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ABSTRACT

The accurate prediction of the bearing capacity of shallow foun-
dations on granular soils has been complicated by their stress depen-
dent strength behavior and the surface roughness of the foundation-
soil interface.  These are accounted for using empirical relations in the
current state of practice.  In this study, the stress dependent behavior
of soils is accounted for using a strength dilatancy relationship.  The
method of slip line has been extended to incorporate this relationship
and the effects of surface roughness to derive the depth dependent
bearing capacity factor Nq.  The results are presented in terms of angle
of friction, depth/diameter ratio, and the effect of surface roughness
of the wedge/cone.  Extended method of slip line has also been carried
out in order to evaluate the stress dependent strength behavior of soil.
The results have been compared with centrifuge test results and the
comparison result shows that the variable −φ type of analysis together
with the provision of soil compressibility could lead to realistic
estimates of bearing capacity of foundations having depth shallower
than the critical depth.

INTRODUCTION

One of  the  most  in t r iguing problems in
geomechanics involves the determination of the end
bearing capacity of piles or their point resistance in
sand.  Classical theories for the determination of the pile
point resistance are extensions of the rigid plasticity
theory solution for surface footing.  Inherent in most of
these theories is the usual assumption that sand placed
at uniform density has a constant strength parameter
governed by the Mohr-Coulomb failure criterion τf = σn

tan φ where the internal angle of friction φ is constant.
It has, however, been recognized for over a half a
century [34] that the shear strength of sand consists of

frictional and dilatancy components.  The dilatancy
component is a nonlinear function of the state of stress
in sand and its relative density.  Therefore, a realistic
approach for the determination of bearing capacity must
take into account of the nonlinear shear strength of the
sand.

Graham and Pollock [12] have used the method of
slip line and the simple strength behavior proposed by
De Beer [2] in which φ varied with log mean principal
stress to develop bearing capacity solution for a footing
founded on the surface.  The magnitude of the variation
depended on the initial placement density of sand,
whether “loose” or “dense”.  Graham and Hovan [11]
have incorporated the critical state model of sand be-
havior to account for the effects of different stress levels
and placement densities into the stress characteristic
solution for surface footings.  Very few attempts,
however, have been made to use the method of slip line
to determine the end resistance of a wedge foundation or
conical pile.  Houlsby and Wroth [15] have highlighted
the importance of the depth effect in penetration.  As a
pile is advanced into the soil the tip resistance will
increase as a result of the additional surcharge due to
overburden and the rotation of principal stresses.
Meyerhof [21] proposed an extension for footings with
initial burial based on the work of Prandtl [26] and
Reissner [28].  He incorporated both the shear strength
of the overburden and the additional rotation of princi-
pal stress.  Nowartzki [24] adopted this approach in his
slip line analysis to back-analyse SPT results.  It led to
an increment of the included angle of the fan zone
around the penetration device.  The slip line reverted
back to the shaft once the critical penetration depth was
reached [37].  No additional rotation of principal stress
was allowed beyond this depth.

Very few researchers have, however, used this
technique in the solution of end bearing problems; Lee
[19] adopted this technique to predict his cone penetra-
tion test results, and De Simone and Sapio [31] analyzed
the end bearing of pile using a reduced extent of the slip
volume.

Bolton [3] has proposed a practical model of the
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relationship between strength and dilation in granular
soils.  This relationship recognizes that the dilatancy
angle at peak strength is a function of the relative
density of the soil and mean-normal effective confine-
ment stress.  Perkins and Madson [25] used the relation-
ship to develop practical correlations for the bearing
capacity of foundations in sands.  Simonini [32] incor-
porated the same relationship into a finite element analy-
sis to study the behavior of dense sand surrounding the
pile tip.

The present paper uses the method of slip line to
find the end bearing capacity of shallow wedge founda-
tion/conical pile first using the established approach of
strength by a simple constant-φ relation; it is later
extended to the more realistic stress-dependent φ rela-
tion incorporating the strength model proposed by Bolton
[3].  Centrifuge tests results are also presented to exam-
ine the predictions of the proposed methods.

END  BEARING  CAPACITY  OF  PILES

Conventional theories present the solution for the
ultimate tip resistance qu of a pile in the form:

qu = cNc + σvNq (1)

where c represents the strength intercept (cohesion) of
the assumed straight line Mohr envelope and σv is the
effective vertical stress in the ground at the pile tip
level.  Nc and Nq are dimensionless bearing capacity
factors related to each other by the Caquot relation Nc =
(Nq − 1) cot φ.

Research conducted by Vesic [31] showed that the
tip resistance is governed not by the effective vertical
stress but by the mean normal effective stress.
Accordingly, the revised form of Eq. (1) becomes:

q u = cN c +
1 + 2k 0

3
σvN q (2)

in which ko is the coefficient of lateral earth pressure at
rest.  Houlsby and Hitchman [14] demonstrated that the
primary dependence of cone resistance was on horizon-
tal rather than vertical effective stress; Bolton et al., [4],
however, concluded that this effect is insignificant for
the type of material to be discussed below.  Since Nc and
Nq are related to each other, attention has been focused
on the determination of Nq.  Note that for sands c = 0.

For purposes of the analysis reported here the
bearing capacity factors are derived for a 60° shallow
wedged (plane strain) and 60° shallow conical (axi-
symmetric) pile.  This value was chosen so that the
results are applicable to general foundation problems.
A rigid cone with an angle of (45° + φcrit/2) with the pile
tip, where φcrit is the critical angle of friction, is gener-

ally assumed to exist beneath the pile tip [27].  The
critical angle of friction lies around 32° for most soils
and this results in a rigid cone with an angle of 61°, as
compared with the 60° adopted in the current analysis.
Furthermore, centrifuge tests on offshore conical spud-
can foundations showed that a 60° cone in the base
would produce the minimum bearing capacity [29].
Therefore, an analysis of the bearing capacity factor for
a 60° cone can be considered to give a lower bound
value to Nq.  It is noted, however, that the theoretical
analyses presented are general and can be used for a
wedge or cone with any apex angle.

METHOD  OF  ANALYSIS:  CONSTANT φ

In the following analyses, all stresses are referred
to effective stresses unless specified otherwise.

1. Governing equations

Figure 1a shows the schematics of an axi-symmet-
ric pile penetrating a soil medium with adjacent rigid
plastic zones.  Let cylindrical polar coordinates (r, θ, z)
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Fig. 1. (a) A very coarse stress characteristic mesh; (b) cylindrical
coordinate system and stress components.
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be defined, the origin being at the center of the axis of
the pile (Figure 1b).  The soil occupies the semi-infinite
region z ≥ 0.  In this system, the non-zero stress tensor
components are (σr, σθ, σz, τrz) and the body force
components (γ sin λ, 0, γ cos λ), where γ is the magni-
tude and λ is its direction.

The equations of equilibrium of the toroidal ele-
ment (Figure 1b) can be written as [17, 31]:

∂σr
∂r +

∂τrz
∂z + n

r (σr – σθ) = γ ⋅ sin (λ) (3a)

∂τrz
∂r +

∂σz
∂z + n

r (τzr) = γ ⋅ cos (λ) (3b)

where n = 0 for plane strain and = 1 for axi-symmetric
problem.

The idealized soil is assumed to be rigid perfectly
plastic and to obey a Mohr-Coulomb yield criterion and
associated flow rule.  In addition, the Haar and Von
Karman [13] hypothesis is assumed to be valid and that
the soil within OPQ in Figure 1a acts as a hydrostatic
fluid and therefore possesses no shear strength.  The
Haar and Von Karman hypothesis states that the circum-
ferential stress or hoop stress, σθ, (Figure 1b) should be
equal to either the major or the minor principal stress.
Studies by Shield [30], Cox [8] and Chen [7] have
shown that σθ is equal to the minor or the major princi-
pal stress depending on whether the soil under loading
is moving outward or inward.  In the case of the penetra-
tion problem, σθ is taken to be equal to the minor
principal stress σ3 because the soil medium adjacent to
the shaft is moving outward during penetration.  For this
special case the failure condition is identical with the
yield criterion, and the Mohr-Coulomb failure criterion
will be used to specify the yield surface [15].  Note that
it is only in the special case of perfectly plasticity that
the yield and failure surfaces are identical [15].  Figure
2a shows a typical Mohr circle of a soil element at
failure.  The yield condition for purely frictional soils
may be expressed as:

σz – σr

2

2

+ τrz
2 =

(σz + σr)
2

sin (φ) (4)

The four stress components (σr, σθ, σz, τrz) can
now be expressed in terms of the mean stress s = 0.5 (σ1

+ σ3) and the inclination angle ψ subtended with the z-
axis by the major principal stress (Figure 2b) and the
friction angle φ to satisfy the yield condition:

σr = s[1 − sin φ cos 2ψ] (5a)

σz = s[1 + sin φ cos 2ψ] (5b)

σθ = σ3 = s[1 − sin φ] (5c)

τrz = τzr = s[sin φ sin 2ψ] (5d)

Substitution of the above stress components into
the governing equations will result in a system of non-
linear hyperbolic partial differential equations.  These
hyperbolic equations may be solved using the method of
slip line as applied by Sokolovski [33] to many prob-
lems in plane strain and Cox et al. [9] to a problem of
axial symmetry.  The characteristics that will enable the
solution to the set of hyperbolic equations are lines α
and β on which φ is mobilised.  The slopes of these lines
can be written as:

dr
dz

= tan (ψ ± η) where η = π
4

–
φ
2

(6)

The α-line corresponds to the “+” value and β-line
corresponds to the “-” value (Figure 2b).  The equilib-
rium equations reduce to two ordinary differential equa-
tions along these characteristic lines, which after rear-
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Fig. 2. (a) Mohr circle of stress under failure condition; (b) sign
convention and notation for principal stresses direction.
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ranging becomes:

ds ± 2s(tan φ) dψ + n s
r cosφ [sinφ cosφdr

± (sin2 φ − sinφ)dz]

=
γ

cosφ [sin (λ +− φ) dr + cos (λ +− φ) dz ] (7)

The equation corresponding to the upper sign holds
along the α-characteristics while that corresponding to
the lower sign holds along the β-characteristics.  n is
taken to be zero in plane strain analysis while it is unity
for axi-symmetric analysis [17].

The form of Eq. (7) is complex for an analytical
solution.  Therefore, a numerical solution using a
finite difference scheme is sought.  In addition, the
variables have to be normalized according to some
characteristic length [33] to obtain the solution of the
governing equation.  Following Larkin [17] the vari-
ables are normalized to a scale length 0.5 B by defining:

Σ = s
0.5γB

; R = r
0.5B

; and Z = z
0.5B (8)

where B is the width or diameter of foundation.  Eq. (7)
can now be written in finite difference form, suitable for
the solution of the intersection of an α-line, which
passed through a known point (R1, Z1, Σ1, ψ1), and a β
line, which passed through another known point (R2, Z2,
Σ2, ψ2).  Accordingly, Eq. (7) becomes:

(Σ − Σ1) + 2Σ1tanφ(ψ − ψ1)

=
– 2nΣ1

R 1cosφ
 [sinφcosφ(R − R1) + (sin2φ − sinφ)(Z

− Z1)] + 1
cosφ  [sin(λ − φ)(R − R1)

+ cos(λ − φ)(Z − Z1)] (9a)

and

(Σ − Σ2) + 2Σ2tanφ(ψ − ψ2)

=
– 2nΣ2

R 2cosφ
 [sinφcosφ(R − R2) − (sin2φ − sinφ)(Z

− Z2)] + 1
cosφ  [sin(λ + φ)(R − R2)

+ cos(λ − φ)(Z − Z2)] (9b)

For a body force acting vertically downward (λ =
0), following Shi [29], Eq. (9a) and Eq. (9b) can be
reduced to a compact form using the following sub-
stitutions:

A =
– 2nΣ1

R 1cosφ
 [sinφcosφ(R − R1)

+ (sin2φ − sinφ)(Z − Z1)] − [tanφ(R − R1) + (Z − Z1)]

+ Σ1 + 2Σ1(tanφ)ψ1 (10a)

B =
– 2nΣ2

R 2cosφ
 [sinφcosφ(R − R2)

− (sin2φ − sinφ)(Z − Z1)] + [tanφ(R − R1) + (Z − Z2)]

+ Σ2 + 2Σ2(tanφ)ψ2 (10b)

where  A = Σ +2Σ1(tanφ)ψ and B = Σ − 2Σ2(tanφ)ψ, so
that

Σ =
AΣ2

+ BΣ2

Σ1
+Σ2

andψ =
B – A

– 2 tan φ (Σ1
+Σ2

)
    (11)

The above equation along with the following finite
difference forms of Eq. (6)

R − R1 = (Z − Z1) tan(ψ1 + η) and

R − R2 = (Z − Z2)tan(ψ2 + η) (12)

are used in the iteration for the solution.

2. Organization of computation

The computational sequence for the above analy-
sis is shown in the form of a flow chart in Figure 3.  A
point within the plastic field can be determined by
solving Eq. (11) and Eq. (12).  Referring to Figure 4,
suppose that the boundaries for point P (RP, ZP, ψP, ΣP)
and Q (RQ, ZQ, ψQ, ΣQ) are known.  R and Z for point W
can be calculated from Eq. (12) by putting ψ1 = ψP and
ψ2 = ψQ.  Subsequently, ψ and ψW can be determined
from Eq. (11).  Since most of the characteristic lines are
curved ψ will not be equal to ψW and Σ will not be equal
to ΣW.  In order to improve the solution, ψ1 and ψ2 in Eq.
(11) were initially approximated to (ψ + ψP)/2 and (ψ +
ψQ)/2 respectively.  This process was repeated until ψ
and Σ converged [33].  The iteration in this study was
stopped when a convergence criterion of 0.01%, was
achieved.

Figure 1a shows a very coarse mesh generated
when a wedge pile is advanced below the ground level.
The complete marching scheme adopted in the com-
puter program for the plane strain slip line of this kind
is as shown below:
(1) Passive zone − the boundary conditions at O, P1 and
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P are known.  ψ is assumed to be in the direction of
OP.  P2 can be found by using the boundary condi-
tions of P and P1 and P3 determined from known
boundary of O and P1.  P4 can be found by using the
boundary conditions of P2 and P3.  O, P3 and P4
have now become the known boundary conditions
for the radial fan zone.

(2) Degenerated radial fan zone − point O is known as
Prandtl singularity.  Being a singularity, O can have
the same R and Z, but different ψ and Σ.  Furthermore,

within the fan zone, the stress will increase exponen-
tially in accordance with the amount of rotation of
the principal stress direction.  Hence, when the
principal stress rotates by θ at O the boundary con-
dition becomes

Σ(θ) = Σexp(2θ tanφ); and ψ(θ) = ψ + θ       (13)

The angle θ can be calculated if the roughness of the
cone is given.  By knowing this angle, the radial fan
zone can be subdivided into several equal-angle fans
so that Σ(θ) and ψ(θ) can be determined.  For example,
if θ = θ/2, F1 can be found if O(θ/2) and P3 are known.
Subsequently, F2 can be obtained from F1 and P4.
When θ = θ, O(θ/2) and F1 will become the boundary
conditions for F3.  O, F3 and F4 have now become the
boundary conditions for plane shear zone.

(3) Plane shear zone − the angle of plane shear zone as
shown later depends on the roughness of the conical
surface, hence ψ for any point on the conical surface
is known.  B is in direct contact with the cone and ψB,
known as imposed boundary condition, can be used
to generate R, Z and Σ from the known boundary
condition at F3.  Once B is known, B1 can be
calculated from B and F4 in the usual procedure.

3. Effect of surface roughness of wedge/cone

The surface roughness of the end of the wedge
foundation/conical pile would influence the end bearing
values and must be accounted for in the analysis [19].
Lee [19] showed that such angle ψT of the plane shear
zone OAB′ in Figure 5a adjacent to the wedge/cone can
be determined from the corresponding Mohr circle in
Figure 5b.  Assuming that the stresses acting on plane
OA are (σa, τa) and OB′ is the slip line where the shear

Fig. 3.  Flow chart for the computation of R, Z, ψ and Σ.

Z

R

Q

RP, ZP, ΣP,    Pψ

RW, ZW, ΣW,   Wψ

Wψ

RQ, ZQ, ΣQ,    Qψ

P

W

α
β

αβ

Fig. 4.  Computation of a new point W from two known points P and Q.
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strength has been fully mobilized under stresses (σb,
τb).  Given that the radius of the Mohr-circle smA′ = smB′
= (σ1 − σ3)/2, therefore:

τa =
(σ1 – σ3)

2
cos (2ψT – φ) and

σa =
(σ1 + σ3)

2
+

(σ1 – σ3)
2

sin (2ψT – φ) (14)

and the ratio

τa
σa

= tan δ =
sin φ cos (2ψT – φ)

1 + sin φ sin (2ψT – φ)
(15)

where δ = the interface friction angle.  Using trigonom-
etry identities in Eq. (15) and solving leads to a simpler
equation for the angle ψT:

ψT = 1
2
φ – δ + cos– 1 sin δ

sin φ
(16)

According to Meyerhof [22], as the roughness of
the wedge increases, the angle ψT in zone OAB′ de-
creases like the case of an inclined load on a horizontal
base.  For a perfectly smooth face (δ/φ = 0) and for
perfectly rough face (δ/φ = 1), Eq. (16) reduces to ψT =
(45° + φ/2) and ψT = 0, respectively.

The program iterates by assuming various values
of R such that the β characteristic that starts at P actually
ends at B1 (Figure 1a).  By marching from O, P1 and P
to O, B and B1, all the variables at O, B and B1 are
known.  Knowing the mean stress s = Σ × 0.5γB at each
point and the direction of major principle stress ψ, stress
components σr, σz, τrz = τzr and σθ at each point can be
obtained by back substitution into Eq. (5a) through Eq.
(5d).  It must be noted that the stress distribution on the
cone/wedge face is not constant, thus following Lee
[19], the normal stress at each subdivided point on the
cone/wedge with different surface roughness may be
given by:

σni =
σri + σzi

2
+ cos 90° + φ – 2ψT

σri – σzi

2

2

+ τrzi
2

(17)

where i is the point number.  The normal force is then
determined from the average of the normal stress of two
adjacent points, their spacing and radii from the central
axis.  Finally, the penetration resistance can be com-
puted from the equilibrium of forces [19]

q u = 4
πB 2

cos (ψc – δ)
cosδ Σ

i = 1

i = i
F ni (18)

where Fni is the normal force acting on each element
bounded by two points.

4. Computation of Nq

The scheme developed above enables the solution
of the bearing capacity of a foundation taking surcharge
and soil self-weight simultaneously into consideration.
According to Terzaghi [35], if the bearing capacity of a
foundation on weightless frictional soil due to sur-
charge σo could be calculated and expressed as σoNq,
and if the bearing capacity of the same foundation due
to self-weight γ alone could be written 0.5γBNγ, then
these components could safely be superposed.  Davis
and Booker [10] and Bolton and Lau [6] performed
rigorous checks on this superposition assumption for
the plane strain and circular footings, respectively.  Nq

is obtained by applying a surcharge σo to the plane
surface of the soil around the foundation.  Following Eq.
(8), the surcharge variable needs to be normalized be a

A

A

O

O

(a)

(b)

σa

σ3 σ1

σb
τa τb

τ
φ

δ

ψ
T

ψ
T

B'

B'
σb τa(   ,   )

σb τa(   ,   )

ψ
T φ(2     −    )

Sm
S

Fig. 5. (a) Component of stresses acting on a rough wedge; and (b)
typical state of stress for a rough tip.
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scale length 0.5B, thus Bolton and Lau [6] introduced a
new dimensionless parameter termed the superposition
factor:

Ω =
σo

0.5γB
(19)

Following Bolton and Lau [6], Nq is then obtained
by increasing the value of Ω until it has no significant
influence on the final result (in this case Ω was found to
equal 1,000).  The accuracy of this technique depends
on the number of the characteristic lines and the error
criterion.  For error criterion of 0.01%, it was found that
bearing capacity factors converged when a mesh com-
prising 100 β-characteristics and 280 α-characteristics
and the degenerated radial fan zone divided into 50
small radial fans for both rough and smooth surfaces.

The distribution of pressure and slip lines for the
plane strain (wedge) penetration of a pile at a specific
depth is shown in Figure 6a and that corresponding to an
axi-symmetric (cone) penetration at the same depth is
shown in Figure 6b.  It can be seen that the roughness of
the pile surface affects the shape of the slip surface

mesh very much.  The effect is seen to be more in the
case of the plane strain penetration.  The continuous
reversion of slip lines with increase in penetration depth
is shown in Figure 7.

The results of the calculation of the Nq values with
depth for the different conditions are tabulated in Table
1.  The conditions imposed are: plane strain or axi-
symmetric case, different depth ratios Z, and different
values of surface roughness ratio δ/φ = 0.00, 0.25, 0.50,
0.75 and 1.00.  Thus, the tabulated values have ac-
counted for both the shape and depth factors, as usually
done with the conventional bearing capacity factors.  As
expected the Nq values are different for a plane strain
case from that for an axi-symmetric case at the same
depth.  Moreover, they are affected significantly by the
depth ratio Z and the nature of the roughness of the
wedge/conical pile surface.  The values of Nq increase
with the increase of penetration depth and approach
constant values after reaching the so-called critical
depth (in this case Z = z/(0.5B) = 16).  This is considered
to be sufficient as it was found that the critical depth
ratio only varied between 8 and 16 for tests conducted
by Bolton et al. [4] under different relative densities
(between 58% to 89%).  The value of Nq remains almost
constant beyond Z = 16, at which the bearing capacity
theory no longer applies [23].  For a perfectly rough
surface (δ/φ = 1.0), the value of Nq could be as high as
twice the value of Nq for a perfectly smooth surface (δ/
φ = 0.0).

EXTENDED  METHOD  OF  ANALYSIS:
VARIABLE

As discussed before, φ is strongly dependent on
the mean effective stress.  Therefore, it is necessary to
incorporate the stress-level dependent behaviour di-
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cone.
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rectly into the method of slip line presented above to
obtain better estimates of Nq.  An interesting approach
to the shear strength of sands as a function of the soil
relative density and mean normal stress has been pro-
posed by Bolton [3]:

φ = φcrit + ∆IR (20)

where φcrit is the critical state friction angle and ∆ is an
empirical constant having a value of 3 for triaxial con-
ditions and 5 for plane strain conditions; IR was termed
the dimensionless dilatancy index and for penetration
problem it is written as [5]:

I R = I D ln
p c

σv
′ ⋅ q u

– 1 (21)

in which ID is the relative density, pc the aggregate
crushing parameter (= 42,000 kPa for study sand), and
qu the measured tip resistance.  Extension of the method
of slip line with Bolton’s formulation will yield the
stress dependent Nq factor.

Lau [18] presented a variable −φ analysis for the
surface-footing problem; his formulation is extended
here to account for pile penetration.  As a result of
incorporating the variable −φ analysis, two possible
effects; (a) effect on the stress rotation equation, and (b)
effect on the geometry of the characteristic lines, result.

1. Effect on stress rotation

Figure 8a shows the major principal stress, s1,
passing through a discontinuity and being distorted by

Table 1.  Values of bearing capacity factor Nq for both axi-symmetry and plane strain cases

Axi-symmetry Plane strain

Z = z/(0.5B) δ/φ φ φ

25 30 35 40 45 25 30 35 40 45

0.00 7.8 12.4 20.5 35.2 64.1 4.2 5.8 8.1 11.8 18.0
0.25 10.8 18.8 34.1 65.7 137.5 5.7 8.6 13.2 21.3 36.4

0 0.50 14.1 26.1 51.0 107.4 250.4 7.4 11.8 19.5 34.0 63.9
0.75 17.4 33.7 69.7 156.8 396.7 9.1 15.2 26.5 49.4 100.2
1.00 20.2 40.4 86.4 202.5 537.7 10.7 18.4 33.5 65.3 140.7

0.00 17.7 28.9 48.2 82.9 149.2 6.2 8.6 12.2 17.9 26.7
0.25 22.5 39.6 72.0 137.2 279.0 8.0 12.1 18.6 29.7 49.7

4 0.50 27.4 51.3 99.6 205.3 460.5 10.0 15.9 26.1 44.8 82.1
0.75 32.2 62.9 128.5 280.9 679.8 11.9 19.8 33.9 62.3 123.6
1.00 36.2 72.5 152.8 346.6 876.8 13.7 23.5 42.2 80.6 169.0

0.00 32.5 54.3 89.9 152.7 270.8 8.5 11.8 16.9 24.4 36.2
0.25 40.0 69.7 126.2 236.1 469.7 10.6 15.9 24.4 38.4 63.5

8 0.50 47.1 87.1 166.3 335.7 733.1 12.8 20.3 31.3 55.3 100.8
0.75 53.5 103.2 207.0 442.1 1036.9 15.0 24.8 42.3 76.1 147.3
1.00 58.7 116.1 239.6 530.1 1295.2 16.9 28.8 51.2 96.3 197.8

0.00 46.2 81.2 145.7 247.5 427.5 11.7 15.8 19.6 30.6 46.3
0.25 59.2 108.9 198.4 366.3 708.6 13.8 20.3 30.7 47.8 77.9

12 0.50 70.0 133.5 254.2 503.3 1075.6 16.1 25.2 40.5 67.7 120.1
0.75 77.5 153.0 308.0 644.8 1474.6 18.4 30.1 50.9 90.2 171.7
1.00 85.8 172.5 350.0 756.7 1801.3 20.5 34.6 60.6 112.5 227.2

0.00 54.1 104.3 198.9 359.7 641.0 16.7 20.2 27.5 38.6 57.1
0.25 72.0 139.3 282.8 522.3 1009.4 17.5 25.5 37.7 57.4 93.2

16 0.50 89.1 174.2 360.7 710.7 1490.8 20.0 30.7 48.6 80.2 128.8
0.75 106.2 210.9 432.2 892.4 1999.7 22.1 36.1 60.0 104.9 197.1
1.00 117.2 236.2 485.7 1031.3 2400.9  24.6 40.9 70.7 129.5 257.4
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an angle θ.  The corresponding Mohr circles are shown
in Figure 8b where the Mohr circles of stresses on either
side of the discontinuity pass through a common stress
point, D [1].  Solving the geometry problem in Figure 8b
leads to:

s 1 + d s 1
s 1

=
sin (ω + ξ)
sin (ω – ξ)

(22)

where ξ is equal to the mobilized angle of shearing
resistance on that plane.  Hence, the change in stress
conditions across a discontinuity can simply be related
to the rotation of major principal stress direction.  Ap-
plying sine rule to ∆ABC in Figure 8b:

d s 1

sin 2d θ
=

s 1sin φ
sin (ω – ξ)

(23)

Also, from the ∆OXB, we have

ω = sin– 1 sin ξ
sin φ

(24)

In the radial fan zone where the angle of shearing

has been fully mobilized, ξ → φ.  In the limit as dθ → 0,
sin(2dθ) → 2dθ and Eq. (23) reduces to:

d s 1
s 1

= 2 tan φd φ (25)

Figure 9 shows that geometry of a discontinuity
between limiting states (s1, φ) and (s1 + ds1, φ + dφ).
Here, dφ/ds1 has been taken as positive merely for
mathematical consistency [18].  By cosine rule and
rearranging, we get the stress rotation Eq.

d θ =

ds 1
s 1

– tan φ d φ
2

– sec2φ d φ2

4 tan2φ
       (26)

Substituting s1 with the mean effective stress s, we
thus obtain Eq. (26) as the general stress rotation
equation.  Lau [18] performed the validation of the
general stress rotation equation for a surface footing on
a frictionless material.

2. Effect on geometry of slip lines

The geometry of the characteristic lines is related
to the tangency of a Mohr circle on the limiting Mohr
envelope.  Therefore, a second parameter φen must be
defined so that the angle between the two characteristics
at any point remains 90 − φen, where

φen = sin– 1 sin φ + s
d φ
ds

cosφ (27)
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Fig. 8.  Major principal stress passing through a discontinuity.

s1sinφ (s1 + ds1)sin(   + d   )φφ

(s1 + ds1)sin(   + d   )φφ

ds1

O s1

2dθ

2dθ
dφ

φ
σ

τ

Fig. 9.  Effects of varying φ on the stress rotation equation (after [18]).



Journal of Marine Science and Technology, Vol. 14, No. 1 (2006)10

The parameter dφ/ds in the above expression can
be obtained by combining Bolton’s [3, 5] relationships,
Eq. (20) and Eq. (21), and then differentiating φ with
respect to s.  Substitution of the expression for dφ/ds
into the general stress rotation equation, Eq. (27), and
referring to the constant − φ stress rotation equation, Eq.
(25) and rearranging it to derive

tanφen =
tan φ

1 + 2tan φ (∆I D ) – (∆I D )2
(28)

A typical plot for the pressure distribution and
mobilised angle of shearing φm contour for a conical pile
is shown in Figure 10.  It can be seen that higher values
of φ are found near the ground surface while lower
values are found right beneath the cone.  This is because
at low confining overburden stress levels in the region
away from the pile tip the sand dilates whereas at higher
stress levels near the proximity of the cone the dilation
is suppressed.

3. Soil compressibility

The above variable-φ analysis has successfully
considered the effect of stress-level on φ but this is
insufficient because engineering soils that we encoun-
tered are normally compressible.  Vesic [36] and
Randolph et al. [27] have pointed out the importance of
the effects of compressibility on the bearing capacity
factors.  As explored by Vesic [36], the mode of failure
that can be expected in any particular case of a founda-
tion depends on the relative compressibility of the soil
in the particular geometrical and loading conditions.  If
the soil is incompressible and has a finite shearing
strength, it will fail in general shear; but if the soil is
very compressible for its strength, it will fail in punch-
ing shear [36].  The results of the test of model footings
in Chattahoochee sand also shows that the mode of
failure is somehow associated with foundation depth
[36].  In a shallower depth, general shear failure is
normally encountered.  This mode of failure trans-
formed from general shear into local shear, and finally,
punching shear failures as the penetration depth
increases.

As there are still no general numerical criteria that
can be used to predict the mode of shear failure of soils
loaded by foundation, the modified bearing capacity
formula, Eq. (29), proposed by Vesic [36] is adopted
here:

qu(Ir) = quFqc (29)

where Fqc = soil compressibility factor, which can be
derived from the analogy of the expansion of cavities.

To calculate Fqc, the rigidity index Ir must first be
calculated using

I r =
G 50

c + σvtan φ
(30)

where G50 = the secant shear modulus at 50% peak stress
and the cohesion c is taken to be zero for sand.  This
index varies with the stress level and the characteristic
of loading.  A high value of Ir implies a relatively
incompressible material, while a low value implies a
relatively compressible material.  In addition, to ac-
count for the scale effects, the following critical rigidity
index has also been proposed by Vesic [36]

I r(cr) = 1
2

exp 3.30 – 0.45 B
L

cot 45° –
φ
2

  (31)

where B and L = width and length of the foundation,
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Table 2.  Comparison of qu between centrifuge and variable −φ analysis

Effective
Measured

Predicted qu (MPa)
ID(%) z/(0.5B) z(m) overburden φ° Nq

stress (kPa)
qu (MPa)

Eq. (1) Eq. (2)

58 4 1.4 21.32 38.7 106.3 1.19 2.27 1.32
58 8 2.8 42.63 37.2 172.7 3.51 7.36 4.39
58 12 4.2 63.95 36.2 248.0 6.88 15.86 9.61
81 4 1.4 22.40 42.3 146.6 1.2 3.28 1.81
81 8 2.8 44.80 40.0 225.3 3.99 10.09 5.77
81 12 4.2 67.20 38.7 303.0 8.25 20.36 11.87
81 16 5.6 89.60 37.8 415.6 14.31 37.24 22.02
89 4 1.4 22.84 43.6 164.0 1.4 3.75 2.02
89 8 2.8 45.68 40.9 247.1 5.2 11.29 6.36
89 12 4.2 68.52 39.4 333.1 10.91 22.82 13.16
89 16 5.6 91.36 38.4 421.6 17.36 38.52 22.56

Note: φ were obtained from Eq. (20) and Eq. (21).

respectively.  If Ir is greater than Ir(cr), then Fqc = 1.
However, if Ir is smaller than Ir(cr), then

F qc = exp – 4.4 + 0.6B
L

tan φ +
(3.07sin φ) (log 2I r)

1 + sin φ

(32)

The secant shear modulus at 50% peak stress of
Fontainbleau sand used in the experiment has been
deduced from a series of conventional triaxial tests and
its shear modulus can be expressed in the following
fashion:

G 50 =
237.5 p ′

e 4(1 + v )
(33)

where p’ = mean effective vertical stress, v = ko/(1 + ko)
= Poison’s ratio, ko = coefficient of lateral earth pres-
sure at rest, and e = void ratio.

COMPARISON  WITH  CENTRIFUGE  TESTS

Centrifuges have been widely adopted in modeling
geotechnical problems.  Because, without the expense
and delay of doing full-scale tests, the behavior of a
foundation can be observed in a soil specimen of known
parameters.  Here, a 10 mm diameter miniature pen-
etrometer has been used to model a 700 mm diameter
prototype circular pile, with a 60° pile shoe, at an
acceleration level of 70 g.  The test was performed at the
center of a 850 mm diameter container, and the test
specimen was prepared by hand pluviating Fontainbleau
sand from a single-hole hopper into the container to a
height of 350 mm [4].  It was considered as a normally

consolidated specimen as no preloading of the specimen
was carried out prior to the test.  The inferred value of
d50 of Fontainbleau sand was 0.181 mm, where d50 is the
grain diameter at which 50% of the soil weight is finer.
The coefficient of uniformity (d60/d10) of the sand was
found to be 1.69.  The average values of maximum and
minimum void ratios were 0.55 and 0.92 respectively.
Three specimens with final relative densities of 58%,
81% and 89% (i.e. dry densities of 1552 kg/m3, 1631 kg/
m3 and 1663 kg/m3, respectively) were prepared.  Par-
ticle size effects in the centrifuge were found to be
insignificant if the pile diameter to mean particle diam-
eter ratio, B/d50, is more than 28 [4]; and in the model the
B/d50 was 55.

The model pile was then hydraulically jacked in at
a nominal rate of 3.6 mm/s under 70 g in the centrifuge.
A load cell located at the pile tip was used to measure the
tip resistance and a potentiometer was used to measure
the depth of penetration.  The tip resistance and depth
data are shown in Table 2.  The comparison of the tip
resistance results from the centrifuge and those based
on conventional theories of Eq. (1) and Eq. (2) using the
Nq factors from variable −φ analyses are also presented
in Table 2 and Figure 11.  The K0 = 1 − sinφ [16] relation
was adopted in Eq. (2).  The critical angle of shearing
φcrit used was 32° [20].  The mobilized angles of friction
(column 5 in Table 2) that corresponded to pile tip level
were calculated using equations proposed by Bolton
[3], i.e. Eq. (20) and Eq. (21).  The roughness of the cone
was derived from a series of direct shear box tests by
shearing the sand resting on a piece of the cone material,
which gave an average value of δ/θ = 0.35.  The proce-
dures for the roughness shear box test was essentially
the same as the direct shear test for soil except that the
bottom half of the shear box was replaced by a piece of
100 × 100 mm2 cone material instead of soil material.
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From Table 2, it can be seen that the use of Eq. (1) leads
to over-estima-tion (≈ 90 − 160 %) of the measured tip
resistance; the use of Eq. (2) leads to values that are
closer to the measured values, with over-estimation of
about 11-54%.  A better comparison is seen at shallower
depth (z/(0.5B) = 4) than at deeper depth (z/(0.5B) = 16).
This is because the effect of soil compressibility is
getting more and more obvious as the overburden stress
is getting higher and higher at deeper depth.

After taking the soil compressibility into account,
it can be seen from Table 3 and Figure 11 that the
analysis has further improved the prediction; this time
the over prediction ranges between -5 and 19.5%, with
one exception at 31.5%.  The result is particularly

encouraging for tip resistance ranges between 0 and 12
MPa (Figure 11); thereafter, an over-estimation of tip
resistance can still be observed.  The tip resistance of 12
MPa corresponds to a z/(0.5B) = 12 (see Table 3), which
is somewhat close to its critical depth value.  Meyerhof
[23] suggested that the bearing capacity theory in not
suitable for estimating tip resistance of a pile below the
critical depth and also the tip resistance in a homoge-
neous sand deposit is easily affected by soil compres-
sibility, crushing, arching, and other factors.  Hence,
such deviation should be anticipated because only the
effect of soil compressibility (not crushing or arching)
has been taken into consideration here.  However, it
should be reasonable to summarize that it is necessary to
consider the stress dependent φ and also the effect of
soil compressibility in the bearing capacity calculation
for foundations shallower than the critical depth.

CONCLUSION

The application of the slip line method to estimate
the bearing capacity of a shallow wedge foundation/
conical pile has been demonstrated.  The angle of fric-
tion φ, the depth ratio Z, and the surface roughness ratio
δ/φ affect the end bearing.  The constant −φ method of
slip line has also been extended for the case of variable
−φ.

The observed reversion of the slip lines during the
advancement of the cone clearly showed the generation
of the extra rotation of the principal stress (from hori-
zontal direction to vertical direction).  This rotation
leads to an increase in the bearing capacity value with
penetration depth over that of a shallow foundation.

Results of the variable −φ analysis together with
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Table 3.  Comparison of qu between centrifuge and variable −φ analysis

Predicted qc G50 Measured
Predicted Over

ID (%) z/(0.5B) z (m) φo Nq (MPa) Fqc qu(Ir) (MPa) Prediction
(= Eq. (2))

(kPa) qu (MPa)
(= Fqc* Eq. 2) (%)

58 4 1.4 38.7 106.3 1.32 2971 0.85 1.19 1.13 -5.0
58 8 2.8 37.2 172.7 4.39 3999 0.84 3.51 3.67 4.6
58 12 4.2 36.2 248.0 9.61 4817 0.83 6.88 8.00 16.3
81 4 1.4 42.3 146.6 1.81 4938 0.77 1.2 1.38 15.0
81 8 2.8 40.0 225.3 5.77 6655 0.83 3.99 4.77 19.5
81 12 4.2 38.7 303.0 11.87 8020 0.85 8.25 10.07 14.7
81 16 5.6 37.8 415.6 22.02 9189 0.86 14.31 18.87 31.8
89 4 1.4 43.6 164.0 2.02 6193 0.75 1.4 1.51 7.8
89 8 2.8 40.9 247.1 6.36 8353 0.85 5.2 5.39 3.6
89 12 4.2 39.4 333.1 13.16 10070 0.89 10.91 11.66 6.8
89 16 5.6 38.4 421.6 22.56 11540 0.91 17.36 19.92 14.7

Note: Fqc and G50 were obtained from Eq. (32) and Eq. (33).
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the consideration of soil compressibility have been
compared with centrifuge test data and it was found that
the predictions only differed slightly from the measured
values.  It thus highlights the need to account for stress
variation and soil compressibility.

It is suggested that engineers should define the
material strength envelopes appropriate to the material
density and stress level and account for surface rough-
ness conditions and soil compressibility to determine
the depth dependent bearing capacity factors directly
rather than modifying the bearing capacity factors for
surface footing as is often done in the current practice.
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APPENDIX I:  NOMENCLATURE

Roman
B Diameter or width of foundation
c Strength intercept (cohesion)
c* Relative cohesion

ID Relative density
IR Dimensionless dilatancy index
K Ratio of major to minor principal stress
Ko Coefficient of lateral earth pressure at

rest
MU Convergence criterion
Nq, Nc Dimensionless bearing capacity factors
Pc Aggregate crushing parameter
qu Measured tip resistance/Calculated ulti-

mate bearing capacity
R Radius ratio
r, θ, z Cylindrical polar coordinates
s Mean effective stress
s1 Major principal stress passing through a

discontinuity
Z Depth ratio

Greek
α, β Pair of stress characteristic
δ Surface roughness angle
∆ An empirical constant
φ Internal angle of friction
φcrit Internal angle of friction
φen Angle of local strength envelope describ-

ing the stress characteristic
φm Mobilized angle of friction
γ Self-weight
λ Direction of body weight
θ Distortion angle
σ1 Major principal stress
σ3 Minor principal stress
σa, τa Stresses acting on point a
σb, τb Stresses acting on point b
σn Normal stress
σo Arbitrary surcharge
σθ Hoop stress
σv Effective vertical stress
σr, σθ, σz, τrz Non-zero stress tensor components
Σ Normalized stress
τf Limiting shear stress
ψ Orientation of principal stress direction
Ω A superposition factor
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