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ABSTRACT

In this paper, a state variance constrained design method is
developed to deal with the observer-based fuzzy control problem for
continuous Takagi-Sugeno (T-S) fuzzy stochastic models.  The stabil-
ity problem considered in this paper is a standard feasibility problem
with several Linear Matrix Inequalities (LMIs), which can be solved
numerically using the interior-point method.  The purpose of this
paper aims at finding observer-based fuzzy controllers such that the
closed-loop system is asymptotically stable and the state variance
performance constraints are satisfied.  Finally, a numerical example
is included to demonstrate the effectiveness of the proposed controller
design method.

INTRODUCTION

The fuzzy logic has been applied extensively in the
areas of industrial system and consumer products.  It has
emerged in turn to tackle the control problems where the
plants are poorly modeled by mathematics.  However,
the heuristics-based [14] approach in the early days of
fuzzy logic control lack the formula and system design
methodology that guarantees the basic requirements
such as stability and acceptable performance.  The
theoretic researches on the issue are conducted actively
by many theorists since the T-S fuzzy model [19] is
emerged.

The T-S fuzzy model is described by a set of IF-
THEN rules.  These rules locally represent linear input-
output relations of nonlinear systems.  The stability
analysis and controller design for T-S type fuzzy sys-

tems are discussed in [2-4, 10, 19, 25, 26].  The control-
ler design is carried out based on the fuzzy model via so-
called Parallel Distributed Compensation (PDC) con-
cept [2-4, 10, 25, 26].  Based on PDC concept [2-4, 10,
25, 26], Lyapunov theory is the main tool for designers
to deal with the stability analysis and synthesis of T-S
fuzzy models.  The advantage of the PDC concept is to
design linear feedback gains for each local linear model
and let the overall system input can be blended by these
linear feedback gains.

In control theory, the performance constraint usu-
ally plays an important objective in addition to the
stability requirement.  For example, the state variance
constraints [5, 7-9] are important performance require-
ments for the stochastic control systems.  In this paper,
we not only consider the stability of nonlinear systems,
but also consider the state variance constraints.  It is
shown that this state variance constrained problem can
be transformed into a LMI problem.  In [10, 25, 26], the
stability and stabilization of the T-S fuzzy system is
determined by solving a set of LMIs.  It is well known
that the LMI problem can be solved numerically using
an interior-point method [1].

For practical systems, the states of a system are
often not readily available.  Under such circumstances,
some papers [11, 13, 24] deal with the fuzzy observer
design problem for the T-S fuzzy models.  It allows
the designers to find a common positive definite
matrix, which can be solved by LMI method for the
closed-loop systems.  This paper focuses on the fuzzy
control problem of continuous T-S fuzzy stochastic
systems under the assumption that the complete
state vector cannot be measured.  According to the fuzzy
observer design concept and fuzzy control theory,
an observer-based fuzzy controller design methodology
is developed to achieve specified state variance con-
straints for the T-S fuzzy models.  To validate the
effectiveness of the proposed observer-based fuzzy
controller design method, a numerical example is
taken for a T-S fuzzy model subject to the individual
state variance constraints.
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OBSERVER-BASED  T-S  FUZZY  SYSTEMS

Studies on universal approximation of fuzzy sys-
tems have achieved great progress in the past few years.
In reality, general fuzzy systems are mainly of two
classes: Mamdani fuzzy systems [14] and T-S fuzzy
systems [19].  The main difference between these two
classes lies in their consequent of the fuzzy rules.  In this
paper, a T-S type fuzzy model is used to construct a
nonlinear stochastic system as follows.

Plant Rule i:

IF x1(t) is Mi1 ... and xnx(t) is Minx,

THEN x (t ) = A i x (x ) + B i u (t ) + D i v (t ),

y(t) = Cix(t) + Eiµ(t), i = 1, 2, ..., r, (1)

where x(t) ∈ ℜnx is the state vector; u(t) ∈ ℜnu is the
control input vector; and y(t) ∈ ℜny is the control output
vector in i-th rule.  The v(t) ∈ ℜnv and µ(t) ∈ ℜnµ are
stationary zero-mean mutually independent white noise
processes with covariance V > 0 and Ω > 0, respectively.
The matrices, Ai ∈ ℜnx × nx, Bi ∈ ℜnx × nu, Ci ∈ ℜny × nx, Di ∈
ℜnx × nv, and Ei ∈ ℜny × nµ are constant; i = 1, 2, ..., r and r
is the number of IF-THEN rules.  The Mij are fuzzy sets
and it is assumed that Bi is full-column rank.  Besides,
the pairs (A i, B i) and (A i, C i) are controllable and
observable, respectively.

The state and output equations for the system can
be represented in term of the rules (1) as

x (t ) = Σ
i = 1

r

h i (t )A i x (t ) + Σ
i = 1

r

h i (t )B i u (t ) + Σ
i = 1

r

h i (t )D i v (t ),

(2)

y (t ) = Σ
i = 1

r

h i (t )C i x (t ) + Σ
i = 1

r

h i (t )E i µ(t ). (3)

where hi(t) = ωi(t)/ Σ
i = 1

r

ωi (t ), ωi(t) = Π
j = 1

nx

Mij(xj(t)) and

Mij(xj(t)) is the grade of membership of xj(t) in Mij(t); ωi

(t) is the weight of the i-th rule.
In some nonlinear systems, the system states usu-

ally cannot be completely measured.  Therefore, the
designers need to design the fuzzy observers to estimate
the states for the fuzzy system in order to implement the
fuzzy controller.  In [4], the authors considered the so-
called separation property for a controller and an ob-
server design for the linear stochastic systems.  The
fuzzy observers require to satisfy the condition x(t) −
x (t ) → 0when t → ∞, where x (t ) denotes the estimated
state vector of the fuzzy observer.  In this paper, the
fuzzy observer is described as follows:

Observer Rule i:

IF x1(t) is Mi1 ... and xnx(t) is Minx,

THEN x (t ) = A i x (t ) + B i u (t ) + K i (y (t ) – y (t )),

y (t ) = C i x (t ), i = 1, 2, ..., r, (4)

where K i ∈ ℜnx × ny are observer gain matrices and
x (t )∈ℜnx  is the state vector of observer.  The y(t) and
y (t ) are the output of the fuzzy system and the fuzzy
observer, respectively.  Then, the final estimated state
and output of the fuzzy observer are characterized as
follows.

x (t ) = Σ
i = 1

r

h i (t )A i x (t ) + Σ
i = 1

r

h i (t )B i u (t )

+ Σ
i = 1

r

Σ
j = 1

r
h i (t )h j (t )K i C j [x (t ) – x (t )]

+ Σ
i = 1

r

Σ
j = 1

r
h i (t )h j (t )K i E j µ(t ), (5)

y (t ) = Σ
i = 1

r

h i (t )C i x (t ), (6)

The same weight hi(t) of i-th rule of the fuzzy system (2)
and (3) is used for the fuzzy observer (5) and (6).  The
desired parameters of the fuzzy observer are the gain
matrices Ki in each rule.

In this paper, the concept of PDC [2, 3, 7, 12, 22,
23, 25, 26] is used to synthesize observer-based fuzzy
control laws for the nonlinear system, which is repre-
sented by continuous T-S type fuzzy stochastic model
(1).  The basic idea of the PDC approach is to design the
feedback gains for each rule in the fuzzy models.  Linear
control design techniques can be used to design these
linear controllers for each rule.  Hence, the nonlinear
system controller can be blended by local linear fuzzy
controllers sharing the same fuzzy sets with the continu-
ous T-S type fuzzy stochastic model (1).  By using the
observed states from the fuzzy observer, the observer-
based fuzzy controller becomes

Observer-based Fuzzy Controller Rule i:

IF x1(t) is Mi1 ... and xnx(t) is Minx

THEN u (t ) = G i x (t ),,  i = 1, 2, ..., r, (7)

where i = 1, 2, ..., r and r is the number of IF-THEN rule.
The overall observer-based fuzzy controller becomes

u (t ) = Σ
i = 1

r

h i (t )G i x (t ). (8)
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By substituting (8) into (2) and (5), state and
observer equations of the fuzzy system can be described
as follows.

x (t ) = Σ
i = 1

r

h i (t )A i x (t ) + Σ
i = 1

r

Σ
j = 1

r

h i (t )h j (t )B i G j x (t )

+ Σ
i = 1

r

h i (t )D i v (t ), (9)

x = Σ
i = 1

r

Σ
j = 1

r

h i (t )h j (t )(A i + B i G j )x (t )

+ Σ
i = 1

r

Σ
j = 1

r

h i (t )h j (t )K i C j [x (t )– x (t )]

+ Σ
i = 1

r

Σ
j = 1

r

h i (t )h j (t )K i E j µ(t ). (10)

Let x (t ) = x (t ) – x (t ), R ij =
(A i + B i G j ) + (A j + B j G i )

2
 and

R ij =
B i G j + B j G i

2
, i < j ≤ r, then (9) can be rewritten as

x (t ) = Σ
i = 1

r

h i (t )h j (t )(A i + B i G i )x (t ) + 2Σ
i < j

h i (t )h j (t )R ij x (t )

– Σ
i = 1

r

h i (t )h j (t )B i G i x (t ) + 2Σ
i < j

r

h i (t )h j (t )R ij x (t )

+ Σ
i = 1

r

h i (t )D i v (t ) (11)

The observer error dynamics becomes

x (t ) = Σ
i = 1

r

h i h j (t )(A i – K i C i )x (t ) + 2Σ
i < j

h i (t )h j (t )H ij x (t )

– Σ
i = 1

r

h i (t )h j (t )K i E i µ(t ) + 2Σ
i < j

r

h i (t )h j (t )H ij µ(t )

– Σ
i = 1

r

h i (t )D i v (t ), (12)

w h e r e  H ij =
(A i – K i C j ) + (A j – K j C i )

2
 a n d  H ij =

K i E j + K j E i

2
.  Augmenting (11) and (12) yields:

χ(t ) = Σ
i = 1

r

Σ
k = 1

r

h i (t )h i (t )h k (t )[L i χ(t ) + N ik v (t )]

+ 2Σ
i < j

r

h i (t )h j (t )[L ijχ(t ) + N ij v (t )], (13)

where

χ(t ) =
x (t )
x (t )

, v (t ) =
v (t )
µ(t )

,

L i =
A i + B i G i – B i G i

0 A i – K i C i
, L ij =

R ij – R ij

0 H ij

,

N ik =
D k 0
D k – K i E i

, N ij =
0 0

0 – H ij

.

If Li is a stable matrix, the state covariance matrix
Xi of each subsystem of (13) can be defined by [4, 13,
23, 24]

X i = lim
t → ∞

E [χ(t )χ(t )T ] (14)

Let the common covariance matrix for (13) be X such
that

X = X i =
X aa X ab

X ab
T X bb

, i = 1, 2, ..., r, (15)

and X = XT > 0, then X satisfies the following Lyapunov
equation for each rule [4, 13, 23-24]:

L i X + XL i
T + N iΦΦN i

T = 0 (16)

where ΦΦ = V 0
0 ΩΩ

.

A T-S type fuzzy observer and an observer-based
fuzzy controller are used to construct a nonlinear sto-
chastic system as above.  Based on the common state
covariance matrix defined in (15), references [15-17]
provided the conditions and solutions for the optimal
filter gains Ki as follows:

K i = X bb C i
T (E iΩE i

T )
– 1

, (17)

(Ai + BiGi)Xaa + Xaa(Ai + BiGi)
T − BiGiXbb

− Xbb(BiGi)
T + DiVDi

T = 0 (18)

AiXbb + Xbb(Ai − KiCi)
T + DiVDi

T = 0 (19)

where Xaa > 0, Xbb > 0, Xab = Xbb and (Xaa − Xbb) > 0 are
defined in (15).  Note that the above conditions are
necessary and sufficient [17] for the existence of opti-
mal estimators since they satisfy the Wiener-Hopf equa-
tion [15].  From the results of [16-17], it can be found

that the optimal filter gain K i = X bb C i
T (E iΩE i

T )
– 1

 leads
to the fact that the steady state error between the system
state x(t) and the estimated state x (t ) converges to zero
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when t → ∞.  Note that the state covariance matrix X
defined in (15) satisfies the following Lyapunov
equation:

(Ai + BiGi)(Xaa − Xbb) + (Xaa − Xbb)(Ai + BiGi)
T

+ XbbCi
T(EiΩEi

T)−1CiXbb = 0 (20)

Besides, the assumption Xab = Xbb implies that the

estimate x  and the error x  are orthogonal, i.e., E xx T

= 0.  Without loss of generality, this assumption has
been applied in the design of optimal filter for the
continuous-time systems [16, 18].  From (17), if con-
tinuous T-S type fuzzy model (1) is corrupted only by
state noise without measurement noise (i.e., Ω = 0), then
the optimal filter gain Ki does not exist.  In next section,
the observer-based fuzzy control problem is solved such
that the state variance constraints are satisfied.

OBSERVER-BASED  FUZZY  CONTROL  WITH
STATE  VARIANCE  CONSTRAINTS

In this section, the Lyapunov approach is used to
discuss and analyze the stability conditions for the T-S
fuzzy models.  As well as, the individual state variance
constraints are also considered in the observer-based
fuzzy controller design process.  A variance constrained
fuzzy control methodology for continuous T-S fuzzy
stochastic systems has been developed in [6].  However,
it did not consider the observed-state feedback control
technique.  To offer a lucid presentation of the observer-
based fuzzy control theory for continuous T-S fuzzy
model (1), we consider the stability analysis for the T-
S fuzzy model (1) by applying the fuzzy observers.  The
stability conditions of the observer-based fuzzy control
problem are stated by using the optimal estimations
defined in (17-19) via the following theorem.

Theorem 1
For a T-S fuzzy model (1), which is driven by (8)

and (10), the closed-loop system is possessed by an
optimal filter gain Ki = XbbCi

T(EiΩEi
T)−1 with Xaa > 0, Xbb

> 0 and Xab = Xbb, which satisfy equations (17-19).  If
there exist common positive definite matrices X aa  and
X aa – X bb > 0 satisfying the following conditions

AiXbb + XbbAi
T − XbbCi

T(EiΩEi
T)−1CiXbb + DiVDi

T = 0

(21)

(A i + B i G i )( X aa – X bb ) + ( X aa – X bb ) (A i + B i G i )
T

+ X bb C i
T (E iΩΩE i

T )
– 1

C 1X bb < 0 (22)

R ij ( X aa – X bb ) + ( X aa – X bb )R ij
T < 0, i < j ≤ r

(23)

then the equilibrium of the closed-loop continuous T-S
fuzzy stochastic control system (11) is asymptotically
stable in the large and X aa > X aa .

Proof:
From the statements of above section, it is clear

that the matrix Ki performs an optimal filter gain if and
only if there exist matrices Xaa > 0 and Xbb > 0 such that
(17-19) are all satisfied with Xab = Xbb defined in (15).
Substituting (17) into (19) and rearranging yields

AiXbb + XbbAi
T + DiVDi

T = XbbCi
T(EiΩEi

T)−1CiXbb,

(24)

which is equivalent to (21).  Subtracting (20) from (22),
one has

(A i + B i G i )( X aa – X aa) + ( X aa – X aa)(A i + B i G i )
T < 0

(25)

Using the similar method yields

R ij ( X aa – X aa) + ( X aa – X aa)R ij
T < 0 (26)

It is easy to find that the optimal filter gain Ki

defined in (17-19) leads to the fact x (t )→ 0 when t → ∞.
From Theorem 3 of [21], one can deduce that if there
exist a common positive definite error state covariance
matrix ( X aa – X bb ) > 0 satisfying (22) and (23), then
the equilibrium of continuous fuzzy control system
(11) is asymptotically stable in the large due to XbbCi

T

(EiΩEi
T)−1CiXbb ≥ 0 and x (t )→ 0.  In the case of the

matrices (Ai + BiGi) and Rij being stable, one can obtain
that X aa – X aa > 0 from (25) and (26).  Hence, it can be
concluded that if conditions (21-23) are all satisfied
with X aa – X aa

T > 0 and ( X aa – X bb ) > 0, then the equi-
librium of the closed-loop nominal continuous T-S fuzzy
stochastic control system (11) is asymptotically stable
in the large and X aa  is the upper bound of matrix Xaa,
i.e., X aa > X aa .  #

Applying the results of Theorem 1, the common
state covariance matrix X has an upper bound matrix.  It
can be defined as X , i.e.,

X =
X aa X ab

X ab
T X bb

,  i = 1, 2, ..., r, (27)
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where X  is the upper bound of common state covari-
ance matrix X, i.e., X > X .

From the stability conditions of Theorem 1, one
can obtain LMI stability conditions with respect to
Z i = G i ( X aa – X bb ), and they can be respected in the
following theorem.

Theorem 2
For a T-S fuzzy model (1), which is driven by (8)

and (10), the closed-loop system is possessed by an
optimal filter gain Ki = XbbCi

T(EiΩEi
T)−1 with Xaa > 0, Xbb

> 0 and Xab = Xbb, which satisfy equations (17-19).  If
there exist common positive definite matrices X aa  and
X aa – X bb > 0, satisfying the following conditions, then

the stability conditions (22-23) of Theorem 1 are
achieved.

ΘΘi X bb C i
T

C i X bb – (E iΩΩE i
T )

< 0, i = 1, 2, ..., r,     (28)

A i X aa + X aaA i
T – A i X bb – X bb A i

T + A j X aa

+ X aaA j
T – A j X bb – X bb A j

T + B i Z j + B j Z i

+ (B i
T Z j

T + B j
T Z i

T ) < 0, i < j (29)

where Z i = G i ( X aa – X bb ) and Θi are defined as

ΘΘi = A i X aa + X aaA i
T – A i X bb – X bb A i

T

+ B i Z i + Z i
T B i

T (30)

The proof of Theorem 2 can be obtained via Schur
complement [1].  By Schur complement, one can get
that (22) and (23) are equivalent to (28) and (29).  In
Theorem 2, the stability conditions of Theorem 1 are
transformed into LMIs.  Based on the stability condi-
tions of Theorem 2, this paper not only consider to
design stable observer-based fuzzy controllers but also
to achieve individual state variance constraints.  The
state variance performance constrained design problem
is an application of upper bound state covariance con-
trol approach [5, 22, 23].  The purpose of this paper is to
find the set of controllers Gi, which satisfy the stability
conditions of Theorem 1, such that the upper bound
state covariance matrix X aa satisfies the following
variance performance objectives:

lim
t → ∞

E [xϕ
2(t )] = [X aa]ϕϕ ≤ [ X aa]ϕϕ ≤ σϕ

2,

ϕ = 1, 2, ..., nx, (31)

where σϕ denote the Root-Mean-Squared (RMS) con-
straint for the variances of system states.  This problem
is referred to as the state variance constrained design
using the observer-based fuzzy control.  The purpose of
this paper is to find common positive definite matrices
X aa  and ( X aa – X bb ) to satisfy stability conditions

(21-23) subject to the state variance constraint (31).  For
this purpose, this paper provides a formula to find the
observer-based fuzzy controllers for achieving indi-
vidual state variance constraint (31).

Theorem 3
If stability conditions (21), (28-29) and the follow-

ing LMIs are satisfied for a given σϕ > 0.  Then, the T-
S fuzzy model (1), driven by (8) and (10), is stable and
the state variance constraint (31) is achieved.

σϕ
2 I ϕ X aa

X aaI ϕ
T X aa

> 0 , ϕ = 1, 2, ..., nx (32)

where Iϕ = [0 ... 1 ... 0] ∈ ℜ 1 × nx denotes a row vector
with the ϕth element is 1 and others are 0.

Proof:
In order to transform the present control problem

into a LMI problem, it is necessary to transform the state
variance constrain (31) into a LMI form.  Hence, the
LMI condition (32) is directly constructed from the
state variance constraint (31).

It is noted that the observer-based fuzzy control
problem with state variance constraints can be dealt
with by the LMI criterions of Theorem 3.  These LMI
criterions can be solved numerically using an interior-
point method [1].  In next section, a numerical example
is provided to verify the usefulness of the proposed
observer-based fuzzy controller design method.

A NUMERICAL  EXAMPLE

To illustrate the proposed observer-based fuzzy
control approach, consider a two-rule (r = 2) T-S fuzzy
model, which is described as follows.

Plant Rule 1:
IF x1(t) is M11

THEN 
.
x(t) = A1x(t) + B1u(t) + D1v(t)

 y(t) = C1x(t) + E1µ(t) (33a)

Plant Rule 2:
IF x1(t) is M21

THEN 
.
x(t) = A2x(t) + B2u(t) + D2v(t)

 y(t) = C2x(t) + E2µ(t) (33b)
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where

A 1 =
0 0 2.5
1 – 1 2
0 – 1.25 0

, A 2 =
0.41 – 0.9 3.75

1 – 1 2
0 – 1.25 0

,

B 1 =
0

1.5
0

, B 2 =
0

0.6
0

, C1 = C2 = [5  2  1],

D 1 =
0.05

0
0.05

, D 2 =
0
0

0.05
, E1 = E2 = 1,

In Figure 1, the fuzzy sets for Plant Rule 1 and 2 are
described by two triangular membership functions.  In
this example, it is assumed that the state variance con-
straints of this system have the following forms:

[Xaa]11 ≤ 6, [Xaa]22 ≤ 3, [Xaa]33 ≤ 5 (34)

Besides, the covariance matrices of zero-mean
white noises v(t) and µ(t) are V = 10 and Ω = 1,
respectively.  Before finding the solutions of common
positive definite upper bound covariance matrix X aa ,
the positive definite matrix Xbb can be obtained by
solving the algebraic Riccati-like Eq. (21).

X bb =
0.049 0.030 0.016
0.030 0.021 0.005
0.016 0.005 0.019

(35)

To carry on, using LMI-toolbox of MATLAB, one
can find the solutions of common positive definite
upper bound covariance matrix X aa  and feedback gains
Gi from LMIs (28-29) and (32).

X aa =
4.494 0.383 – 1.489
0.383 2.694 0.966

– 1.489 0.966 1.287
(36)

G1 = [2.326  −4.583  7.115],

G2 = [3.834  −6.759  11.538] (37)

Applying X aa  and Xbb to construct X , which is
defined in (27), one has

X =

4.494 0.383 – 1.489 0.049 0.030 0.016
0.383 2.694 0.966 0.030 0.021 0.005

– 1.489 0.966 1.287 0.016 0.005 0.019
0.049 0.030 0.016 0.049 0.030 0.016
0.030 0.021 0.005 0.030 0.021 0.005
0.016 0.005 0.019 0.016 0.005 0.019

(38)

Subtracting Xbb from X aa , one can obtain

X aa – X bb =
4.445 0.353 – 1.504
0.353 2.673 0.960

– 1.504 0.960 1.268
> 0. (39)

Substituting Xbb into (17), the fuzzy observer gains
Ki can be obtained as follows:

K1 = [0.321  0.198  0.107]T,

K2 = [0.321  0.198  0.107]T (40)

Since conditions (21-23) of Theorem 1 are all
satisfied, one can conclude that the closed-loop con-
tinuous observer-based T-S fuzzy stochastic control
system (11) is asymptotically stable by applying the
observer gains (40) and the fuzzy control gains (37).
Besides, it also achieved the goal of the state variance
performance constraints (34).  In the simulation, the
initial states are given as [x1(0)  x2(0)  x3(0)]T = [0.25
−0.5  0.75]T.  Figure 2 and Figure 3 show the input
signals of v(t) and µ(t) for the simulations.  Applying
fuzzy control gains G1 and G2 in the simulation, Figure
4 shows the responses of control input.  In addition,
Figure 5, Figure 6 and Figure 7 show the responses of
true states X(t) and the estimated state X̂(t) for the
controlled T-S fuzzy model (33), respectively.  From
these simulation results, the state variances of closed-
loop nonlinear system (33) are calculated as follows:

1

0
-1.5

Rule 2 Rule 2
Rule 1

0 1.5
x1(t)

Fig. 1.  The membership function of x1(t).
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Fig. 2.  The input signals of v(t).

Fig. 3.  The input signals of µ(t).
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Fig. 4.  The responses of control input u(t).
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Fig. 5.  The responses of true state x1(t) and estimated state x 1(t ) for
controlled fuzzy model (33).
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Fig. 6. The responses of true state x2(t) and estimated state x 2(t ) for
controlled fuzzy model (33).

Fig. 7 . The responses of true state x3(t) and estimated state x 3(t ) for
controlled fuzzy model (33).
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var(x1(t)) = 0.0175, var(x2(t)) = 0.0124

and var(x3(t)) = 0.0058 (41)

where var(x (t )) denotes the variance of system state
x (t ),  = 1, 2 and 3.  It can be found that the closed-loop
fuzzy system is stable and the variance constraints (34)
are satisfied.

CONCLUSIONS

The observer-based fuzzy controller design prob-
lem has been solved in this paper subject to individual
state variance constraints.  The filtering optimal control
technique was used to design the observers for the
continuous T-S fuzzy stochastic models.  The LMI
conditions were developed for the existence of ob-
server-based fuzzy controllers, which allows designers
to assign a specified upper bound common state covari-
ance matrix to the closed-loop continuous T-S fuzzy
models.  The PDC concept was applied to design fuzzy
controllers for each rule and to solve the solutions of the
observer-based fuzzy controllers.  The proposed ap-
proach aimed at finding observer-based fuzzy control-
lers such that the closed-loop system is asymptotically
stable and the state variance constraints are achieved,
simultaneously.
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