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ABSTRACT

It is commonly accepted that construction cost, time and quality
performance has been regarded as the major success factors for a
construction project.  With the increasing use of innovative contracts
in highway construction, the relationship between construction cost
and time has become more crucial than ever.  Improved control of time
value has become necessary, for quantifying the functional relation-
ship between construction cost and time.  This study explores the
functional relationship between highway construction cost and time.
Data from projects of the Florida Department of Transportation
(FDOT) in the US is utilized to develop and illustrate the quantifying
model.  The proposed model provides State Highway Agencies (SHAs)
and contractors with increased control and understanding regarding
the time value of highway construction projects.

INTRODUCTION

1. Construction cost and time

A project may be regarded as “successful” if it is
completed within budget, on time, without any accidents,
to the specified quality standards and overall client
satisfaction.  Construction cost-time now are increas-
ingly important since they serve as a critical benchmark
for evaluating the performance of a construction project
[3, 11, 17].  Attempts to predict highway construction
costs and durations represent a problem of continual
concern and interest to both SHAs and contractors [2].

A relationship exists between the duration of a
construction activity and its cost [8].  Similarly, con-
struction cost and time for undertaking a construction
project are interrelated.  Generally, the total project cost
includes both the direct and indirect costs of performing
construction work.  The higher curve in Figure 1 illus-

trates the relationship between cost and time for a
construction project.

According to Callahan et al. [1] an optimum cost-
time balance point (normal point) exists for every con-
struction project without considering incentive/disin-
centive (I/D).  At this point, the construction costs of the
contractor are minimized.  Construction costs may in-
crease if any variation in time occurs from this point.  If
the construction time from the point is reduced, the
direct costs will increase while the indirect costs de-
crease (and vice versa) [12].

Contractors are interested in reducing project costs
because such cost reductions can increase the profits
and probabilities of contract awards.  SHAs would have
more control and understanding of the time value of
highway construction projects.  The development of the
functional relationship between construction cost and
time helps them to achieve these objectives.

2. Hypothesis-construction cost increases with schedule
compression

Several methods of compressing the construction
schedule exist.  For highway construction projects, the
some common methods of compressing the schedule
include overtime, shifting, increasing crews, using more
productive equipment, and so on.  Contractors may use
one or more of those methods to achieve their objective
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Fig. 1.  Project cost and time relationship.
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of shortening the construction schedule.  However,
regardless of the method used, the schedule compres-
sion will cost more than a normal schedule unless taking
the project I/D into account.  The following are the
reasons supporting this hypothesis.

(1) Increasing shift length and/or workdays

The standard workweek is 8 hours per day, 5 days
per week (Monday through Friday).  Longer work hours/
days introduce premium pay rates and efficiency losses.
Workers tend to pace themselves for longer shifts and
more days per week.  An individual or crew working for
10 hours a day, 5 days a week, will not produce 25
percent more than they would working 8 hours a day, 5
days a week.  While longer shifts produce some produc-
tion gains, these gains have a higher unit cost than
production within normal work hours.  When modifica-
tions make it necessary for the contractor to resort to
overtime, some of the labor costs produce no profit
because of inefficiency.

Overtime work creates costs and reduces effi-
ciency owing to the introduction of inefficient
modifications.  Contractors occasionally find that they
need to offer overtime work as an incentive to attract
sufficient manpower and skilled craftsmen to a job.
When overtime is provided, the cost must be borne by
the contractor; however, if overtime is necessary to
accomplish modification work, the potential for intro-
ducing efficiency loses should be recognized.  Figure 2
displays the result of a study designed to graphically
demonstrate efficiency losses over a 4-week period for
several combinations of work schedules.  This data is
included to provide information on trends rather than to
derive rules that apply to all projects.  Although the data
in Figure 2 does not extend beyond the fourth week, the
curves are assumed to flatten to a constant efficiency
level with the continuing of each work schedule.

(2) Multiple sifts

The productivity inefficiencies resulting from over-
time labor can be avoided by hiring additional workers
and organizing two or three 8-hour shifts per day.
However, additional shifts introduce other costs.  These
costs include additional administrative personnel,
supervision, quality control, lighting, and so on.  The
contractor should appropriate costs due to the modifica-
tion of the shift schedule used to accelerate the con-
struction activities environmental factors such as light-
ing and cold weather may also influence labor efficiency.

(3) Increasing crew size

For any construction operation, the optimum crew
size is the minimum number of workers required to
perform the task within the allocated time period.  The
optimum crew size for a project or activity represents a
balance between an acceptable rate of progress and the
maximum production from the labor cost invested.  In-
creasing the crew size above the minimum necessary
can generally achieve faster progress, but at a higher
unit cost.  Each additional worker added to the crew will
increase total crew productivity by a diminishing sum.
Taken to the extreme, adding additional workers will
contribute nothing to overall crew productivity.  Figure
3 illustrates the effects of crew overloading.

(4) Work force morale

It is the responsibility of the contractor to motivate
the work force and provide a psychological environ-
ment that can maximize productivity.  Morale exerts an
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Fig. 2.  Influence of work schedule on efficiency [5].
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influence on productivity, but so many factors affect
morale that their individual effects are not easy to
quantify.  The contract modifications of a project, par-
ticularly when they are numerous, adversely affect
worker morale.  The degree of contract modifications
may influence productivity, and consequently the cost
of performing the work, would normally be extremely
minor compared with other causes of productivity loss.
A contractor would probably find that it would cost
more to maintain the records necessary to document
productivity losses from reduced morale than is justi-
fied by the amount that could potentially be recovered.
Modification estimates do not consider morale as a
factor in productivity loss because whether morale be-
comes a factor is determined by how effectively the
contractor fulfills his/her labor relation responsibilities
[5].

FUNCTIONAL  RELATIONSHIP  BETWEEN
CONSTRUCTION  COST  AND  TIME

1. Innovative contracting techniques

In 1987, the Florida legislature in the US passed
the innovative contracting statute in response to the
growing demands on Florida highways owing to a rising
number of road-users.  The innovative contracting tech-
niques prompted by the FDOT have recently been used
in various ways, either as a single method or combined
with other methods [7].  Three types of innovative
contracting techniques are addressed below.

The A + B contracting method considers both
project cost and time.  This method awards a project to
the lowest bidder based on the cost of all of the work
involved (A) and the total unit time value (B).  The
project time estimated by the lowest bidder thus be-
comes the project contract duration, and the project cost
becomes the contract cost.  The A + B contracting
method is used for projects with a significant level of
community impact or road-user impact.  This method
can potentially reduce contract time.  A dollar value
must be calculated for each contract day before adver-
tising the project.  Ideally, a maximum number of days
for which the contractor may bid should be provided.

Time cost (TC) represents the cost of delays to
owner.  In most cases, the TC will include the direct cost
resulting from construction delays, such as temporary
facilities, moving costs, and other alternate solutions.
Indirect cost items encompassing both job overhead and
general overhead can also be considered in the TC
calculation.  A variety of other general costs involving
losses to the business community, reduction of potential
profits and even hardship to the owner, though harder to
quantify, can also be incorporated into the final calcu-

lations [6].
The No Excuse Bonus concept involves providing

the contractor with a significant bonus for completing a
phase or a project within a specified time frame regard-
less of any problems or unforeseen circumstances.  The
bonus is tied to a drop-dead date (or an incentive date),
and the contractor receives a bonus if the work is
completed before that date.  However, no excuse is
acceptable should the contractor fail to meet the incen-
tive date, not even bad weather or other uncontrollable
events.  The conditions of the standard contract are
applied if the contractor selects not to pursue or fails to
meet the “no excuses” deadline.

I/D contracts not only provide an incentive to the
contractor for early completion, but also provide a
disincentive for late completion.  I/D contracts are
designed to reduce total contract time by giving the
contractor a time indexed incentive for early completion.
The I/D amount set for each project should be supported
via an estimated cost of the damage that is expected to
be mitigated by early completion of the total project or
critical phase of work.  This determination is made
during the development of the daily I/D payment.  The
daily I/D is calculated on a per project basis.

2. Strategic planning for innovative contracting tech-
niques

The innovating contracting methods share the ba-
sic concept of applying a cost to the value of time.  What
the methods have done is to place a heavy premium on
time value, thus requiring the general contractor to be
much more aware of construction time.  The innovative
contracting methods do provide greater profits and a
higher degree of risk both to owners and contractors.
Currently some strategies should be retained for project
owners and contractors when using the innovative con-
tracting methods in Taiwan.

Project owners should always pose a CAP for
contractor’s duration and cost to allow them to reject an
unreasonable bid cost and time.  They should also adjust
the weight of cost to time based on the emergence of the
project.  Most importantly, a penalty of late finish
should pose and the rate of penalty should higher than
that of time cost to prevent contractors under estimate
the bid time to win the bids.

The general contractor should balance the amount
of company resources required for bid preparation,
against their chance of winning the contract, ever mind-
ful of not only who the competition is, but the number
of competitors involved.  The quality and quantity of
competitors should be more carefully evaluated.  The
chance of success bid for the contractor depends heavily
on both reliable cost and time estimates.  Therefore,
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contractors must strategically plan out all aspects of the
project before submission of the bid to maximize profits
and minimize risks.

The innovative contracting methods have been
proved to be valuable technique of decreasing overall
project duration and seem to be extremely cost affective
[4, 6, 10, 14].  Time reductions of 20-50% and cost
increase of 5% were achieved in comparison to similar
projects using conventional contracting methods [6, 9,
13, 15, 16].  The financial impact on final project costs
associated with the reduction in construction times was
very minimal, since time reduction is achieved through
competition rather than actual monetary payments to
the contractors.  The application of these innovative
contracting methods is obviously a worthy topic to be
investigated in-depth in Taiwan.

3. Research data collection

In this research, projects used to develop the func-
tional relationship between construction cost and time
were rewarded by the FDOT using innovative
contracting.  These projects were all related to highway
construction, and included resurfacing, replacement,
lane addition, bridge repair, and miscellaneous
construction.  The data was obtained from 07/01/1996
to 04/16/1999.  It is essential to derive the actual project
construction costs and durations because they are re-
quired as the inputs of the models developed in this
study, and directly influence the results.  This study
only considers projects that were completed before 04/
16/1999.

The data from the FDOT do not include additional
costs such as changed orders and additional construc-
tion works following the contractor wins the bid.  From
the FDOT reports [7], the increase from the Award bid
to the Present contract cost results from contingency

supplement agreements and supplement agreements that
are based on factors such as modifications of plans and
changes in conditions.  The increase is 1% to 5% of the
Present construction cost.  Additionally, all the bids are
based on unit price.  The quantity of each item differs
between the Award bid and Present construction cost.
Thus, the actual construction cost and quantity are
unknowable before project completion.

This study gathered 21 projects that were com-
pleted before 04/16/1999.  These 21 projects included
seven A + B projects (Table 1), seven I/D projects
(Table 2), and seven No excuse bonus projects (Table
3).  Fifteen of the 21 projects are subjected to regression
analysis.

From Tables 1-3, the six unused projects include
one A + B project (#238320), three I/D projects
(#194507, #231437 and #195578) and two No excuse
bonus projects (#213076 and #257024).  Projects
#194507, #231437, #213076, and #257024 are all fin-
ished in time - the Days used equals the Present contract
time.  The increases from Award bid to present con-
struction cost exceed 7.7% for all four projects.  Since
these increases exceed the maximum range (5% of the
Present construction cost) permitted by the FDOT, these
projects were discarded owing to possible plan modifi-
cations and/or changes of conditions.  Despite project
#195578 experiencing a 68-day delay, no disincentive
was charged and the Present construction cost was
below the Award bid.  It is not a normal condition.
There might have been some change of conditions.
Since no information is available in the report, this
project was discarded.  Additionally, the increase from
Award bid to Present construction cost for project
#238320 is 9.5% which exceeds the maximum range
permitted by the FDOT.  The project is also being
discarded.

Table 1.  Results of A + B projects awarded by FDOT

FDOT Present Days Present FDOT max.
Project Work contract est. Bid days Award bid construction used contract timeb allowable I/D I/D paid

no. description ($1,000) (d) ($1,000) cost ($1,000) (d) (d) days (d) ($/d) ($1,000)
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

238320a Add lanes 7,354 385 6,900 7,557 372 437 485 3,500 227.5
210623 Replace 9,213 300 9,424 9,718 311 381 650 6,000 234.9
210897 Widen 3,359 101 3,101 3,151 145 162 N/A 2,694 43.1
217902 Replace 15,378 429 14,325 14,612 460 468 739 2,200 30.8
250164 Resurface 1,775 199 1,551 1,601 142 199 N/A 2,000 100
257017 Resurface 3,119 120 2,945 2,991 135 142 135 5,000 0
257060 Resurface 1,432 150 1,700 1,800 97 160 N/A 3,000 0

a. Wasn’t used to develop the model.
b. The present contract time is the contract time at the end of the project.  That is different from the initial contract time due to change orders

or other factors.
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STATISTICAL  ANALYSIS  AND  MODEL
DEVELOPMENT

1. Model development

Based on Callahan et al. [1], this study assumes
that Award bid and Present contract Time represent the
best cost-time balancing point (or normal point) while
avoiding the need to consider project I/D for every
construction contract listed in Tables 1-3.  At this point,
the contractor would have the lowest construction cost,
as in Figure 1.  Days used is a variation in time from the
normal point that yields a corresponding construction
cost- the Present construction cost.  The Award bid is
the price bid by the contractor.  Meanwhile, the final
cons t ruc t ion  cos t ,  exc lud ing  incen t ives  and
disincentives, is termed the Present construction cost.
The Present contract time is the final contract time

determined by FDOT, and is adjusted for the weather or
additional work.  The number of days actually used by
the contractor is Days Used.

Four columns of data in Tables 1 to 3 are further
analyzed to establish the internal relationship between
cost and time: These four columns include Award bid,
Present construction cost, Present contract time, and
Days used.  Due to the difference in the scope of each
project, two formulae (Days used - Present contract
time)/(Present contract time), and (Present construction
cost - Award bid)/(Award bid), are used to transform the
raw data to permit further analysis, as listed in Table 4.
Second, analysis of variance for investigating the rela-
tionship between costs and time is performed to deter-
mine whether or not the independent variable (Days
used - Present contract time)/(Present contract time)
significantly influences the dependent variable (Present
construction cost - Award bid)/(Award bid).  Third, in

Table 2.  Results of I/D projects awarded by FDOT

FDOT contract FDOT contract Present Present
Project Work estimate time estimate. Award bid construction Days used contract I/D paid

no. description ($1,000) (d) ($1,000) cost ($1,000) (d) timeb (d) ($1,000)
(1) (2) (3) (4) (5) (6) (7) (8) (9)

194507a Add lane 6,247 505 6,199 6,742 572 572 0
195578a Resurface 2,598 200 2,991 2,972 301 233 0
231437a Miscellaneous 376 140 332 376 144 144 0
229622 Resurfacing 7,321 510 7,112 7,598 533 526 200
237453 Add lane 3,356 245 3,437 3,534 297 327 162
242633 Resurface 13,764 440 14,136 14,617 515 575 475
258638 Resurface 328 120 273 290 81 120 10

a.  Wasn’t used to develop the model.
b. The present contract time is the contract time at the end of the project.  That is different from the initial contract time due to change orders

or other factors.

Table 3.  Results of no excuse bonus projects awarded by FDOT

FDOT contract FDOT contract Present Present
Project Work estimate time estimate. Award bid construction Days used contract I/D paid

no. description ($1,000) (d) ($1,000) cost ($1,000) (d) timeb (d) ($1,000)
(1) (2) (3) (4) (5) (6) (7) (8) (9)

194507a Add lane 6,247 505 6,199 6,742 572 572 0
213076a Add lane 12,473 295 10,866 11,817 373 373 375
257024a Resurface 782 110 931 1,003 130 130 0
200704 Bridge 1,285 185 1,172 1,605 84 185 100
240843 Add lane 4,169 340 4,333 4,415 401 401 300
251240 Add lane 6,676 400 4,220 4,300 397 400 300
251280 Add lane 4,243 400 3,177 3,323 266 400 400
257074 Resurface 1,210 175 1,280 1,330 172 192 0

a.  Wasn’t used to create the model.
b. The present contract time is the contract time at the end of the project.  That is different from the initial contract time because of change

orders or other factors.
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association with step 2 (if significant), regression analy-
sis is performed to fit an appropriate model, which
establishes the internal relationship between cost and
time.

Shown in Table 5, nine regression models were
investigated to identify the best format for the collected
data set.  Since the independent variable contains values
of zero, models INV and S can not be calculated.  Mod-
els LOG and POWER cannot be calculated because the
independent variable contains non-positive values.  The
analysis of variance of the remaining five regression
models was shown in Table 6.

The p-value gives the appraisal of the statistical

significance of the independent factor.  A p-value is
assessed as significant and mildly significant when it is
below the threshold values of 0.05 and 0.20, cor-
respondingly.  Table 6 lists that the p-values of the
analysis of variance are all smaller than 0.003.  Thus,
this study concludes that the influence of the indepen-
dent factor (Days used - Present contract time)/(Present
contract time) on the dependent factor (Present con-
struction cost - Award bid)/(Award bid) is highly
significant, implying these two factors are very strongly
linked.  This indicates that a functional relationship
between these two factors can be established, and con-
sequently it is reasonable to further apply regression
analysis to fit an appropriate model.

Analyzing Table 6, the QUA and CUB regression
equations yield the acceptable R2 around 0.75 among the
five types of regression models examined, indicating
that the QUA and CUB regression models are able to
explain 75% variability in the data and are the most
appropriate cost prediction models among five examined.

Tables 7 and 8 summarize the analysis of variance
procedure and variables for the QUA and the CUB
regression models respectively.  Analyzing the regres-
sion analysis of Table 7 indicates that the corresponding
p-values of the Intercept, Day, and Day × Day for the
QUA regression models are 0.0003, 0.1681, and 0.0072
respectively.  Therefore, the parameters Intercept, Day,
and Day × Day are concluded to have significant, mildly
significant, and significant effects on the QUA regres-

Table 4.  Data correction for regression analysis

(Days used - present contract time) (Present construction cost - award bid)
Project Project /present contract time /award bid

no. type (Independent variable: Day) (Dependent variable: Cost)
(1) (2) (3) (4)

210623 A + B -0.1837 0.0312
210897 -0.1049 0.0161
217902 -0.0171 0.0200
250164 -0.2864 0.0322
257017 -0.0493 0.0156
257060 -0.3938 0.0588

229622 I/D   0.0133 0.0683
237453 -0.0917 0.0282
242633 -0.1043 0.0340
258638 -0.3250 0.0623

200704 No -0.5459 0.1135
240843 excuse 0.0000 0.0189
251240 bonus -0.0075 0.0190
251280 -0.3350 0.0460
257074 -0.1042 0.0391

Table 5.  Equation forms of regression models

Regression model Regression equation

Linear regression (LIN) Y = b0 + b1 × X
Logarithmic regression (LOG) Y = b0 + b1 × lnX
Inverse regression (INV) Y = b0 + b1/X
Quadric regression (QUA) Y = b0 = b1 × X + b2 × X2

Cubic regression (CUB) Y = b0 + b1 × X + b2 × X2 + b3 × X3

Composite regression (COM) Y = b0 × b1
X

Power regression (POWER) Y = b0 × Xb1

S-curve regression (S) Y = e(b0 + b1/X)

Exponential regression (EXP) Y = b0 × e(b1 × X)

Note: X denotes the independent variables; Y denotes the
dependent variable, and b0, b1, b2, b3 denote constants.
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sion, respectively.  Analyzing the regression analysis of
Table 8 shows that the corresponding p-values of the
Intercept, Day, Day × Day, and Day × Day × Day for the

CUB regression model are 0.0009, 0.3691, 0.3761, and
0.7661 respectively.  Therefore, the parameters Intercept,
Day, Day × Day, and Day × Day × Day are concluded to

Table 6.  Summary of various regression models

Dependent Model Rsq. D.F. F Sigf. b0 b1 b2 b3

Cost LIN .534 13 14.89 .002 .0209 -.1144
Cost QUA .751 12 18.07 .000 .0321     .1048 .4658
Cost CUB .753 11 11.17 .001 .0331     .1468 .6884 .2828
Cost COM .516 13 13.86 .003 .0222     .0816
Cost EXP .516 13 13.86 .003 .0222 -2.5053

Note: Independent- Day.  Since the independent variable contains values of zero, models INV and S cannot be calculated.  The
independent variable contains non-positive values.  Models LOG and POWER cannot be calculated.

Table 7.  Analysis of variance and variables in the QUA regression model

Source DF Sum of squares Mean square F value Pr > F
(1)  (2)  (3)  (4)  (5)  (6)

Model 2 0.00739 0.00370 18.07 0.0002
Error 12 0.00246 0.00020

Corrected total 14 0.00985

Variables in the equation

Parameter Estimate T Pr > |T| S. E.
(1) (2) (3) (4) (5)

Intercept 0.03214 5.06 0.0003 0.00635
Day 0.10481 1.47 0.1681 0.07144

Day × Day 0.46572 3.23 0.0072 0.14407

Note: Dependent variable: Cost = (Present construction cost - Award bid)/Award bid; Independent variable: Day = (Days used
- Present contract time)/Present contract time

Table 8.  Analysis of variance and variables in the CUB regression model

Source DF Sum of squares Mean square F value Pr > F
(1)  (2)  (3)  (4)  (5)  (6)

Model 3 0.00742 0.00247 11.17 0.0012
Error 11 0.00244 0.00021

Corrected total 14 0.00986

Variables in the equation

Parameter Estimate T Pr > |T| S. E.
(1) (2) (3) (4) (5)

Intercept 0.03312 4.499 0.0009 0.00736
Day 0.14680 0.936 0.3691 0.15676

Day × Day 0.68836 0.923 0.3761 0.74618
Day × Day × Day 0.28276 0.304 0.7664 0.92864

Note: Dependent variable: Cost = (Present construction cost - Award bid)/Award bid; Independent variable: Day = (Days used
- Present contract time)/Present contract time
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have significant, lowly significant, lowly significant,
and no significant effects on the CUB regression,
respectively.  Comparing the QUA and the CUB regres-
sion models further, the former was selected mainly
because the later fails to represent the variables in its
model (most T-tests are not significant) although it is
also equipped with a high R2.  As a result, the following
fitted appropriate regression model is formulated,

C – C 0

C 0
= 0.03214 + 0.10481

D – D 0

D 0

+ 0.46572
D – D 0

D 0

2

(1)

Where
C - Present construction cost;
D - Days used;
C0 - Award bid; and
D0 - Present contract time

The model is extremely robust because it can be
applied to all duration sizes.  Most of the project costs
fall in the 95% confidence interval of the predicted cost,
as illustrated in Figure 4.  The model was not validated
due to limitations of new data resources.  However, the
model can be validated if more data become available in
the future.

2. Shifting the curve

Eq. (1) displays the interrelationship between con-
struction cost and construction time.  The curve is
determined following the identification of the Award
Bid and Present Contract Time.  Since Eq. (1) is gener-
ated from regression analysis, the Award Bid and Present
Contract Time are not necessarily located at the normal

point.  That is, the “normal point” of Eq. (1) does not
occur at the Award bid and Present contract time.  This
study assumes that the Award bid and Present contract
time is a “normal point” for every construction contract.
To match the research assumption, Eq. (1) must be
modified to enable some shifting.

Figure 5 reveals that curve 1 is shifted so that its
lowest point (D1, C1) matches the normal point (D0, C0)
of curve 2.  The normal point on curve 2 represents the
construction plan in which the construction cost is the
lowest associated with a specific construction time with-
out considering project I/D.  The scale of the curve does
not change because of the shifting, but the lowest point
of curve 1 (D1, C1) approaches the normal point of curve
2 (D0, C0).  The shifting procedure is summarized as
follows:
1. Determine (D0, C0);
2. Use Eq. (1) and (D0, C0) to devise the functional

relationship between the construction cost and time
(represented by curve 2 in Figure 5);

3. Locate the minimum point (D1, C1) based on the
functional relationship between the construction cost
and time represented by curve 1 in Figure 5;

4. Calculate the distance between (D0, C0) and (D1, C1);
and

5. Shift the functional relationship between construc-
tion cost and time using the distance from step 4 such
that the minimum point occurs at (D0, C0) in Figure 5
(shifting curve 1 to curve 2).

Following the adjustment (referring to Appendix),
the equation for curve 2 in Figure 5 is as follows:

C = 1.0059C 0 + 0.1048C 0
D – 1.1125D 0

D 0

+ 0.4657C 0
D – 1.1125D 0

D 0

2

(2)
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Where
C - Construction cost;
D - Construction time;
C0 - Award bid; and
D0 - Present contract time

Eq. (2) assumes every project has an internal rela-
tionship between construction cost and time.  After
determining the normal point (Present contract time,
Award bid), the functional relationship between con-
struction cost and time is also fixed.  When using Eq.
(2), C and D are defined as Construction cost and
Construction time respectively, and both are variables.
Each Construction time has a corresponding Construc-
tion cost.  C0 and D0 may be the estimates of the
engineer or contractor.

3. Demonstrations of the proposed model

Two example projects (#237453 in Table 2 and
#240843 in Table 3) from the FDOT are used to explain
the developed model.  Project #237453 has an Award
Bid (C0) of 3,437 K and 245 Bid days (D0) while project
#240843 has an Award bid (C0) of 4,333 K and 340
Bid days (D0).  This study assumes that the Bid
days (FDOT Contract time estimate) and Award bid are
at the normal point.  Eq. (2) for project #237453 becomes,

C = 1.0059 × 3,437 + 0.1048 × 3,437

× ((D − 1.1125 × 245)/245) + 0.4657 × 3,437

× ((D − 1.1125 × 245)/245)2

= 3,457.28 + 360.20 × ((D − 272.56)/245)

+ 1,600.61 × ((D − 272.56)/245)2

= 3,457.28 + 1.47 × (D − 272.56) + 0.0267

× (D − 272.56)2

= 3,457+1.47 × (D − 273) + 0.027 × (D − 273)2

(3)

From Eq. (3), if D is 245 days, then

C = 3,457 + 1.47 × (245 − 273) + 0.027

× (245 − 273)2

= 3,457 − 41.16 + 21.17

= 3,437 (K)

Eq. (2) for project #240843 becomes

C = 1.0059 × 4,333 + 0.1048 × 4,333

× ((D − 1.1125 × 340)/340) + 0.4657 × 4,333

× ((D − 1.1125 × 340)/340)2

= 4,358.6 + 454.10 × ((D − 378.25)/340)

+ 2,017.88 × ((D − 378.25)/340)2

= 4,358.6 + 1.3356 × (D − 333.75) + 0.017456

× (D − 333.75)2 4,359 + 1.34 × (D − 334) + 0.02

× (D − 334)2 (4)

From Eq. (4), if D is 340 days, then

C = 4,359 + 1.34 × (340 − 334) + 0.02 × (340 − 334)2

= 4,359 + 8.04 + 0.72

= 4,368 (K)

Based on the above demonstrations, these results
match the assumption that the Bid days and Award bid
are on the normal point.  The equations developed in this
study thus can be assumed to be correct.

FURTHER  APPLICATIONS  OF  THE  PROPOSED
MODEL

The model proposed in this study can provide a
foundation for further development.  Both owners and
contractors in the highway construction industry can
benefit from further developed models based on the
proposed model.  The proposed models could be further
developed into four models that are detailed below.

1. Model for use by contractors in determining minimum
contract bids for I/D contracts

Traditional estimates do not consider incentives to
cover extra construction costs when using schedule
compression.  In the “I/D” contract, contractors face the
problem of devising the optimum strategy for develop-
ing their bid estimate, including construction cost, con-
struction time, and incentive/disincentive.  The pro-
posed model of the functional relationship between the
construction cost and time could be further developed to
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determine the reasonable lowest bid for contractors.
Figure 6 illustrates how the reasonable lowest bid for
submission can be obtained for linear I/D contracts.

2. Model for use by SHAs in determining maximum
incentive for I/D contracts

A growing number of SHAs are using I/D con-
tracts for highway construction.  SHAs then face the
problem of determining the maximum incentive award-
able to contractors.  The maximum incentive in an I/D
contract is generally influenced by construction cost,
time, and the I/D.  Currently most SHAs utilize a fixed
amount or fixed percentage of construction cost as a
maximum incentive.  Overestimation of the maximum
incentive may waste public money, while underestima-
tion reduces the effectiveness of the incentive.  Neither
overestimation nor underestimation of the maximum
incentive is desired by the SHAs.  The functional model
between the construction cost and time can be further
developed, as displayed in Figure 7, to derive a reason-
able maximum number of days and maximum incentive
for the I/D contract.

3. Model for use by SHAs in determining minimum con-
tract time for A + B projects

In the A + B projects, SHA is forced to deal with
the problem of determining a reasonable range of con-
tract time based on the bidder submissions.  Currently
most SHAs do not restrict the range of B, something that
potentially causes problems.  First, if no low bound is
set for B, a bidder can inflate the cost bid and submit an
unreasonably low B, using the excess cost bid to cover
the disincentives charged for exceeding the time bid.
Second, if no upper bound is set for B, a bidder with a

high B and a low-cost bid may be awarded the project
and make unreasonable profits from incentive payments.
From Figure 8, the model with the functional relation-
ship between construction cost and time duration could
be further developed to derive the minimum contract
time for A + B projects.

4. Model for use by contractors in determining minimum
contract bid for A + B + I/D projects

In the “A + B + I/D” projects, contractors need to
consider three parameters: construction cost (A), con-
tract time (B), and incentive/disincentive (I/D).  The
motivational factors provided to the contractors under
A + B + I/D are twofold.  Initially, competitive A + B
bidding can reduce the contractor estimates of project
durations to below the time estimates of the original
engineer.  Furthermore, following the award of the
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contract, the successful contractor has additional moti-
vation to reduce construction time further to earn addi-
tional incentive [6, 9].  Contractors should minimize
their combined estimate of A + B + I/D to win the bid.

Contractors gain more interest if they can reduce B
while increasing A, since A is the total money the
contractors can gain.  Furthermore, a lower B will
undoubtedly create a bidding advantage.  Therefore,
how to use the incentive to compensate for the costs
associated with shortening project duration is extremely
important to the contractors of A + B + I/D projects.
Figure 9 reveals that the proposed model can be further
extended to help contractors to derive the optimum
combination of cost and time to bid and maximize the
probability of wining the bid.

CONCLUSIONS  AND  RECOMMENDATIONS

This study compiles projects completed by the
FDOT to establish a model to demonstrate the func-
tional relationship between construction cost and time
for the collected highway construction projects.  This
proposed model not only can give SHAs and contractors
increased control and understanding of the time value of
highway construction projects, but also can enable con-
tractors to adjust construction time and cost more
flexibly, making it easier for them to win a bid.  The
model introduced in this study can provide a foundation
for:
(1) Determining the maximum days of incentive in an I/

D project, and a reasonable range of time duration in
an A + B contract for SHAs; and

(2) Developing an improved strategy for determining
the bid price for the I/D and A + B + I/D projects for
contractors interested in such projects.

This research demonstrates a framework of defin-
ing the functional relationship of construction cost and

time by using highway construction projects collected
in the States of Florida, USA.  These types of projects
were selected primarily because the FDOT has inven-
tory of detailed data, including the contract time/cost
and project completion time/cost for each project.  In
order to perform more accurate statistical analysis of
the functional relationship between the construction
cost and time requires research on project selection
criteria, such as project type, period, location, and
amount.

The proposed framework developed in this paper
also can be extended to different types of projects.
However, more research on construction cost indexes,
explaining the cost differences due to location, period,
and economic factors, is required to enable the proposed
model to be widely used.  The proposed framework can
be adopted by any construction client.  However, the
functional relationship between the construction cost
and time duration needs to be created by the client in
accordance with the above variables.  Project informa-
tion are also to be obtained properly to ensure the
success of the model application.

As stated previously, the proposed framework is
not suitable for projects with a great degree of change
orders.  Furthermore, the regression model used to
represent the collected data set could be varied because
the data set itself might limit the use of various regres-
sion models.  For example, regression models INV and
S can not be calculated if the independent variable
contains values of zero.  Therefore, additional research
should be conducted with the goal of establishing ac-
ceptable general guidelines for using the proposed model
in Taiwan.
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APPENDIX

Deviation of Eq. (1)

C – C 0

C 0
= 0.03214 + 0.10481

D – D 0

D 0

+ 0.46572
D – D 0

D 0

2

(1)

C = 1.03214C 0 + 0.10481C 0
D – D 0

D 0

+ 0.46572C 0
D – D 0

D 0

2

∂C
∂D

= 0.10481
C 0

D 0
+ 0.93144C 0

D – D 0

D 0
2

= 0

D min = D 1 =
– 0.10481 + 0.93144

0.93144
D 0

= 0.887475D 0

D1 = 0.887475D0

C1 = 1.026246C0

The minimum C is at (0.887475D0, 1.026246C0)

Dis tance  f rom (D0,  C0)  to  (0 .887475D 0,
1.026246C0) = (−0.11252D0, 0.026246C0)

Shift  Eq. (1) minimum from (0.887475D0,
1.026246C0) to (D0, C0):

C + 0.026246C 0 = 1.03214C 0

+ 0.10481C 0
D – 0.11252D 0 – D 0

D 0

+ 0.46572C 0
D – 0.11252D 0 – D 0

D 0

2

C = 0.10059C 0 + 0.1048C 0
D – 1.1125D 0

D 0

+ 0.4657C 0
D – 1.1125D 0

D 0

2

(2)
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