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ABSTRACT

This paper proposes the use of shift-invariant dual-tree discrete
wavelet transform (DT DWT) noise model to the problem of a
multipath signal detection in underwater environment.  The design
procedure for this adaptive model of the background noise is described.
When an input signal is shifted, as in a multipath environment, this
shift-invariant DT DWT can generate multi-resolution subspaces.
Each of them keeps more coefficient energy of this signal than
DWT’s.  The result of computer simulations shows that this method
can improve the performance of a multipath signal detection, by
reducing the false alarm probability in a range of different signal-to-
noise (SNR) ratios.

INTRODUCTION

Various approaches have been used for underwa-
ter signal detection by utilizing transformations of the
raw data, such as the Fourier transform.  Although this
transform is useful, it has difficulties in analyzing short-
term transient signals.  Several time-frequency ap-
proaches have been developed to address this problem.
Some of researchers have tried to use wavelets to deal
with it [1-3].  The wavelet transform uses long windows
at low frequencies and short windows at high frequencies.
When the wavelet analysis is viewed as a filter bank, the
analysis filters are regularly spread in a logarithmic
scale over the frequency axis.  So the frequency resolu-
tion becomes arbitrarily good at low frequency, while
the time resolution becomes arbitrarily good at high
frequency.  This kind of analysis is suitable for the
signal which is composed of low frequency components
of long duration and high frequency components of
short duration.

Our primary interest here is in the determination of
where particular signals appear in underwater.  Many
approaches involve predefined models that are designed
for particular situations.  Instead of imposing a priori
model, the authors of [1] approached the problem from
an alternative means.  They used an empirical model of
the noise for identifying the signals.  In this article we
attempt to build a shift-invariant and adaptive noise
model of the background continuum.  Observations
considered to be outliers from this noise model at any
time are then flagged as potential signals.  For the
application in a multipath environment that contends
with delays of a signal, shift-invariant DT DWT can
generate multi-resolution subspaces that keep more of
their coefficient energy as the input signal is shifted [2].
These retaining coefficient energy at different scales
enable this method to improve the detecting ability in a
range of different SNR ratios.

SHIFT-INVARIANT  DT-DWT  NOISE  MODEL

Wavelets that are compactly supported in time
domain are good for processing transient signals.  Using
scales and positions based on powers of two, discrete
wavelet transform is much more efficient in calculations.
One commonly used series of mother wavelets was
constructed by Daubechies [4].  An efficient algorithm
using filters to implement this scheme was obtained by
Mallat [7].  This very practical filtering scheme yields
a fast wavelet transform.  In wavelet analysis, the low-
frequency, high-scale components of the signal are
referred as the approximations and the high-frequency,
low-scale contents are indicated as the details.

Some researchers have proposed using two wave-
let transforms for signal analysis, such as letting one
wavelet be nearly the Hilbert transforms of the other.
Kingsbury found that when the lowpass filters of one
DWT are offset from the lowpass filters of the second
DWT by a half sample, the dual-tree DWT is nearly
shift-invariant [6].  In paper [8], Selesnick gave an
alternative derivation for the result by Kingsbury.  Based
on the limit functions defined by the infinite product
formula, Selesnick designed a Hilbert transform pairs
of wavelet bases and arrived at the same condition.  In
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order to build an adaptive noise model of the back-
ground continuum for the application in a multipath
environment, this shift-invariant dual-tree DWT is
considered.  The detailed procedure of designing the DT
DWT can be found in [9].

In the DWT, the lowpass filter h0(n) fully deter-
mines the orthogonal wavelet base.  According to article
[9], let h0(n) and h1(n) be a class of exactly reconstruct-
ing filters called “conjugate quadrature filter” or CQF’s.
That is

h 0 (n ) h 0 (n + 2k ) = δ (k ) =
1, k = 0
0, k ≠ 0Σ

n

and  h1(n) = (–1)(n) h0(M – n).  Let g0(n) and g1(n) be a
second CQF pair and assume filters hi(n) and gi(n), for
i = 1 and 2, are real-valued.  With h1(n) and g1(n),
wavelet ψh(n) and the other wavelet ψg(n) can be defined.
It was shown that if g0(n) is a half-sample delayed
version of h0(n)

g0(n) = h0 (n – 1/2)

then the two wavelets generated by the digital filters h1

and g1 respectively, form a Hilbert transform pair.
Though a half-sample delay cannot be designed by a
finite impulse response (FIR) filter, it can be done by
using an allpass filter with approximately constant frac-
tional delay [8].  From the designing procedure in [8],
one of several pairs of digital filters h0 and g0 can be
found.  An example of them are illustrated in Figure 1
(a), (b).  The plot of |H0(ω)| and |G0(ω)| in Figure 1 (c)
shows that they are indistinguishable.  And the phase
response of G0(ω)/H0(ω) in Figure 1 (d) shows its
agreement with ω/2 near ω = 0.

DWT produces a hierarchically structured
decomposition.  The choice of a suitable level for the
hierarchy depends on the signal.  At each level j, the
approximation Aj and the detail Dj are built, consider-
ing the original signal as the approximation A0 at level
0.  Based on digital filters h0 and g0, a hierarchically

Fig. 1.  (a) The digital filter h0(n); (b) A half-sample delayed version of h0(n); (c) The magnitude response of h0(n) and g0(n); (d) The phase response
of G0(ω)/H0(ω).
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structured decomposition of the shift-invariant DT DWT
that is used to build an adaptive noise model of the
background continuum for the application in a multipath
environment, is illustrated in Figure 2.  The degree of
shift invariance of this scheme is examined and depicted
in Figure 3 (a).  The input is a unit step, shifted to 17

adjacent sampling instants in turn.  Each unit step is
passed through the shift-invariant DT DWT in Figure 2.
The outputs D1, ..., D4 of this structure are recon-
structed from the wavelet coefficients at each of levels
1 to 4 in turn and depicted in Figure 3 (a).  A good shift-
invariant property is shown when all the 17 output
components have the same shape for a given level.  It is
illustrated that the DT DWT in Figure 3 (a) is indepen-
dent of shift while the imperfections of the DWT are
fairly obvious in Figure 3 (b).

SIGNAL  DETECTION  AND  COMPUTER
ANALYSIS

According to [1], the discrete wavelet coefficients
of underwater sound recordings can be divided into
appropriate time scale, or time “window” that can be
relevant to signal detection.  Motivated by this
application, this article considers the use of a shift-
invariant dual-tree discrete wavelet transform noise
model to the problem of a multipath signal detection in
underwater sound.  The signal of interest is the dolphin
sounds [5] denoted as g(t).  A multipath signal is pro-
duced from a linear combination of delayed replicas,
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Fig. 3.  Wavelet components at level 1 to 4 of 17 shifted step responses of (a) DT DWT and (b) DWT.
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g R (t ) = αmg (t – τm)Σ
m = 1

M
(1)

where the number of replicas M, attenuation coeffi-
cients {αm}, and the delays {τm} are all unknown.
Instead of wavelet coefficients, the reconstructing de-
tails of the dual-tree discrete wavelet transform of sound
recordings are divided into appropriate time windows
for detecting a multipath signal. In this section, the
computer analysis will show that the good shift-invari-
ant property of the proposed DT DWT noise model can
improve the performance of a multipath signal detection,
in a range of different signal-to-noise (SNR) ratios.

Figure 4 shows a time window divided from the
shift-invariant DT DWT reconstructing details of re-
cordings with a multipath dolphin sound [9].  The sound
recordings are sampled at 44.1 kHz. This window con-
taining 128 samples of the reconstructing detail (32768
data points) corresponds to a time period of 0.0029
seconds and is sufficient to capture significant changes
of the dolphin sounds in our applications.  The recon-
structing details in level 1 to level 4 covering the
frequency ranges that are of interest to us (i.e. 2-20 kHz)
are summarized in terms of four mean sums of squares,
(xt,1, ..., xt,4) for each time window t,

x t , j =
D j , k

2Σk = 1
128

128
, j = 1, ..., 4

where Dj,k
2  are taken from a time window t.  Because the

signals of interest in this application are in the higher
frequency range, these three mean sums of squares are
used to form a vector of multivariate observation xt =
(xt,2, ..., xt,4) in a time window t.  The behavior of these

observations xt covers the range of 2-10kHz.
A behavior of observations during the appearance

of a multipath dolphin sound is shown in Figure 5.
Figure 6 illustrates its behavior during a period of noise
when no “signals” are present.  That the joint behavior
of noise being significantly different from that of sig-
nals arrives at the same condition in [1].  This result
suggests a method that uses density estimates of the
shift-invariant DT DWT to establish the initial density
estimate of noise and applies the detection criterion
proposed by [1] to a shift-invariant DT DWT noise
model to detect multipath signals.  First, given data x1,
..., xT, the multivariate kernel density estimator [10]
with a multivariate normal kernel is

Fig. 4. Reconstructing details for a multipath dolphin sound using
shift-invariant DT DWT.
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Fig. 6.  Behavior of xt for background noise ---, xt, 2; ... , xt, 3; ---, xt, 4.
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q (x) =
(det H)1/2

(2π)3/2Th 3
exp ( –

(x – xt )
' H– 1(x – xt )

2h 2
)Σ

t = 1

T
(2)

where H is a robust estimate of the covariance matrix,
and h is a suitable global window width.  Second, a
detection criterion [1]

# q t (xt ) ≤ q (x) + 1

T + 1
(3)

is used to test if x is a signal or not, where “#{⋅}” means
“the number of” for t = 1, ..., T; q̂ denotes the kernel
density estimate based on x1, ..., xT; q̂ t denotes the kernel
density estimate based on x1, ..., xT but excluding xt.
Third, if this test produces a significantly small level, x
is identified as an outlier from the current kernel density
estimate and flagged as a potential signal and then
subsequently ignored.  Otherwise, this x will replace xT,
xt is replaced by xt + 1, t = 1, ..., T – 1, and the optimal
window width and the kernel density are updated before
the next x.  Then a model from this method can be a
baseline to identify the signals at any time.  Examining
the results when this proposed method is applied to a
multipath signal gR(t) in (1), the number of paths M is
first set to 3.  All attenuation factors {αm} are equal to
1, and the set of delay times {τm, m = 1, 2, 3} are
generated by a random number generator in each trial, to
produce a multipath signal gR(t).  Using different SNRs
to produce a range of test datasets.  Each test dataset is
designed to provide 512 successive multivariate
observations, xt = (xt,2, ...,  xt,4).  The first 256 observa-
tions are guaranteed a priori to contain no signals.  For
the following 256 observations, 221 are known to relate
only to noise, 35 are related to a multipath signal with
noise superimposed.  It is immediately processed on the
first 256 observations to provide an initial stable shift-
invariant DT DWT noise model.  Successive 256 obser-
vations are then considered.  As a result, each of the
corresponding 256 observations is detected as a signal
or as background noise.

Table 1 summaries the results obtained over the
various test datasets at given M and SNRs of the 100
trials, where “false alarm” refers to the average of the
percentage of misclassifications when a signal is classi-
fied as noise.  For example, one of the results that
obtained over the test datasets at given M = 6 and SNR
= -8 dB of the 100 trials, shows that the value of 46.9%
of the false alarm probability of DT DWT is less than
that value of 49.6% of DWT.  It shows that this method
can increase the performance of a multipath signal
detection, by reducing the false alarm probability in a
range of different SNR ratios.

Figure 7 is a plot of the DWT reconstruction (top)
and the DWT detection results (Bottom) of a multipath
dolphin sound gR(t) at SNR = 0 dB and M = 6.  Figure 8
is a plot of the DT DWT reconstruction (top) and the DT
DWT detection results (Bottom) of a multipath dolphin
sound gR(t) at the same condition.  Under the same M =
6, but now set SNR = -8 dB, the DWT reconstruction and
its detection results of a multipath dolphin sound is
plotted in Figure 9, while the DT DWT reconstruction
and its detection results of the same signal is plotted in

Table 1.  Performances of DT DWT and DWT signal detection methods

% false alarm, M = 3 % false alarm,  M = 6 % false alarm, M = 9

SNR(dB) DT DWT DWT DT DWT DWT DT DWT DWT

+5 0.2 1.6 0.2 0.7 0.5 1.2
0 7.0 10.1 4.4 7.5 5.0 7.7

-5 28.3 30.7 33.7 36.2 34.9 36.9
-8 52.7 56.3 46.9 49.6 42.3 46.4

-10 65.8 68.7 61.3 65.2 58.8 63.1

Note: Comparison relates of identifying 35 known dolphin signals in 256 observations with noise at given SNRs and M.

Fig. 7. The DWT reconstruction (Top) and its detection results (Bottom)
of a multipath dolphin sound at SNR = 0 dB and M = 6.
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Figure 10.  Finally, setting SNR = -10 dB with the same
M = 6, the DWT and DT DWT’s detection results are
shown in Figure 11 and Figure 12, respectively.  These
plots illustrate that the shift-invariant DT DWT noise
model has better detecting performance of a multipath
signal than its counterpart at different SNRs.

CONCLUSION

This paper proposes the use of a shift-invariant DT
DWT noise model to the problem of a multipath signal
detection in underwater sound.  When the input signal is
shifted as in a multipath environment, this shift-invari-
ant DT DWT can generate multi-resolution subspaces
that keep more of their coefficient energy in each of
these subspaces then DWT’s.  The result of computer
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Fig. 8.  The DT DWT reconstruction (Top) and its detection results
(Bottom) of a multipath dolphin sound at SNR = 0 dB and M = 6.
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Fig. 9. The DWT reconstruction (Top) and its detection results (Bottom)
of a multipath dolphin sound at SNR = -8 dB and M = 6.
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Fig. 10. The DT DWT reconstruction (Top) and its detection results
(Bottom) of a multipath dolphin sound at SNR = -8 dB and M = 6.
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Fig. 11. The DWT reconstruction (Top) and its detection results (Bottom)
of a multipath dolphin sound at SNR = -10 dB and M = 6.

Fig. 12. The DT DWT reconstruction (Top) and its detection results
(Bottom) of a multipath dolphin sound at SNR = -10 dB and M = 6.
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simulations shows that the proposed method can im-
prove the performance of a multipath signal detection,
by reducing the false alarm probability in a range of
different SNR ratios.  For example, one of the results
that obtained over the test datasets at given M = 3 and
SNR = -8 dB of the 100 trials, shows that the value of
52.7% of the false alarm probability of DT DWT is less
than that value of 56.3% of DWT.
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