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ABSTRACT

In this paper, the particle swarm optimization (PSO), originated
as a simulation of a simplified social system with swarm intelligence
and having exploring and exploiting characteristics of the particle
swarm, is adopted to deal with the global optimization problems. To
begin with, four non-linear two-dimensional functions are adopted as
benchmark examples for determining the suitable ranges of param-
eters in the PSO.  It is found that uses of the PSO can make the search
quickly converge to the global optimum.  Then, several benchmark
functions below ten-dimensions are adopted especially for compari-
sons of search efficiency on the PSO and other algorithms.  Results
show that the proposed approach is not only superior to other algo-
rithms but also has the higher success rate.  Finally, the PSO is also
applied to deal with the optimization problem of a grillage structure.
Optimization solutions of the success rate and the used average
generation show that the PSO also has the better performance for the
optimal design of structures with constraints.

INTRODUCTION

In natural world, many kinds of species exhibit
unbelievable wisdoms of social behaviors and self-
organization, such as the ant swarm, bird flocking or
hunting for food, and fish schooling, etc.  In these
different animal groups composed of simple individuals,
neither leaders nor managements of a central control
mechanism exist and they only “run” their lives depend-
ing on some self-specific simple rules which govern
those interactive behaviors of individuals.  Nevertheless,

it appears some unpredictable swarm intelligence from
these individuals.  In the past, most general-purpose
optimization software used in industrial applications
made use of gradient-based algorithms mainly due to
their computation efficiency; however, in recent years,
non-gradient-based, probabilistic search algorithms have
attracted much attention in the research community and
those algorithms generally mimic some natural phe-
nomena [28].

Particle swarm optimization (PSO), originated by
Kennedy and Eberhart [9, 16] in 1995 and known as an
optimizer, is a population-based, self-adaptive search
optimization technique.  Through a process of trial and
error, a number of parameters in the algorithms extrane-
ous to optimization are eliminated from its algorithms
and thus, result in the very simple original implementa-
tion [10].  The PSO is, basically, quite similar to a
genetic algorithm (GA), in which the system is initial-
ized with a population of random solutions; however,
unlike the GA, the PSO assigns a randomized velocity to
each potential solution, called the particle, and then fly
through the problem space.  Moreover, the PSO belongs
to a single way of information flow without complex
genetic operators of the GA, such as the crossover and
mutation, and more differently, the PSO adopts the
current optimal solution as the mechanism for renewing
the whole search process in contrast to the GA such that
the PSO has the ability to quickly converge to a reason-
ably good solution [14].

Simulating simplified animal social behaviors leads
to the motivation for developing the PSO algorithm,
which works on the social behavior of particles in the
swarm.  In fact, the original concept was to graphically
simulate the graceful but unpredictable choreography
of birds flocking and thereafter, such initial simulations
were modified to incorporate nearest-neighbor velocity
matching, climate ancillary variables, and incorporate
multidimensional search and acceleration by distance
[10].  In this regard, the PSO finds the global optimum
by simply adjusting the trajectory of each particle to-
ward its own best solution and toward the best particle
of the entire swarm at each time step as the basic search
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concept [7, 8, 16].  During the search process, each
particle moving in the problem space has its own fitness
value with respect to its mapping from the objective
function with a velocity determining its search direction
and position.  Particles swarm fly through the problem
space with the best experience of every particle and that
of the best particle in the swarm [17].  During the
particle’s search process, the individual’s previous best
solution will be kept and recorded in its memory.  That
is, each particle memorizes its individual’s previous
best solution, in which the particle can further adopt to
change the velocity of next generation and thus, it is
called the cognition-only model.  Comparisons of the
fitness value of the previous best solution between the
individual and the swarm can modify the previous best
fitness value for the swarm and each particle also takes
the updated memory to change its velocity of the next
generation.  Thus, it is called the society-only model.
By using such a methodology in the change of the
velocity of each particle for generations, the PSO can
find the optimal solution of the optimization problem
[11, 27].

The PSO has been proposed for more than ten
years and in contrast to some available tools, such as
genetic algorithms or evolutionary algorithms, it appar-
ently shows its deficiency in the mathematical formula-
tions of the evolution algorithms and its stability of the
search effectiveness.  Although several applications
with the PSO on magnetic system design [2], electrical
power system [13], traffic and transportation [26], and
data analysis [28] can be found, how to develop a more
effective search mechanism for the space problem is
unavailable.  In addition, notwithstanding it’s recent
popularity, one drawback for the PSO is the presence of
problem dependent parameters and some workers began
to find “universal” values for the PSO parameters [22].
Thus, it looses its robustness.  A further drawback of the
original algorithm proposed by Kennedy and Eberhart
[16] lies therein that the algorithm is known to quickly
convergence to the approximate region of the global mini-
mum.  However, the algorithm does not maintain this
efficiency when entering the stage where a refined local
search is required to pinpoint the global minimum exactly.
This has led to a number of variations on the original
PSO being proposed to overcome this shortcoming [22].

For improving the robustness of the PSO, Shi and
Eberhart [23] proposed the concept of the inertia weight,
which can be used to change the velocity of the particle
in order to attain the balancing point between the global
and local search.  By using this scheme, the PSO can
quickly find the global optimum.  It is found that in the
inertia weight ranges of 0.9 to 1.2, the search perfor-
mance is better while the computational time does need
much more.  Shi and Eberhart [24] further pointed out

that introducing the linearly decreasing concept into the
inertia weight can reduce the initial inertia weight value
of 0.9 down to 0.4 as the generation increases.  Moreover,
an inclusion of dynamic inertia weight concept was also
proposed to render the PSO relatively insensitive to the
values of the cognitive and social scaling factors for
global optimization [21, 22].  Clerc [7] proposed the
constriction factor to adjust the velocity of the particle
for obtaining the better convergence.  In references of
[15, 25], different frameworks were also proposed to
analyze the characteristics of the PSO, such as an analy-
sis for particle swarm effect [15] and the study on
parameter selection in PSO [25].

Aimed at the developments and applications of the
PSO, an article [12] for reviewing the improvements of
the PSO and its resources was proposed and focused the
discussions on the inertia weight, constriction factors
and tracking dynamic system.  On the other hand,
Ratnaweea [20] and Suganthan [27] applied the concept
of the time-varying inertia weight.  It was shown that
different ranges of the inertia weight considerably in-
fluence the performance of the particle itself and the
swarm effect.  In the above-mentioned papers, influ-
ences on the search for parameters in the PSO have been
carefully discussed; however, most of the testing prob-
lems center on the moderate-scaled design problems (20
to 50 dimensions) and even on the large-scaled problems.
Little attention has been given to the study and discuss
for the low dimensional problems.  In this regard, the
purpose of this paper is to study the search performance
of the PSO in the low dimensional problems.  First of
all, we will begin by adopting four benchmark functions
under ten dimensions for finding the optimal ranges of
parameters needed in the PSO and propose the more
suitable parameter setting for low dimensional problems.
Then, aimed at the computation efficiency, some other
algorithms will be selected to make a comparison with
the PSO.  Finally, a practical engineering optimization
of the grillage design problem will be examined.  This
paper, apart from the Introduction, is organized as
follows.  Section 2 details the PSO algorithm and its
core elements of the operation model.  The strategies for
the testing cases are presented in Section 3 while several
benchmark functions are listed in appendix for the
reader’s convenience.  Besides, the practical engineer-
ing example is also included in this section for
completeness.  Section 4 presents the testing parameters
setting and discussions on results.  Finally, some con-
crete conclusions are drawn in Section 5.

THE  PSO  MODELLING

The initial particles of the swarm for the PSO are
randomly generated and one can find the optimal solu-
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tion of the problem through the generation.  In each
generation, the particle changes its velocity by way of
two kinds of search memories.  One is the particle’s best
memory, called pbest, and the other is the group’s best
memory, called gbest.  After generations, the PSO can
find the best solution according to the best solution
memories.  The changing scheme for the velocity of the
particle is graphically illustrated in Figure 1 and its
algorithm is presented in the following.

Step 1: The position and velocity of the particle in the
initial swarm for n-dimensional space are both
randomly generated.

Step 2: Aimed at the fitness function defined, the fit-
ness value of the particle is well evaluated.

Step 3: The fitness value of the particle is compared
with that of the previous best one and then, the
new velocity of the particle is modified accord-
ing to the best positions of the particle and
swarm.

Step 4:  After comparing the fitness of the particle and
swarm, if the best fitness of the particle is
superior to that of the swarm, then it modifies
the memory of the swarm’s best fitness and at
the same time, every particle modifies the
particle’s velocity of the next generation.

Step 5: The new velocities and positions of the particles
for the next generation are shown in Figure 1
and determined according to the following
equations.

ν i
k + 1 = wν i

k + c1 × rand (⋅) × (si
pbest – si

k ) + c2

× rand (⋅) × (sgbest – si
k), (1)

si
k + 1 = si

k + ν i
k +1, (2)

in which ν i
k and ν i

k + 1 represent the velocities of
the particle i at the kth and k+1 th generation
respectively, w is the inertia weight, c1 and c2

are constants known as learning coefficients,
and rand (⋅) denotes a generated uniformly dis-
tributed random number in the range of 0 to 1.
Besides, si

pbest represents the best position of the
particle i, sgbest represents the best position of the
swarm and si

k + 1 represents the new position of
the particle i.

Step 6: If the search satisfies the termination condition
then it stops; otherwise, it returns to step 2.

In Eq. (1), the second part is the cognition-only
model and the third part is the so-called social-only
model.  It should be noted that the velocity, or called the
step size per generation, and position of the particle are

limited to the maximum values of νmax and Smax,
respectively.  If the new velocity and the position of the
particle in the problem space are over the limitations,
then the velocity and the position should be designated
as νmax and Smax, respectively [23].

TESTING  EXPERIMENTS

1. Strategy description for setup of testing parameters

Four two-dimensional non-linear benchmark func-
tions of Rosenbrock (R2 – f1), Zakharov (Z2 – f5),
MH – f2 and Shaffer – f11 are respectively adopted to
examine three parameters in the PSO and to find more
suitable ranges of parameters.  Aimed at the inertia
weight, two types of the fixed-value and linearly de-
creasing are given to investigate the influence on the
search of the swarm.  As for the study of learning
factors, c1 and c2, their impacts on the search are also
conducted in detail and once the optimal ranges of c1

and  c2 are suggested and then, they will further be
applied to low dimensional problems with several bench-
mark functions listed in appendix for validation.  On the
other hand, other six evolutionary algorithms proposed
in references of [1, 3-6, 19] are adopted for comparing
the search efficiency with the PSO.

2. Optimization problem of the grillage structure

A typical grillage structure shown in Figure 2 and
usually appeared in naval architecture is adopted as a
target problem and the minimum uses of the material is

Fig. 1.  Velocity changing scheme of a particle.
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usually considered for naval architects due to the cost;
therefore, the minimum volume of the grillage structure
is taken as the objective function.  With the stress
constraint conditions, this optimization problem can be
described as [18]:

Minimize  f (x ) = 1x 1 + 2x 2 (3)

Subject to:

– 20.0
20.0

≤ 1
S 1

M 1

M 2
≤ 20.0

20.0
, (4)

– 20.0
20.0

≤ 1
S 2

M 3

M 4
≤ 20.0

20.0
, (5)

where the design variables x1 and x2 represent the cross-
sectional areas of the first stiffener and the second
stiffener, respectively, with both ranges of 1 ≤ x1, x2 ≤
30.  The symbols, l1 and l2, denote lengths of the first
and second stiffeners, respectively.  M1, M2, M3 and M4

represent  the  bending moments  of  locat ions ,
respectively, with their section modulus of Si =
(xi/1.48)1.82, i = 1, 2.  For the reader’s convenience,
symbols appeared in Figure 2 also illustrate here.
Symbols, q1 and q2, represent the uniform distrib-
uted forces of the first and second stiffeners, respec-
tively and p is the concentrated load acting on the
joint B.

For investigating the PSO for the optimization
problem with constraints, this testing problem is sub-

jected to two different loading cases.

Case 1: q1 = q2 = 0.1, p = 1.0, l1 = 100, l2= 300
This case, basically, has two local minima and

their values are x1
* = [2.2, 18.8], f (x1

*) = 5860 and x2
opt =

[9.70, 6.06], f (x2
opt)  = 2790, respectively.  The global

optimum is denoted as x2
opt.

Case 2: q1 = q2 = 0.1, p = 1.0, l1 = 100, l2= 120
In case 2, there are three local minima and their

values are  x1
* = [5.5, 2.56]T, f (x1

*) = 3620; x2
* = [13.3,

18.8]T; f (x2
*) = 3580; x3

* = [23.44, 7.19]T, f (x3
opt)  = 3200,

respectively.  The global optimum is denoted as x3
opt.

RESULTS  AND  DISCUSSIONS  OF  TESTING
EXPERIMENTS

First of all, the PSO model shown in Eq. (1) is
conducted with different search strategies for a system-
atic discussion.  After the adequate ranges of parameter
setting for the PSO have been determined, those bench-
mark functions listed in the appendix are adopted for
testing and validation.  Besides, comparisons of the
performance of the PSO and other algorithms are made.
Finally, the experimental results of the grillage design
using the PSO are also discussed.

During the search, when the optimal solution,
OBJPSO, meets the termination criterion

OBJPSO – OBJ* ≤ 10-4, (6)

where OBJ* represents the known best solution, and the
search is taken as a success one.  For study of the
reliability of the PSO, the success rate, SR, measured
by counting the number of successful searches from
all 100 runs, is recorded. In addition, the computation
efficiency of the PSO, AG, defined as the used aver-
age number of generations, i.e., the summation of the
used generations among all the successful searches
divided by the total number of successful searches, is
also conducted.

1. Search efficiency of the PSO under different inertia
weights

For evaluating the inertia weight, two 2-dimen-
sional single-minimum problems, R2 – f1 and Z2 – f5, and
two 2-dimensional multi-minimum problems, HM – f2

and Shaffer – f11, are all selected with parameters set-
tings of swarm size = 20, νmax = 20, Smax =20, and the
learning factors c1 and c2 both equal to 2.  Table 1 is the
optimization results at several fixed values of the iner-
tial weight and linearly decreasing expressions. Two
concrete conclusions can be drawn as follows.

Fig. 2.  Optimization problem of the grillage structure.
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(1) To deal with single-minimum problems, the search effi-
ciency of the PSO is better as the inertia weight is given
a fixed value

As shown in Table 1, for single-minimum problems,
the inertia weight does not influence the search and
further, when the inertia weight is equal to 0, the success
rate can nearly approach to 100%.  Besides, it is also
shown that when the inertia weight is given a smaller
value, the success rate and the search efficiency are both
well satisfied.  However, when the fixed value of the
inertia weight increases up to 0.8, the success rate
dominantly reduces and the search efficiency also shows
the decrease tendency.  It should be noted that when the
inertia weight linearly decreases from 0.9 to 0.4, al-
though the success rate can approach up to over 90%,
the calculation effort is at last over five times of the
fixed-value type.

For the mechanism of preserving the previous
velocity, it has little influence on the search of the
swarm when dealing with single-minimum problems.
The possible reason may come from the only one
minimum solution of these testing functions and that
with the particle activeness and the interactive guid-
ance existing in particles of the swarm the PSO can
have the higher performance by itself.  In general,
when considering the indexes of success rate and com-
putation efficiency, one can conclude that for dealing
with a single-minimum problem, the suitable inertia
weight for the PSO are suggested in the ranges of 0.2
to 0.6.

(2)To deal with multi-minimum problems, the search effi-
ciency of the PSO is better when the inertia weight
decreases from 0.9 down to 0.4

As shown in Table 1, when the inertia weight is
given a fixed value, the PSO although can find the

global optimum, yet the success rate is less satisfied.  It
is apparently meant that when the PSO with the fixed-
value inertia weight deals with the multi-minimum
problems, once the distribution of the initial swarm
approaches near the global optimum, it can quickly
meet the termination criterion.  However, when the
particle is far away the global optimum, it might lead to
the earlier convergence or be trapped into the local
optimum owing to the insufficient activeness of the
particle and the lack of swarm’s diversity.

In contrast to the fixed-value inertia weight, if one
adopts the linearly decreasing inertia weight of 0.9
down to 0.4 and asks the initial particle to reserve 90%
of the previous velocity, thus, the diversity of swarm
becomes wider.  Besides, as the generation increases, it
will gradually decrease the influence of the previous
velocity.  Such a mechanism makes the PSO quickly
converge to the global optimum because the particle can
hold the best solutions of the individual and the popula-
tion simultaneously.  For example, as shown in Table 1,
for the MH – f2 function, the success rate (SR) of the
PSO can approach to 64% and the used average number
of generations (AG) is only 339.  In contrast to the
fixed-value inertia weight at 0.85, both of them have
nearly the same success rate; however, the former is
one-third of the latter in the used average generations.
While for the Shaffer – f11 function, if the PSO adopts
the linearly decreasing inertia, weight the success rate
can approach to 96% with generations only 512.

2. Influence analysis of the learning factors, c1 and c2, on
search

Aimed at evaluating the learning factors of c1 and
c2, the swarm size is set as 20, νmax and Smax are both set
as 10.  From results of the previous subsection, the
inertia weight value is reset as 0.4 for the single-mini-
mum problems and the linearly decreasing inertia weight

Table 1.  Performance of different inertia weights in PSO

Function
w

0.0 0.2 0.4 0.6 0.8 0.85 0.9 0.95 1 0.9~0.4

Rosenbrock SR 100 100 100 100 93 37 0 0 – 90
R2 – f1 AG 301 169 153 215 813 2674 – – – 867

Zakharov SR 100 100 100 100 100 70 10 7 0 91
Z2 – f5 AG 29 28 42 76 382 1893 2356 3656 – 906

MH – f2 SR 43 47 43 53 53 70 13 0 0 64
AG 274 228 147 143 303 1016 2465 – – 339

Shaffer – f11 SR 40 47 37 43 50 67 83 47 40 96
AG 212 266 285 305 526 680 1514 2229 2076 512

Note: SR: Success rate(%); AG: Average generation; w: Inertia weight.
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of 0.9 down to 0.4 is adopted for the multi-minimum
problems.  Figure 3 illustrates the contours of the suc-
cess rates for four benchmark functions when the learn-
ing factors, c1 and c2, are both set from 1 to 3.  Figure 4
shows the contours of the used average number of
generations.  Although the more suitable bandwidth
regions, as shown in Figure 3, are different, their search
efficiency are satisfied and especially in single-mini-
mum functions like R2 – f1 and Z2 – f5, the success rates
of most cases are up to 100% when the learning factors
are set up in ranges of 1 to 3.  As for multi-minimum
functions such as MH – f2 and Shaffer – f11, each
function has its own suitable range of learning factor

and as shown in Figure 3, their success rates can reach
from 79% to 95%.  However, when c1 and c2 are setup
over 2.6 and 2.8, respectively, success rates of functions
R2 – f1 and MH – f2 both decrease.  It reveals that the
higher the learning factors are given, the more negative
effects the PSO will be.

As can be seen in Figure 4, the used average
generation numbers are much less for the four functions
when the learning factors are smaller; while as the
learning factors become larger, average number of gen-
erations used gradually increase.  It means that active-
ness of the learning factors for the particle increases and
this leads the particle to have more diversity and such a

Fig. 3.  The success rate, SR, of the PSO with different learning factors c1 and c2 for four benchmark functions.
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condition makes the PSO hard to be trapped into the
local optimum owing to having more searching choices
for the particle swarm.  In contrast, it also results in too
much time spent in neighborhoods of the global opti-
mum when dealing with multi-minimum problems.  More
surprising results are shown in Figure 4 and the extra
generations can pay up to 5 to 15 times.

3. Testing results of several low dimensional problems

Parameters setting for this testing case are as
follows.  The swarm size is given as 20, the inertia
weights for the single-minimum problems and multi-

minimum problems are 0.4 of the fixed value and 0.9
down to 0.4 of the linearly decreasing, respectively, and
both of the learning factors, c1 and c2, are 2.  Table 2
shows results of success rates and used average number
of generations for seventeen different benchmark func-
tions and as can been seen, the PSO, in general, exhibits
satisfied performance and especially for the two-dimen-
sional problem, the success rate (SR) can approach to
100% and the used average number of generations (AG)
are all within 100.  It also shows that uses of the PSO
with these parameters settings can quickly find the
global optimum.  For the 4-dimensional multi-mini-
mum functions of S4, 7 – f11, and S4, 10 – f11, their success

Fig. 4.  The used average number of generations, AG, of the PSO with different learning factors c1 and c2 for four benchmark functions.
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rates can reach to 85% and it indicates that the PSO also
has satisfied search ability for the multi-minimum
problems.  As for the 10-dimensional functions of R10 –
f1, and Z10 – f5, as the used average number of generation
increases, the success rates are still over 70%.

Tables 3 and 4 respectively show results of success
rates and the number of function evaluations, Nfe, using
the PSO and other algorithms, which include Real-
Coding Genetic Algorithm, (RCGA) [1], Continuous

Genetic Algorithm (CGA) [3], Continuous Hybrid Al-
gorithm (CHA) [5], Enhanced Continuous Tabu Search
(ECTS) [4], Continuous Tabu Simplex Search (CTSS)
[6] and Simplex and Evolution Algorithm (SEA) [19].
It should be noted that the RCGA, CGA and CHA are all
categorized into the genetic algorithms with different
improvement strategies for local search, while the ECTS
and TCSS belong to the improving types of the Tabu
search, and the SEA is basically a hybrid algorithm of
the simplex method with evolutionary algorithm.  As
can be seen in Table 3, the PSO actually has a dominant
performance in the search ability with robustness and
completeness because other algorithms still use some
improving strategies for a better local search.  Table 4
shows a comparison on the number of function evalua-
tions for the PSO and other algorithms.  It is found that
for functions of Rn – f1 and S4, n – f12 types, their testing
results in Nfe are less satisfied because the global optima
of such types of functions are difficult to be found.  If we
further refer to Figure 4, it can be found that the reason
may come from high sensitivities of these two learning
factors, c1 and c2.  Moreover, it is also found that the
PSO is not so better as compared with other algorithms
in the computation efficiency and it indicates that the
PSO still needs some effective strategies for improving
its local search ability.

4. Optimization results of the grillage structure

In this subsection, the PSO with the following
parameters setting is used to deal with the optimization
problem of the grillage structure.  The swarm size is

Table 2. Optimization results of the PSO for seventeen
benchmark functions

Function Dimensions SR(%) AG

ES – f3 2 100 37
B2 – f6 2 100 29
SH – f8 2 100 40
GP – f9 2 100 24
MZ – f7 2 100 18
Z2 – f5 2 100 19
R2 – f1 2 100 83
RC – f4 2 100 37
MH – f2 2 85 133
Shaffer – f11 2 100 251
DJ – f10 3 100 24
S4,7 – f12 4 84 1459
S4,10 – f12 4 87 1508
Z5 – f5 5 100 51
Z10 – f5 10 100 124
R5 – f1 5 84 1655
R10 – f1 10 74 2674

Table 3.  A comparison of the SR(%) for several different functions with PSO and other algorithms

Method PSO RCG CGA ECTS CHA CTSS SEA
/Function [present] A [1] [3] [4] [5] [6] [19]

ES – f3 100 100 100 100 100 100 97
B2 – f6 100 – 100 – 100 100 100
SH – f8 100 100 100 100 100 100 100
GP – f9 100  100 100 100 100 100 –
Z2 – f5 100 100 100 100 100 100 97
R2 – f1 100 100 100 100 100 100 97
RC – f4 100 100 100 100 100 100 100
DJ – f10 100 100 100 100 100 100 100
S4,7 – f12 84 70 83 80 85 77 –
S4,10 – f12 87 58 81 75 85 74 –
Z5 – f5 100 100 100 100 100 – –
Z10 – f5 100 100 100 100 100 – –
R5 – f1 84 60 100 100 100 – –
R10 – f1 71 70 77 75 83 – –
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given as 20, both νmax and Smax are 100, and the learning
factors, c1 and c2, are given as 2.  As can be seen in
Table 5, the PSO can find the global optimum satisfies
all the constraints.  In case 1, with two types of inertia
weights, both their success rates can approach to 100%.
In case 2, there are three local minima in the feasible
domain.  When the fixed-value of inertial weight is
given as 0.4, the success rate can only approach to 85%;
however, when the linearly decreasing inertia weight,
which is better for dealing with this multi-minimum
problem, is adopted with the PSO, the success rate can
approach to 100%.  As for the comparison of the com-
putation efficiency, when the fixed value of inertia
weight is 0.4, the PSO can quickly find the global
optimum.  Especially in the case 1, as shown in Table 5,
the computation efficiency of the fixed-value type is
superior to that of the linearly decreasing type.

As shown in Figure 5, which illustrates the search
convergence of the generation, the PSO with given two
types of inertia weights can have the robust search
ability for the grillage problem especially in the initial
stage.  It indicates the PSO can find a better solution in

a short time and more importantly, it has a good explor-
ative ability with the exploitive search simultaneously
to reach the global optimum.  It should be noted that
both cases 1 and 2 of using the fixed-value inertia
weight, as shown in Figure 5, finish their searches at
about the 50th generation.  The same tendency also
occurs in the linearly decreasing type of inertia weight
and more specifically, as the particle searches in the
final stage, its exploring ability has gradually reduced.
It means its finding result is quite approaching to the
global optimum in this stage.

Table 4.  A comparison on   for several different functions with PSO and other algorithms

Method/ PSO RCGA CGA ECTS CHA CTSS SEA
Function [present] [1] [3] [4] [5] [6] [19]

ES – f3 740 642 1504 1284 952 325 197
B2 – f6 580 – 430 – 132 98 258
SH – f8 800 946 575 370 345 283 420
GP – f9 480 270 410 231 259 119 –
Z2 – f5 380 437 620 195 215 78 90
R2 – f1 1660 596 960 480 459 369 266
RC – f4 740 490 620 254 295 125 272
DJ – f10 500 449 750 338 371 155 –
S4,7 – f12 29180 1143 680 910 620 590 –
S4,10 – f12 30160 1235 650 898 635 555 –
Z5 – f5 1530 1115 1350 2254 950 – –
Z10 – f5 7440 2190 6991 4630 100 – –
R5 – f1 33100 4150 3990 2142 3290 – –
R10 – f1 106960 8100 21563 15720 14563 – –

Table 5.  Optimization results of the PSO for the typical
grillage structure

   w SR (%) AG

Case 1
0.4 100 43
0.9~0.4 100 416

Case 2
0.4 85 65
0.9~0.4 100 269

Fig. 5. The search convergence of the generation for the grillage
structure.
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CONCLUSIONS

In this paper, seventeen optimization problems of
single-minimum and multi-minimum types have been
adopted for evaluating the PSO and for determining the
suitable ranges of parameter setting.  For the settings of
the inertia weight, the linearly decreasing inertia, which
is commonly adopted in the literature, has advantages of
increasing the particle’s diversity in the early
generations.  Such a property makes the PSO not con-
vergent too early and not easily trapped into the local
optimum when dealing with the multi-minimum problem.
In contrast, when treating the single-minimum problem,
it will interfere with the velocity of the particle and thus
influence the computation efficiency.  Based on the
testing results, for the single-minimum problem, we
suggest a use of a fixed value in ranges of 0.2 to 0.6 for
setting the inertia weight; while for the multi-minimum
problem, the linearly decreasing inertia weight at ranges
of 0.9 down to 0.4 is suggested.  Both of them show
satisfactory success rate and computation efficiency.
As for setting the learning factors, they are usually
dependent on the characteristics of testing problems;
however, they are, in general, shown in a region of a
specified bandwidth and a constant value of 2 for both
c1 and c2, as suggested in references, can be adopted.

Comparisons of the PSO and other algorithms
show that the PSO inherent with the concept of the
particle swarm intelligence can have satisfactory ro-
bustness and completeness.  As shown in the seventeen
testing cases, all their success rates can approach to
95%; however, for needed numbers of objective func-
tion evaluations, the PSO has shown its computation
efficiency but not the best as compared with other
algorithms.  It means that the PSO still needs to be
improved in its local search ability.  Finally, due to its
reliability and high success rate, the PSO can further be
applied to deal with the optimization problem with
constrained conditions, like the structural design of the
grillage problem, which is usually encountered in naval
architecture.
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APPENDIX:  LIST  OF  BENCHMARK
FUNCTIONS

1. f1: Rosenbrock, (Rn), (n variables)

 f1 (x) = 100 (x1
2 – x2)2 + (x1 –1)2

search domain: –5 < xi < 5, i = 1, 2, 3, ..., n;
one global minimum: x* = (1, ....., 1), f1 (x*) = 0.

2. f2: Modified Himmelblau Function, (MH), (2 variables)

 f2 (x) = (x2 + x1
2 – 11)2 + (x1 + x2

2 – 7)2 + x1

search domain: –5 < xi < 5, i = 1, 2;
number of local minima = 3; one global minimum: x*
= (–3.788, –3.246), f2 (x*) = –3.78.

3. f3: Easom, (ES), (2 variables)

f3 (x) = –cos (x1) cos (x2) exp(–((x1 – π)2 + (x2 – π)2))
search domain: –100 < xi < 100, i = 1, 2;
several local minima (exact number unspecified in the
usual literature);
one global minimum: x* = (–3.788, –3.246), f3 (x*) = –1.

4. f4: Branin RCOS, (RC), (2 variables)

f4 (x) = x2 – (5/(4π 2)) x1
2 + (5/π) x1 – 6)2

+ 10 (1 – (1/8π)) cos (x1) + 10
search domain: –5 < xi < 10, i = 1, 2;
three global minimum: x* = (–π, 12.275), (π, 2.275),
(9.42478, 2.475); f4 (x*) = 0.39788.

5. f5: Zakharov, (Zn), (n variables)

f 5 (x ) = ( x i
2Σ

i = 1

n

) + ( 0.5i ⋅ x iΣ
i = 1

n

)2 + ( 0.5i ⋅ x i )
4Σ

i = 1

n

search domain: –5 < xi < 10, i = 1, 2, ..., n;
several local minima (exact number unspecified in the
usual literature):
one global minimum: x* = (0, ..., 0), f5 (x*) = 0.

6. f6: B2 (2 variables)

f6 (x) = x1
2 + 2x2

2 – 0.3 cos (3πx1) – 0.4 cos (4πx2)
= 0.7

search domain: –100 < xi < 100, i = 1, 2;
several local minima (exact number unspecified in the
usual literature);
one global minimum: x* = (0, 0), f6 (x*) = 0.

7. f7: Michalewicz, (MZ), (2 variables)

f 7 (x ) = – sin (x i ) [sin ((i ⋅Σ
i = 1

n

(x i )
2) / π)]2m

m = 10, search domain: –π ≤ xi ≤ π, i = 1, 2;
one global minimum: x* = (2.25, 1.57), f7 (x*) = –1.8.

8. f8: Shubert, (SH), (2 variables)

f 8 (x ) = { j ⋅ cos [( j + 1) x 1 + j ]}Σ
j = 1

5

× { j ⋅ cos [( j + 1) x 2 + j ]}Σ
j = 1

5

search domain: –10 < xi < 10, i = 1, 2;
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760 local minima; 18 global minima: f8 (x*) =
–186.7309.

9. f9: Goldstein and Price, (GP), (2 variables)

f9 (x) = [1 + (x1 + x2 + 1)2 × (19 – 14x1 + 3x1
2 – 14x2

+ 6x1x2 + 3x2
2)] × [30 + (2x1 – 3x2)2 × (18 – 32x1

+ 12x1
2 + 48x2 – 36x1x2 + 27x2

2)]

search domain: –2 < xi < 2, i = 1, 2;
4 local minima; one global minimum: x* = (0, –1),
f9 (x*) = 3.

10. f10: De Joung, (DJ), (3 variables)

f10 (x) = x1
2 + x2

2 + x3
2

search domain: –5.12 < xi < 5.12, i = 1,3;
one global minimum: x* = (0, 0, 0), f10 (x*) = 0.

11. f11: Shaffer’s f6, Shaffer, (2variables)

f 11 (x ) = 0.5 –
(sin x 1

2 + x 2
2 )2 – 0.5

(1.0 + 0.001(x 1
2+ x 2

2))2

search domain: –100 < xi < 100, i = 1, 2;

several local minima (exact number unspecified in
the usual literature);
one global minimum: x* = (0, 0), f11 (x*) = 0.

12. f12: Shekel, (S4,n), (4 variables)

f 12 (x ) = – (x – a i )
T (x – a i ) + c i

– 1

;Σ
i – 1

n

x = (x 1, x 2, x 3, x 4)
T ;  a i = a i

1, a i
2, a i

3, a i
4

T
;

S4, 7 , n = 7, 7 minima with one global minimum:
S4, 7 (x*) = –10.40294
S4, 10, n =10, 10 minima with one global minimum:
S4, 10 (x*) = –10.53641.

i aT
i ci

1 4. 4. 4. 4. .1
2 1. 1. 1. 1. .2
3 8. 8. 8. 8. .2
4 6. 6. 6. 6. .4
5 3. 7. 3. 7. .4
6 2. 9. 2. 9. .6
7 5. 5. 3. 3. .3
8 8. 1. 8. 1. .7
9 6. 2. 6. 2. .5

10 7. 3.6 7. 3.6 .5
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