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ABSTRACT

The performance for a MC-CDMA (multi-carrier coded-division
multiple-access) system working in uncorrelated and correlated fad-
ing channels with Nakagami distribution is investigated in this paper.
We adopt the BPSK modulation scheme with an alternative expres-
sion for Q-function to evaluate the BER (bit error rate) performance
of the MC-CDMA system.  The sum of Gamma variates is adopted for
deriving a closed-form solution for arbitrarily correlated channel in
order to avoid the difficulty of explicitly obtaining the pdf (probability
density function) for the SNR (signal-to-noise ratio) at the MRC
(maximum ratio combining) output.  The results with simple expres-
sion obviously show that the BER performance of the MC-CDMA
system is sensitive to the correlation of fading channels.

INTRODUCTION

Due to the advantages of spectrum efficient, inter-
ference immune, high date rate, and insensitivity to
frequency selective channel, etc., multiple access sys-
tem bases on direct sequence CDMA (coded-division
multiple-access) has drawn recent interest in the appli-
cation of wireless radio systems [15].  Especially, multi-
carrier CDMA (MC-CDMA) appears to be a consider-
able candidate for future mobile radio communication
system.

The BER (bit error rate) analysis of MC-CDMA
based on considering different kinds of assumptions, so
far, have been dedicated in numerous researches in
advance [4, 14, 15].  The performance evaluation of
MC-CDMA over multipath fading channels was studied

in [14].  The results presented in [4] are for uplink
channel using MRC (maximal ratio combining) with the
assumed frequency offsets condition in correlated fading.
The performance of MC-CDMA in non-independent
Rayleigh fading was studied in [8].  In [10], where is by
use of the method of CF (characteristic function) and
residue theorem to calculate the performance of down-
link MC-CDMA systems.  Both of the envelopes and
phases correlation are considered in [11], in which the
authors evaluate the performance of a MC-CDMA sys-
tem operates in Rayleigh fading channel.  The literature
of [5] assumed that the transmission channel is working
in Nakagami-m fading channel, and the postdetection of
EGC (equal gain combining) was considered illustrated
the error probability of MC-CDMA systems.  Recently,
the publication shown in [2] evaluated the performance
of MC-DS-CDMA system with band interference work-
ing in Nakagami fading channels.

In this paper, the generic expression of BER per-
formance for MC-CDMA system working in both
uncorrelated and correlated fading channels is evaluated.
The general correlation of channels with Nakagami-m
fading distribution is assumed.  There is a closed-form
obtained via the sum of Gamma variates to avoid the
difficulty of explicitly obtaining the pdf for the SNR
(signal-to-noise ratio) at the MRC output.  The results
show up that how the factors of channel correlation do
affect the performance of MC-CDMA systems.

The rest of this paper is organized as follows:
section II gives a description of the MC-CDMA system
model.  The uncorrelated and correlated Nakagami fad-
ing channel models are given in section III.  Section IV
describes the receiver model of MC-CDMA system.
The performance of  MC-CDMA operat ing in
uncorrelated and correlated fading cannel is carried out
in section V.  Numerical results are shown in section VI.
Finally, section VII draws conclusions briefly.
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SYSTEM  MODEL

The MC-CDMA system model is described in this
section.  It is assumed that there exist K simultaneously
users with N subcarriers within a single cell.  Any effect
of correlation among users is going to be ignored by
assuming the number of user is uniform distributed.  As
shown in Figure 1, a signal data symbol is replicated
into N parallel copies.  The signature sequence chip with
a spreading code of length L is used to BPSK (binary
phase shift keying) modulated each of the N subscriers
of the k-th user, where the subcarrier has frequency C/
Tb Hz, and where C is an integer number [14, 15].  The
technical described above is like an OFDM (orthogonal
frequency division multiplexing) performed on a direct
sequence spread-spectrum signal when set C = 1.  The
larger values of C, the more transmitting bandwidth
needed.  The transmitted signal, Sk(t), of the k-th user for
the resulting transmitted baseband signal correspond-
ing to the M data bit size can be expressed as

S k (t ) = 2P
N Σ

m ' = 0

M – 1

Σ
n = 0

N – 1

a k [n ]b k [m ']P T b (t ) Re [e
jωn t

]

(1)

where both ak[n] and bk[m′] belong to {−1, 1}, P is the
power of data bit, M denotes the number of data bit, N
expresses the number of subcarriers, the sequences ak

[0], ..., ak[N − 1] and bk[0], ..., bk[M − 1] represent the
signature sequence and the data bit of the k-th user,
respectively.  The PTb(t) is defined as an unit amplitude
pulse that is non-zero in the interval of [0, Tb], and Re
[.] denotes the real part of a complex number, ωn = 2π(fc

+ nC/Tb) is the angular frequency of the n-th subcarrier,
where fc indicates the carrier frequency, Tb is symbol
duration.

A frequency-selective channel with 1/Tb << BWc

<< C/Tb is addressed in this paper, where BWc is the
coherence bandwidth.  This channel model means that
each modulated subcarrier does not experience signifi-
cant dispersion and with transmission bandwidth of 1/
Tb, i.e. Tb × Td, where 1/Tb is the Doppler shift typically
in the range of 0.3~6.1 Hz [15] in the indoor environment,
and the amplitude and phase remain constant over the
symbol duration Tb.  Besides, the channel of interest has
the transfer function of the continuous-time fading chan-
nel assumed for the k-th user can be represented as

H k [f c + n C
T b

] = βk , n(cosθk , n + j sin θk , n) (2)

where βk, n and θk, n are the random amplitude and phase
of the channel of the k-th user at frequency fc + n(C/Tb).
In order to follow the real world case, the random
amplitude, βk, n are assumed to be a set of N correlated
identically distributed in one of our scenarios.

CHANNEL  MODEL

In this section, there are two cases of propagating
channels considered, that is, uncorrelated and corre-
lated Nakagami channels.  The equal fading severities
are considered for all of the channels, namely mi = m, i
= 0, ..., N − 1.  The pdf of the fading amplitude for the
k-th user with n-th channel, βk, n, are assumed as r.v.
(random variable) with the Nakagami distribution, and
given as [7]

P (β) =
2β2m – 1

Γ(m )
⋅ (m
Ω

)m
⋅ exp (

mβ2

Ω
) , β ≥ 0 (3)

where Γ( . )  is  the gamma function defined by

Γ(x ) = t x – 1

0

∞
e – t dt, Ω = E[β2]denotes the average power

of the fading signal, the fading figure, m, of the ampli-
tude distribution characterizes the severity of the fading,
and it is defined as

m = Ω2

E [(β2 – Ω)
2
]
≥ 0.5 (4)

It is well known that m = 0.5 (one-sided Gaussian
fading) corresponds to worst case fading condition, m =
1 and m = ∞ correspond to Rayleigh fading (purely
diffusive scattering) and the non-fading conditions,
respectively.  Next, we consider these two cases.

1.  Uncorrelated channels

First, if the propagation channels are assumed as i.
i. d (identically independent distributed), then by use of
the variable changing, the variable γ is assigned as theFig. 1.  The transmitter model of the MC-CDMA system.
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fading power of the channel.  The pdf of γ is given
follows as a gamma distribution, can be obtained by the
processing of random stochastic as

P γ(γ) =
γm – 1e – γ / Ω

Γ(m )Ωm (5)

where γ is considered as the instantaneous power of the
fading amplitude, that is, γ = β2 is assumed.

2. Correlated channels

Let [γi], i = 0, ..., N − 1 be a set of N correlated
identically distributed, and all the figure parameters and
the average power are assumed equivalent, that is, mi =
mj = m, and Ωi = Ωj = Ω, where i ≠ j, for i, j = 0, ..., N −
1.  The power at the output of the MRC is a function of
the sum of the squares of signal strengths, and is given

as R = Σ
i = 0

N – 1

γi .  Hence following the results extended

from Alouini et al. [1] and Moschopoulos [6], the pdf of
the output of the MRC receiver, can be expressed as

P R (γ) = Π
i = 0

N – 1

(
λ1
λi

) Σ
v = 0

∞ µvγmN + v – 1e – γ / λ1

λ1
mN + vΓ(mN + v )

(6)

where the coefficients µv can be obtained recursively by
the following formula given as

µ0 = 1

µv + 1 = m
v + 1 Σ

i = 1

v + 1

Σ
j = 1

N

1 –
λ1
λj

i

µv + 1 – i , v = 0, 1, 2, ...

(7)

where λ1 = min{λi}, and λi, i = 0, ..., N − 1 are the
eigenvalues of the matrix Z = XY, where X is the N × N
diagonal matrix with the entries of average power Ωi, i
= 0, ..., N − 1 when the subcarrier paths are correlated,
the entries of Ωi can be obtained by taking the minimum
value of Ωi = γi/mi.  The matrix Y is the N × N positive
definite matrix defined by

Y =

1 ρ12
1 / 2 ρ1N

1 / 2

ρ21
1 / 2 1 ρ2N

1 / 2

ρN 1
1 / 2 1

N × N

(8)

where ρij denotes the correlation coefficient between γi

and γj, i ≠ j, i, j = 0, 1, 2, ..., N − 1, and ρlm can be
expressed as

ρij =
Cov (γi , γj )

[Var(γi ) ⋅ Var(γj )]
1 21 2

= ρij , 0 ≤ ρij ≤ 1 (9)

where Var(.) and Cov(.) are the variance and the cova-
riance operators, respectively.

MC-CDMA  RECEIVER  MODEL

As shown in Figure 2, for K active transmitters, the
received signal r(t) can be written as

r (t ) = 2P
N Σ

k = 0

K – 1

Σ
m ′ = 0

M – 1

Σ
n = 0

N – 1

βm', nak[n]bk[m']PTb(t

− m'Tb − τk)cos(ωnt + θm', n) + n(t) (10)

where n(t) is the AWGN (additive white Gaussian noise)
with a double-sided power spectral density of N0/2.
Assuming that acquisition has been accomplished for
the user of interesting (k = 0).  For the reason of using
MRC, it is assumed that perfect phase correction can be
obtained, i.e., θ0, n = θ0, n .  With all the assumptions for
MRC combining, the decision variable N0 of the l-th
data bit reference user, is given by

D 0 = 1
T b

r (t )
l T b

(l + 1) T b
× Σ

n = 0

N – 1

a 0[n ] × d 0, n

× Re [e (ωn t + θ0, n )] dt

= US + IMAI + η0 (11)

where r(t) is the received signal shown in Eq. (10), d0,

n is the gain factor for MRC diversity, and US represents
the desired signal, can be expressed as ,

U S = P
2N Σ

n = 0

N – 1

β0, n
2 ⋅ b 0[m ′], (12)

and the second term, IMAI, is the MAI (multiple access

Fig. 2.  The receiver model of the MC-CDMA system.
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interference) contributed from all other users which can
be written as

I MAI = P
2N Σ

k = 1

K – 1

Σ
n = 0

N – 1

a k [n ] ⋅ b k [m ′] ⋅ a 0[n ] ⋅ βk , n

⋅ cos (θk , n
′ ) (13)

where θk , n
′ = θ0, n – θk , n  and θk, n are i. i. d uniformly

distributed over [0, 2π],  is the AWGN term.

PERFORMANCE  ANALYSIS

A generalized average BER for the k-th user using
coherent BPSK (binary phase shift keying) modulation
scheme is derived in this section.  For coherent demodu-
lation in the presence of AWGN, the probability of error
conditioned on the instantaneously SNR can be ex-
pressed as [9]

P e(s ) =
Γ(1

2
, σ0s )

2 π
= 0.5Q 2σ0s (14)

where the incomplete gamma function is defined as

Γ(z , t ) =
t

∞
x (z – 1)e – xdx , and in order to determine the

SNR  in last equation, the received instantaneously SNR
σ0s, which conditioned on γ0, n = β0, n

2 , at output of the
receiver is calculated as

U s
2

σT
2

=

P
2N Σ

n = 0

N – 1

β0, n
2

σI MAI
2 + ση

2
(15)

where σI MAI
2

 is the variance of IMAI, which is shown in
Eq. (13).  In the limiting case of large N and by the
methods of central limit theory (CLT), the MAI can be
approximated by a Gaussian r.v. with zero mean and the
variance, σI MAI

2  , can be determined as [5]

σI MAI
2 = E [I MAI

2 ] = P
2

(k – 1) ⋅ E [βk , n
2 ] ⋅ E [cos2θk , n]

= P
4

(k – 1)Ωk , n (16)

where Ωk , n = E [βk , n
2 ], E [cos2θk , n] = 1 / 2.  On the other

hand, the background noise term η0 is a random variable
with zero mean and the variance can be calculated as

ση0
2 = E [η0

2] =
NN 0

4T b
(17)

By substituting Eqs. (16) and (17) into Eq. (15),
which can be obtained as

U s
2

σT
2

=
1

2N
⋅ S

σ0
(18)

where S = Σ
n = 1

N – 1

β0, n
2 Ωk , nβ0, n
2 Ωk , n (19)

and σ0 =
NN 0

4P T bΩk , n
+

k – 1
4

= N
4γ0

+
k – 1

4 (20)

where γ0 =
P T bΩk , n

N 0
=

E bΩk , n

N 0
 is the SNR of each bit,

and Eb = PTb denotes the bit energy.
It is known that the decision variable in Eq. (11)

has a Gaussian distribution conditioned on the
uncorrelated and correlated channel power β0, n

2 ,
respectively, and the AWGN, η0, and the MAI, ηMAI are
mutually independent.  Therefore, the probability of
error by means of BPSK modulation conditioned on the
instantaneously SNR has been given in Eq. (15) can be
evaluated as follows.

1. Uncorrelated channels

We adopt the alternative expression for the Q-
function, which is expressed as [13]

Q (t ) = 1
π

0

π
2 e

( – t 2

2sin2ϕ
)
dϕ, t ≥ 0 (21)

and the random variables {γi, i = 0, ..., N − 1} are
assumed to be independent.  Such that the Eq. (14) can
be expressed as [3]

P e(s ) = 1
π

0

π
2 Π

n = 1

N

J 0, n(Ω0, n , ϕ) dϕ (22)

where the symbol J0, n(Ω0, n, ϕ) stands for an integral
function, can be determined as

J 0, n(Ω0, n , ϕ) =
0

∞
e

( –
γ0, n

sin2ϕ
)
P r(r 0, n) dr 0, n

= m
Ω0, n

m 1
sin2ϕ

+ m
Ω0, n

– m

(23)

where Ω0, n indicates the average value of γ0, n.  In
Nakagami-m fading channels, the γ0, n follows the gamma
distribution expressed as in Eq. (5).  All N subcarriers
are assumed i. i. d, and the average bit error probability
can be calculated by using the simple form of a single
integral with finite limits and obtained as

P e = 1
π [

0

π
2 J 0, n(Ω0, n , ϕ)]N dϕ (24)

2. Correlated channels

The condition of correlated channels are consid-
ered in this section, and the average bit error probability
for the case can be calculated by averaging Eqs. (6) and
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(14), and yield as

P e =
0

∞
P e |s ⋅ P e(S ) dS

= 1
2 π Πn = 0

N – 1 λ1
λn

m

Σ
v = 0

∞ µv

λ1
mN + vΓ(mN + v )

⋅
σ0

1 / 2 ⋅ Γ(mN + v + 1
2

)

(mN + v ) (σ0 + 1
λ1

)
mN + v + 1

2

× F 12 (1, mN + v + 1
2

; mN + v + 1;
1 / λ1

σ0 + 1 / λ1
)(25)

where µv is shown in Eq. (7), λ1 and σ0 are shown in Eqs.
(6) and (20), respectively, and the symbol 2F1(., .; .; .)
denotes the confluent hyper-geometric function [9].

NUMERICAL  RESULTS

Some of the numerical results based on Eqs. (22)
and (25) are shown in this section.  In Figures 3 and 4,
the results of SNR (in dB) and user number versus BER
for MC-CDMA system works over uncorrelated fading
channels are illustrated, respectively.  On the other
hands, Figures 5 and 6 show the BER performance
results for MC-CDMA system works in correlated chan-
nels environments.  In Figure 3 where is not only the
different fading parameters, m = 2 and 4, figure out the
different BER performances curves but the different
subcarrier numbers, N = 8, 16, 32.  The results presented
that the much more subcarrier the better BER
performance.  The user number, K, versus BER for MC-
CDMA system operate in uncorrelated fading channels

is illustrated in Figure 4, in which the SNR = 5 dB is
assumed.  The user number is limited both of the
SNR and the subcarrier number.  The results shown in
Figures 3 and 4 can be validated by the previously works
as [12].

Next, the different correlation coefficients between
the correlated channels are assumed to be ρ = 0.1, 0.4,
and 0.8, which are adopted from [1] (the values of ρ =
0.01, 0.16, and  are applied in [1], but the square root is
the effective values for putting into the covariance
matrix (8)), the subcarrier number and the user number
are assumed corresponding to 16 and 8 in Figure 5.  To
calculate the BER, the mean power of the desired signal
is assumed equal to the mean power of each interfering
mobile unit.  Base on the results shown in Figure 5, we
should know that the performance of BER will be pro-
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moted gradually by the increasing of the correlation
coefficient, ρ, between the correlated channels.  It is
reasonable that the system performance BER becomes
much better when the fading parameter is increasing.
The performance of BER versus user number is shown
in Figure 6, in which the correlation coefficients are
assumed as, ρ = 0.4 and 0.8, the average bit SNR is set
as 5dB [11].  From the figure it should be noted that the
impact of channel correlation definitely affects the per-
formance of MC-CDMA system.

CONCLUSION

The SNR and the user number versus probability
error rate for MC-CDMA works in uncorrelated and
correlated Nakagami-m fading channels has been evalu-
ated in this paper.  Some new equations were derived in
this research, for example, the expression of the BER
was calculated by the sum of Gamma variates for the
shake of avoiding the difficulty ways.  The results
explicitly show that the phenomena of channel correla-
tion do degrade the performance of MC-CDMA com-
munication systems.  Therefore the consideration of
correlation coefficient for channel fading should pay
much attention while designing the MC-CDMA sys-
tems for wireless radio systems.
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