Thus, a better understanding of such an impact oscilla-
tors will benefit condition monitoring of a system.  For
this goal, a global and local dynamics need to be
investigated.

In this paper, such an approach presented in [6]
will be used to determine the stability of the impact

oscillator.  The parameter dependence of the impact
oscillator will be illustrated using bifurcation diagram
in terms of numerical solutions.  In particular, a careful
study of the effects on the dynamics of the oscillation by
varying the forcing frequency and the restitution coef-
ficient will be made.  The numerical investigation of
local dynamics, such as the complete, incomplete and
chaotic chattering will also be characterized using im-
pact map and Poincare map.

IMPACT  OSCILLATOR

The model considered here is a single degree of
freedom system shown in Figure 1, where the mass is
under a harmonic excitation and the motion is limited by
an endstop.  For simplicity, we assume the deformation
during impact is negligible, the contact force resulting
from impact is impulsive and the duration of the contact
is much shorter than the period of the external excitation;
in fact we idealize the impact as instantaneous.  The
equation of the motion when not impacting is

mx + 2cx + kx = cosωτ, x > g (1)

where x = d 2x / d τ 2, x = dx / d τ, m is mass, c is damping
ratio, k is spring, ω is driving frequency and g is the
endstop.  The impact occurs at x(τ) = g and the velocity
change is modeled as x (τ + ) = – rx (τ – ) where r is the
restitution coefficient, (τ+) is the time after impact and
(τ−) is the time before impact.

FLOW  AND  MAP

Equation (1) was defined in three dimensions space

m

k c

g

x(τ) pcos(ωτ)

Fig. 1.  Mass-spring-damper impact system.
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as (x , x , τ).  The solutions flow in an infinite tube as τ
evolves.  We now define the phase ϕ by ϕ = τ mod T
where T = 2π/ω.  This means we study the solution only
every T seconds in τ.  Thus the new phase space
co9ordinate is (x , x , ϕ), where 0 ≤ ϕ ≤ T .  The solution
projected onto the displacement and velocity plane is
called phase trajectory.  For periodic solutions, a
closed trajectory will formed in the phase plane, see
Figures 2(a) and 2(b).  There are two different kinds of
mapping in the (x , x , ϕ) space, which are Poincare return
map and impact map.

1. Poincare map

Poincare return map gives two dimensions struc-
ture in plane instead of three dimensions flow in space,

i.e. the solutions are projected onto a particular section
ϕ = ψ in (x , x , ϕ) space, where ψ is a constant in [0, T].
Thus Poincare map is a point set determined by its
displacement   and velocity x (τ)ϕ = ψ in a section corre-
sponding to a given constant phase ϕ = ψ.  This defini-
tion is valid for all systems under periodic forcing
function.  A harmonic motion is a single point in return
map, see Figure 2(d); a subharmonic motion of order n
has a set of n points.  In the case of the chaotic motion
the map has a complex fractal structure.

2. Impact map

The impact map is related to the impact process.
The point set in impact map is determined by impact
velocity x (τ I ) at x(τI) = g and impact phase ϕ = ψI, where
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Fig. 2. Periodic chattering occurs at the driving frequency ω = 2 with parameters m = 1, c = 0.05, k = 1, r = 0.8 and g = 0.  (a) Displacement, (b) Phase
trajectory, (c) Impact map shows 1-impact motion, and (d) Poincare map shows period-1 motion.
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mod T and τI is the impact time.  This definition is used
to specify stability of impact dynamics.  For a periodic
impact motion, there is a single point in impact map, see
figure 2(c), while m orders of subharmonic impact
motion has m points.  As the Poincare map, in the case
of the chaotic motion the impact map has a complex
fractal structure.

3. Discussion

Poincare map and impact map gave two dimen-
sions structure in plane instead of three dimensions flow
in space.  Both maps are projected onto a particular
section to enable identification the impact behavior.  It
is useful to describe the impact behavior using a pair of
integers (m, n), where m is the number of the point set in
impact map and n is the number of the return point set
in Poincare map.  This situation is referred to as a
periodic m-impact period-n motion.

BIFURCATION  DIAGRAM

In many applications one may be interested in
global behavior depending on one of the parameters.
The idea of the bifurcation diagram illustrates how the
equilibrium state (point set in Poincare map or impact
map) changes as a control parameter is gradually
increased.  In the following results, the point set in
impact map is illustrated as the driving frequency
changes.

1. Analytical solution

Using analytical methods, Shaw and Holmes [12],
Shaw [13], Whiston [15-16] and Budd and Dux [1-3]
have derived the following results.

2. Single-impact period-n motion

The periodic impact resonance occurs at the driv-
ing frequency ω = 2ωn , where ωn = k / m  is the funda-
mental frequency of the free mass oscillation.  For
example, in Figure 2 the fundamental impact resonance
with single-impact period-1 impact motion occurs at the
driving frequency ω = 2.

3. Two-impact period-n motion

For some parameter combinations the impact mo-
tion may lose stability, i.e. the solution may bifurcate to
high order impacts.  The boundary of the control param-
eter where the systems lose their stability can be pre-
dicted using bifurcation theory.  A boundary for period

doubling was predicted in references [12-13], i.e. a
stable single-impact period-n motion occurs in the re-
gion inside the boundary and two-impact period-n mo-
tion appears just outside the edge of the stable region.

4. Numerical solution

The following simulation results are obtained by
numerical Runge-Kutta integration algorithm for Eq.
(1).  We fix the endstop at g = 0 and investigate the
impact velocity in a periodic of time when the driving
frequency changes.  The data is displayed between 250
and 500 seconds, ignoring the first 250 seconds to make
sure the system is in steady state.

In Figure 3, we show the bifurcation diagrams
for various restitution coefficients r.  For the case of r =
0.6 in Figure 3(d), the results agree with the analytical
results show in references [1-3, 12-13, 15-16] where the
impact resonance occur at ω = 2ωn, ωn = 1, 2, ... and so
on.  The peak amplitude of the impact velocity drops as
ω increases.  The motion transits from one-impact to
two-impact at the driving frequency ω = 2.6.  As the
driving frequency further increases the motion becomes
unstable (chaotic) motion.  For those ranges of the
driving frequency that no explicit solutions in analytical
method, a complete bifurcation diagram is plotted for
full region of the driving frequency using numerical
solutions.

In the case r = 0, see Figure 3(a), all of the
mechanical energy is dissipated during the impacts,
thus the mass essentially sticks to the endstop.  There is
no elastic rebound until the positive force drives the
mass off again.  This shows that the impact resonance at
ω = 1 is the fundamental resonance of the free oscillation.
At ωn = 2.6, the period doubling bifurcation is clearly
demonstrated.  Figures 3(b)-3(f) demonstrate the results
with coefficient r = 0.2, 0.4, 0.6, 0.8 and 0.9, respectively.
The fundamental impact resonance is shifted form ωn =
1 to ωn = 2 as restitution coefficient increases.

CLASSIFICATION  OF  IMPACT  MOTION

It is of practical interest to know where the stable
and unstable boundaries are and what their structures
are. Bifurcation diagrams in Figure 3 demonstrated
three main parts of the boundary.

1. Complete chattering

As ω << 1, the mass hits the endstop wall with a
sufficiently low velocity, it resulted in a large number of
impacts during the period of time T = 2π/ω.  For example,
Figures 4(a) and (b) show the displacement and phase
trajectory of the mass at ω = 0.2.  At time t = 259 seconds
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the mass starts to hit the endstop and then rebounds back
and forth until t = 265 seconds where the mass sticks to
the wall.  At t = 275 seconds the external driving force
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Fig. 3. Bifurcation diagrams for varying the driving frequency ω, where m = 1, c = 0.05, k = 1, g = 0 and (a) r = 0, (b) r = 0.2, (c) r = 0.4, (d) r = 0.6,
(e) r = 0.8, and (f) r = 0.9.

causes the mass to leave and then at t = 290 seconds the
mass hit the endstop again.  This is a case of periodic
chattering, where T = 31 seconds.  During the period of
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time T, the mass eventually sticks to the endstop and
cannot leave or enter until the next external positive
force occurs.  This process is described by a large
number of points set in impact map, see Figure 4(c), and
single point set in Poincare map, see Figure 4(d).  We
described this phenomenon as a complete chattering.

2. Incomplete chattering

When the driving frequency increases, the chatter-
ing oscillation does not stick to the endstop but leaves
after a few numbers of impacts.  This is because the
external force provides a positive force to the mass
sooner than the previous case.  This process is classified
as an incomplete chattering.  Figures 5(a) and 5(b) show
the displacement and the phase trajectory of the mass at
driving frequency ω = 1.2.  This process is described by
three clusters of point set in impact map and by two

clusters of point set in Poincare map, see Figures 5(c)
and 5(d).

3. Chaotic chattering

Figures 6(a) and 6(b) show the displacement and
the phase trajectory of the mass at ω = 2.8.  The results
demonstrate a complex structure.  The “∞”-impact point
set leads to a strange attractor in impact map, see
Figure 6(c).  In the same case plotted for Poincare map
also demonstrated a period-“∞” fractal structure in
Figure 6(d).  Figures 7(a)-7(d) illustrate the Poincare
maps for different phase sections, where ϕ are π/4ω, 3π/
4ω, 5π/4π and 7π/4ω, respectively.  These results give
us the information of how the flow is twisted in three
dimensions space and also provide the evidences of the
chaotic structure.  We classify this characteristic as
“∞”-impact period-“∞” motion.
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Fig. 4. Complete chattering occurs at the driving frequency ω = 0.2 with parameters m = 1, c = 0.05, k = 1, r = 0.8 and g = 0. (a) Displacement, (b) Phase
trajectory, (c) Impact map shows “∞ ”-impact motion, and (d) Poincare map shows period-1 motion.
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2 1.5 1 0.5 0 0.5 1 1.5 2 2.5
Velocity

(b)

D
is

pl
ac

em
en

t

1.6

1.4

1.2

1

0.8

0.6

0.4

0.2

0

-0.2

2 1.5 1 0.5 0 0.5 1 1.5 2 2.5
Velocity

(d)

D
is

pl
ac

em
en

t

1.6

1.4

1.2

1

0.8

0.6

0.4

0.2

0

-0.2

2 2.5 3 3.5 4 4.5
Phase (0 to T)

(c)

Im
pa

ct
 V

el
oc

ity

2.5

2

1.5

1

0.5

0

Fig. 6. Chaotic chattering occurs at the driving frequency ω = 2.8 with
parameters m = 1, c = 0.05, k = 1, r = 0.8 and g = 0. (a)
Displacement, (b) Phase trajectory, (c) Impact map shows “∞”-
impact motion, and (d) Poincare map shows period-“∞” motion.

250 255 260 265 270 275 280 285 290 295 300
Time (s)

(a)

D
is

pl
ac

em
en

t

0.8

0.6

0.4

0.2

0

-0.2

1 0.8 0.6 0.4 0.2 0 0.2 0.4 0.6 0.8 1
Velocity

(b)

D
is

pl
ac

em
en

t

0.8

0.6

0.4

0.2

0

-0.2

0 0.5 1 1.5 2
Phase (0 to T)

(c)

D
is

pl
ac

em
en

t

0.6

0.5

0.4

0.3

0.2

0.1

0

0.4 0.2 0 0.2 0.4 0.6 0.8
Velocity

(d)

D
is

pl
ac

em
en

t

0.6

0.5

0.4

0.3

0.2

0.1

0



J.Y. Lee: Motion Behavior of Impact Oscillator 95

Fig. 7.  Poincare maps at (a) ϕ = π/4, (b) ϕ = 3π/4, (c) ϕ = 5π/4, and (d) ϕ = 7π/4 for chaotic chattering in Figure 6.
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CONCLUSION

The numerical solutions of a mass-spring-damper
linear oscillator with endstop system were investigated.
For the driving frequency ranges that no explicit solu-
tions in analytical method, a complete bifurcation dia-
gram was plotted in this paper.  Consequently, the
phenomena of the complete, incomplete and chaotic
chattering were investigated using the impact map and
Poincare map.  These results provided a better under-
standing of such impacting systems and also benefited
the condition monitoring of systems in terms of signal
processing.
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