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ABSTRACT

This paper describes the development of a cost effective mini
autonomous underwater vehicle.  The mini size of the vehicle is
achieved by extracting the control module hardware out from the
vehicle vessel and by reducing the on-board sensors.  The control of
the vehicle is conducted by a base station wirelessly telecommunicating
with the vehicle.  Furthermore, the reduction of the sensors also
reduces the cost of the vehicle.  For the purpose, in the vehicle, a
single sensor featuring a CCD camera is mounted at the front of the
vehicle.  The images taken by this CCD camera are used both for
obstacle avoidance and for underwater object searching.  Experimen-
tal results show that the developed vehicle can successfully avoid the
frontal obstacle while the operator in the base station can see the
frontal view of the vehicle simultaneously.  However, relative param-
eters of the image processing algorithm must vary for different time
of the day and different whether.  This implies that an adaptive image
processing algorithm is necessary for operation in different situations.

INTRODUCTION

Autonomous Underwater Vehicles (AUVs) have
gained people’s interests due to their flexibility in un-
derwater operation.  In the past few years, a number of
commercial AUVs have been developed for various
practical applications, such as the investigation of un-
derwater oilfields, the monitoring of near shore
temperatures, the study of seabed profiles, the search
for underwater resources, and the collection of scien-
tific data [1, 5, 7, 8, 12, 13, 15, 16, 19].  However, the
smallest vehicle among them is 1.5 meter in length and
has problem accessing confined locations such as small
caves, narrow channels, etc.  Therefore, a Mini Autono-
mous Underwater Vehicles (MAUVs) capable of ex-

ploring these confined locations is desired.  Furthermore,
the current AUVs are expensive due to their sophisticate
sensing and control system.  This situation impedes the
popularity of the AUVs.  Thus, a cost effective AUV is
preferred.

The reason that the sizes of the existing AUVs are
large is that sophisticated sensing and control system is
embedded on board, enough interior space is necessary
for the hardware.  Furthermore, sophisticated sensing
system also keeps the cost of AUVs at a high level.
Thus, to achieve mini size, this research proposes a
suitable sensing and control architecture.  This is ac-
complished by extracting the control module hardware
out from the vehicle vessel and also by reducing the on-
board sensors.  In stead, the control is conducted by a
base station which receives front view images from a
CCD camera on the under water vehicle and then com-
mands the motion of the vehicle thru wireless
telecommunication.

In the past, several projects were devoted to the
two key components of AUVs, namely sensing system
and control module.  The sensing system enables the
AUVs to “see” the surrounding environment and to
measure the required physical data.  The sensors used on
current underwater vehicles can be categorized as being
either acoustic or non-acoustic.  Acoustic sensors in-
clude side scan sonars, multi narrow beam sonars, and
sub-bottom profilers [5, 7, 13].  On the other hand, non-
acoustic sensors are typically image-based.  Lasers and
CCD cameras are generally used to evaluate the dis-
tance between the vehicle and an object and to identify
the object’s shape [10, 11, 20].  Usually, for the current
AUVs, multi sensors system is implemented; each sen-
sor is designated with a functional mission.  Thus, to
reduce the sensors, in this research, a single sensor
system featuring a CCD camera is developed to fulfill
the mission with multiple functionalities.  The images
from the CCD are used both for obstacle avoidance and
for the operator to see the underwater scene thru wire-
less telecommunication.
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On the other hand, control module enables the
vehicle to have autonomous capability.  For this purpose,
several different control architectures have been
proposed.  These control architectures can be catego-
rized into hierarchical,  behavioral,  and hybrid
architectures.  Examples for hierarchical architecture
are [6, 18].  Examples for behavioral architecture are [2,
3].  Finally, examples for hybrid architecture are [9, 17].
The corresponding control modules of the above archi-
tectures are embedded in the vehicle vessel.  In order to
accommodate the control module hardware, enough
space is required, leading to a substantial vehicle size.
This problem is solved by extracting the control module
out from the vehicle vessel as mentioned in the above
section.  A base station is developed to control the
vehicle motion thru wireless telecommunication.

Finally, for most of the underwater vehicles men-
tioned previously, system dynamics is usually studied
[4, 14].  This is because they are designed to operate in
situations with significant hydrodynamic forces.  So-
phisticated control algorithm must be developed to ac-
commodate different situations.  However, for this
research, the vehicle is expected to operate in a still
water environment like pond or a still deep sea.  Also,
the vehicle speed is relatively slow.  Under these two
conditions,  the hydrodynamic forces won’t  be
substantial.  Thus, the system dynamics is ignored in
this research.

SYSTEM  CONFIGURATION  AND
SPECIFICATION

Figure 1 illustrates the basic configuration of the
developed MAUV.  It can be seen that the vehicle is
equipped with four motors.  The left and right motors
enable the vehicle to move in the forward direction and
to turn, while the front and rear motors enable it to dive
or to surface.  A needle type CCD camera is located at
the front of the vehicle which enables it to “see” what
lies in its path.  Figure 2 presents a photograph of the
MAUV and shows the use of a Nikko Sub168 module as
part of the body.  The use of Nikko Sub168 module is to
attain the goal of cost effective by using the existing
module on the market rather than self designing every
components of the vehicle.  In the developed underwa-
ter vehicle, only the middle section is from Nikko
Sub168, which contains left and right motors and a
wireless telecommunication receiver to receive com-
mands from the base station.  The rest of the underwater
vehicle is developed by the current research project.
This includes system configuration arrangement, front
and rear sections design to provide extra room for CCD
camera and another two motors, base station develop-
ment for vehicle control and human interface, and wire-

less telecommunication system interfacing between the
vehicle and the base station.

Figure 3 illustrates the basic operation of the
MAUV.  As shown, the antenna is brought to the water
surface by means of a buoyancy device to ensure that a
clear signal is acquired.  Table 1 provides a complete
specification of the vehicle, while Figure 4 illustrates
the configuration of the system hardware.  The image
acquired by the CCD camera is transmitted wirelessly to
the base station.  The transmitted data is captured by an
image acquisition card and processed automatically to
determine the position and nature of any obstacle in the
vehicle’s path.  A motion controller then determines the
necessary motor actuations required for the vehicle to
avoid the obstacle.  The corresponding actuation com-
mands are transmitted wirelessly to the vehicle, which

Rear motor

Right motor

Left motor

Front motor

CCD camara

Fig. 1.  Vehicle configuration.

Fig. 2.  Mini Underwater Autonomous Vehicle (MUAV).
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activates its motors accordingly, thereby maneuvering
around the obstacle.  During this process, the acquired
images are displayed on a monitor in the base station in
real time to enable an operator to share the vehicle’s
view of the underwater scene.

IMAGE  PROCESSING  AND  OBSTACLE
AVOIDANCE

The core of the developed system is its image
processing and obstacle avoidance unit.  The basic steps
of the image processing procedure are illustrated in
Figure 5.  Initially, the image captured by the CCD
camera is acquired by an image DAQ card.  Having
acquired the image data, a grey level is assigned to each
pixel in accordance with its luminance intensity.  The
grey level ranges from 0 to 255, where a higher level
corresponds to a brighter luminance.  After the assign-

ing process, a sliding process is conducted in recogni-
tion of the fact that different operating environments
may have different luminance intensities.  By incorpo-
rating this process into the image processing procedure,
the vehicle is provided with the ability to operate in a
variety of weather conditions (e.g. sunny or cloudy) and
at various times of the day (day time or night time).  In
the sliding process, the average grey level of each image
frame is moved toward a desired value assigned accord-
ing to different weather conditions.  Suppose that the
grey level of any pixel is given by G(x, y) where (x, y)
corresponds to the position of the pixel in a frame.  The
average grey level of a frame is then calculated as:

G avg = 1
mn Σ

x = 1

n

Σ
y = 1

m

G (x , y ) (1)

where n, m correspond to the range of the frame in
horizontal and vertical axes.  Furthermore, suppose that
the desired average grey level is Gdes.  Sliding is then
conducted by applying the following:

Gs(x, y) = G(x, y) − (Gavg − Gdes) (2)

where Gs(x, y) is the grey level value after sliding
process.

Antenna

Under water vehicle

Buoyage

Fig. 3.  Operational deployment of antenna.

Table 1.  Vehicle specification

Size 45 cm × 12 cm × 9 cm

Weight 1.75 kg
Operation depth 1 m
Maximum speed 0.15 m/s
Operation time period 90 min
Battery type Ni-H ×
Motor 3 V/3 W DC motor × 4
Wireless transmission 35 MHz/40 MHz
Wireless transmission range 15 m
Camera CCD camera
Front light 1.2W bulb × 2
Cornering radius 0.25 m

Command
transmittor

PCI-6014
DAQ card

Image processor
and vehicle motion

controller

Computer

Wireless transmission

Wire transmission

PCI-1409
IMAQ

DAQ card

Image receiver

Control station

Command
receiver

CCD
camera

Image
transmitter

Driver Motor

Underwater vehicle

Fig. 4.  System hardware configuration.
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Following the sliding process, a bi-level thresh-
olding process is performed in order to isolate the
obstacle from the background.  In this step, a threshold
value is defined, denoted as Gth.  A pixel with a grey
level value below this threshold is defined as belonging
to the background, and the corresponding bi-level value
is set to “0”.  Conversely, a pixel having a grey level
above the threshold is defined as belonging to the
obstacle, and the corresponding bi-level value is set to
“1”.  The rationale behind this bi-level thresholding
process is that an obstacle reflects light to the CCD
camera, whereas the background absorbs light.
Therefore, pixels corresponding to the obstacle should
have a higher grey level.  Supposing that Gth is the bi-
level value of each pixel, then the following expression
can be applied:

If Gs(x, y) ≥ Gth, then B(x, y) = 1, else B(x, y) = 0

(3)

This rationality also reflects a fact that if the obstacle is
too far away from the CCD, it is not considered as an
obstacle in the content of the current reasoning algorithm.

After the bi-level thresholding process, a bi-level
image refining operation is conducted in which “salt
and pepper” in the bi-level image is eliminated.  In this
operation, the term “salt” refers to individual pixels
with a value of 1 located in a region of pixels with a
value of 0, while “pepper” refers to pixels with a value
of 0 in a region of pixels with a value of 1.  The refining
operation is performed using the following justification.
Suppose a justification index, CP, is defined as

CP = Σ
i = 1

1

Σ
j = 1

1
B (x + i , y + j ) – B (x , y ) (4)

The refining process is conducted by the following
algorithm.

If CP > 4, then B(x, y) = 1
If CP < 4, then B(x, y) = 0
If CP = 4, then B(x, y) = B(x, y)

Once the bi-level image has been refined, it is
segmented in order to identify the position of the ob-
stacle relative to the vehicle.  As shown in Figure 6, the
image is divided into nine segments, corresponding to
the top-left, top, top-right, left, middle, right, bottom-
left, bottom, and bottom-right regions of the vehicle’s
front view.  The total bi-level value of each segment is
then calculated in order to test for the presence of an
obstacle in the vehicle’s forward path.  The calculation
procedure is performed as follows:

Σ
x = xlow

xup

Σ
y = ylow

yup

B (x , y ) ≥ B th (5)

where Bth is the obstacle threshold, xlow and xup are the
lower bound and upper bound of a segment in the
horizontal direction, and ylow and yup are the lower
bound and upper bound of a segment in the vertical

Image
acquisition

Bi-level
thresholding

Bi-level image
refining

Segmentation
and obstacle
identification

Obstacle
avoidance

justification

Sliding

Fig. 5.  Image processing procedure.

Top-left Top Top-right

Bottom-left Bottom Bottom-right

Left Middle Right

Fig. 6.  Image segmentation.
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direction.  If the condition in Eq. (5) is satisfied for a
segment, then that segment contains a significant num-
ber of B(x, y) = 1 pixels.  In this event, the segment is
assigned a bi-level value of 1 and is denoted as Sm, n(t)
= 1.

Finally, a windowing process is conducted to con-
firm the existence of an obstacle in the segment.  This is
achieved by means of the following:

If 1
n Σ

i = 0

n – 1

S m , n(t – i∆t ) ≥ S th , then Qm, n(t) = 1     (6)

where Sth is a threshold for the windowing process and
a result of Om, n(t) = 1 indicates that an obstacle exists in
the corresponding segment.

The above description reveals that the identifica-
tion of an obstacle relates to several parameters includ-
ing the bi-level threshold value, the desired average
grey level of each image frame, the obstacle threshold,
and the threshold for windowing process to ensure the
existence of frontal obstacle.  These parameter values
are related to different times of day, different weather
conditions, and mostly importantly the designated dis-
tance to “see” the frontal obstacle.  The distance to “see”
the obstacle relates to the desired distance from the
obstacle the avoidance scheme is expected to takes
action. Thus, one must first decide the distance to “see”
the frontal obstacle and the parameters are assigned for
different times of day and different weather conditions
accordingly.  The desired is that the vehicle can “see”
the obstacle every time the vehicle reaches the desig-
nated distance.  The relative performance can be evalu-
ated by the recognition rate.  The recognition rate is
obtained by acquiring the percentage of obstacle recog-
nition at every distance.  In other words, for a distance,
suppose n image frames are acquired.  By applying the
above algorithm, m frame are successful of obstacle

recognitions.  Then the recognition rate is mn × 100.  One

can expect that if dreg is the designated distance to “see”
the frontal obstacle.  The recognition rate should be
100% when the vehicle is at dreg from the obstacle or
closer than dreg.  On the other hand, if the vehicle is
located at a distance larger than dreg, the recognition rate
will be smaller than 100%.

Once the position of an obstacle has been identified,
the obstacle avoidance routine is executed.  The ob-
stacle avoidance algorithm is shown in Figure 7.  In this
algorithm, the priority is for the vehicle to move directly
ahead.  However, if an obstacle exists in the middle
segment, the default is to drive the vehicle to the left.  If
the left segment is occupied, the vehicle is moved to the
right.  If the right segment is also occupied, the vehicle
is instructed to dive.  If an obstacle exists in the bottom
segment, the vehicle is driven in the left-downward

direction.  If this segment is also occupied, the vehicle
moves in the right-downward direction.  If this segment
is occupied, the vehicle is unable to move in any for-
ward direction and is instructed to execute a U turn.

EXPERIMENT  RESULTS  AND  DISCUSSION

This section describes the performance evaluation
of the proposed MAUV.  The evaluation tasks were con-
ducted in an octagonal tank with overall dimensions of
270 cm × 270 cm.  Experiments were performed under
conditions representing different times of the day and
the effect of using different image processing parameter
settings was explored.  The relative parameters for
image processing were set such that the vehicle was
capable of identifying an obstacle at a distance of 70 cm.

Figure 8 shows the image processing results for
two different obstacles positioned in front of the vehicle.
From the images, it is clear that the obstacles have been
successfully identified.  However, it is noted that the
identified shape does not match that of the obstacle
precisely.  A careful examination of the images shows

Obstacle in the
middle?

Obstacle on the
left?

Obstacle on the
right?

Obstacle on the
bottom?

Obstacle on the
bottom left?

Obstacle on the
bottom right?

Moving
straight

No Yes

No Yes

No Yes

No Yes

No Yes

No Yes

Moving left

Moving
right

Moving
down

Moving
bottom left

Moving
bottom right U turn

Fig. 7.  Obstacle avoidance decision procedure.
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that the bottom of the tank has been captured in both
cases. This is because the surfaces of the tank also
reflect a significant amount of light to the CCD camera
and hence the grey levels of the corresponding pixels in
the acquired image exceed the threshold value. In the
same reasoning, the wall of the tank may also reflect
significant light to the CCD camera.  However, the
walls of the tank can also be regarded as an obstacle in
the vehicle’s path and therefore it can be argued that the
image processing results presented in Figure 8 are
successful.

Figure 9 illustrates the dependency of the obstacle
recognition rate on the distance of the vehicle from the
obstacle.  In the developed system, the distance to “see”
the frontal obstacle is designated as 70 cm.  It can be
seen that the recognition scheme functions correctly
when the obstacle lies within a distance of 70 cm.
However, the recognition rate deteriorates at greater
distances and the obstacle is essentially invisible to the
vehicle at a range of approximately 90 cm.  When the
obstacle lies within 70 cm of the vehicle, all of the
reflected light is captured by the sensing system.
However, at a greater distance, the reflected light is
scattered over a wider area.  Hence, less light is acquired
by the CCD camera and the image processing perfor-
mance is reduced.  At a distance of 90 cm, none of the
reflected light reaches the CCD camera and therefore
the obstacle cannot be detected.  Of particular note is
that the recognition rate at night time decreases from

100% at 78 cm to 0% at 83 cm, i.e. the obstacle becomes
invisible over a range of 5 cm.  However, under the other
two experimental conditions, the obstacle becomes lost
to the vehicle over a range of approximately 15 cm.  The
reason for the discrepancy in these two ranges is that the
light reflected from the obstacle is more easily scattered
at night time and so the CCD camera will not capture
extraneous light reflected from distant obstacles.  The
same situation applies to the background light which is
essentially noises to the image processing.  In other
words, it can be argued that the reliability of the vehicle’s
obstacle detection capability is greater at night time
since the level of environmental noise is reduced.

The image processing parameter settings are dif-
ferent in each of the three trials illustrated in Figure 9
since the luminance intensity varies in each case.  In
general, under sunny day time conditions, the Gdes value
in the image processing sliding process is higher than
under cloudy day time conditions because the intensity
of the background light is greater on a sunny day.
Therefore, a higher value of Gdes is required to eliminate
the background noise.  The Gdes value is also higher
under sunny day time conditions than under any other
operational conditions because the scattering of light

(a) Iron block (left: image from CCD camera, right: bi-level image)

(b) Watch (left: image from CCD camera, right: bi-level image)

Fig. 8.  Results of obstacle recognition for different objects.
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from the background is strong in this situation.
Accordingly, a higher threshold is necessary to prevent
faulty detection.  From the discussions above, it is clear
that an adaptive obstacle identification algorithm is
required if the system is to operate correctly under
different lighting conditions.

Field tests were conducted to evaluate the obstacle
avoidance capability of the developed MAUV.  Figure
10 shows the path followed by the MAUV during a
baseline field test.  In this figure, the circles indicate the
location of the vehicle center as it moved along the path.
From its initial starting point, the vehicle proceeded
toward the facing wall and then automatically turned
left when the wall was detected.  The notation “X2”
indicates the turning distance from an obstacle. Note
that a left turn was executed since, as described earlier,
the algorithm defaults to a left turn when an obstacle is
detected in the middle segment of the image.  As shown
in the figure, the vehicle successfully navigated around
the boundary of the tank, turning to the left whenever a
facing obstacle was detected.  The results presented in
this figure confirm the obstacle avoidance capability of
the developed MAUV.  The same field test was then
repeated with different parameter settings.  Figure 11
shows the results obtained for different settings of the
Gth parameter.  Note that the setting of 40 corresponds
to the baseline field test described above.  The results of
Figure 11 reveal that a lower bi-level threshold value
causes the vehicle to turn earlier. This is because at a
lower value of Gth, the area of B(x, y) = 1 pixels
struggles to attain the obstacle identification threshold,
Bth, required to trigger the setting of Om, n(t) = 1 at a far

distance.  Figure 12 shows the results obtained with
different obstacle threshold settings.  The setting of
12,000 corresponds to the baseline field test.  It is
observed that a lower obstacle threshold causes the
vehicle to turn earlier.  This is because the pixels with
B(x, y) = 1 can satisfy a lower Bth value at a greater
distance from the obstacle.  Therefore, an obstacle is
detected at a greater distance for a lower value of Bth,
causing the vehicle to turn sooner.

CONCLUSION

This study has successfully developed a mini au-
tonomous underwater vehicle measuring 45 cm in length
and having a cruising speed of 0.15m/s.  Using a front-
mounted needle type CCD camera, the vehicle is able to
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Fig. 12.  Field test of obstacle avoidance with different obstacle thresholds.
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detect and avoid obstacles in its forward path.  The
images acquired by the CCD camera are transmitted
wirelessly to a controller located at a remote base station.
The images are then processed automatically to identify
the obstacle and appropriate command signals are gen-
erated to enable the vehicle to steer around the obstacle.
The control commands are transmitted back to the ve-
hicle via the wireless transmission link and the appro-
priate motors activated.  The images taken by the CCD
camera are also transmitted to a monitor in the base
station such that an operator can share the forward view
of the vehicle.  The experimental results have shown
that obstacles can be accurately identified provided that
appropriate image processing parameters are specified.
Therefore, provided that some form of adaptive algo-
rithm is developed, the vehicle is capable of operating
under different luminance conditions.  Finally, the field
test results have confirmed that the vehicle can success-
fully avoid obstacles placed in its path.  It has been
shown that different parameter settings, e.g. the bi-level
threshold and the obstacle threshold, affect the distance
at which the vehicle turns away from an obstacle.
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