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ABSTRACT

This paper is used to investigate a novel design of lead-lag type
power system stabilizers for a multi-machine power system.  In the
design procedures, the minimum damping constants requirements of
all of electromechanical modes can be designated and several typical
operating conditions can be considered at the same time.  The hybrid
differential evolution (HDE) method is used to tune the parameters of
power system stabilizers.  In the design procedures, a region in the left
half complex plane bounded by a line with a given negative real value
is given.  Thus, at the final step of the HDE, all of electromechanical
modes should be moved to or near this region to have a smaller
objective function value.  In this paper, the objective function is
chosen to let the design results have small real parts of electrome-
chanical modes.  Since the speed deviations are used as the feedback
signals of the power system stabilizers, the stabilizers could be
implemented easily.  Because several operating conditions are con-
sidered in the design of stabilizer parameter values, the damping
forces are ensured effective in those operating conditions
simultaneously.  Nonlinear system time domain simulations are used
to demonstrate the design results.

INTRODUCTION

The dynamic stability characteristics of a power
system are affected by the location of the electrome-
chanical modes.  Rather than with specified values, it is
sufficient that electromechanical modes are placed in a
suitable region in the complex s-plane to ensure enough
damping effects on low frequency oscillations.  Power
system stabilizers (PSSs) have been widely used to
increase the damping ratios of electromechanical modes
to suppress low frequency oscillations.  The lead-lag
type PSS using theory of phase compensation in fre-

quency domain was a conventional compensator [7, 9-
11, 19].  Recently, design technology has been focused
on the question of how to tune the parameters of PSSs in
order to obtain optimal dynamic stability characteristics.
Those approaches include the optimization method us-
ing eigenvalue analysis [8], genetic design using simu-
lated annealing optimization algorithms [2], probabilis-
tic approach [17], Tabu search algorithm [4], particle-
swarm-optimization technique [3], and the genetic al-
gorithm [1].

The method of hybrid differential evolution (HDE)
is one of the best evolutionary algorithms for solving
non-linear optimization problems [12, 14].  A lot of
literatures have recoded the HDE algorithm applications.
They have been applied to the optimal control problem
of a bio-process system [6].  Estimating the kinetic
model parameters using HDE was presented in [18].
This method was also employed for plant scheduling
and planning to solve the decision-making problems of
the manufacturing industry [13].  The improved HDE
method for distribution systems has been used to reduce
power loss and enhance the voltage profile [16].  This
method may determine the optimal capacitor location of
a radial distribution feeder [15].

The HDE method is applied in this paper to tune
the lead-lag type PSSs.  The speed feedback scheme is
applied, considering the implementation requirement.
The optimal design technology of the HDE is used to
move some lower damping electromechanical modes to
or near a region in the left part of the complex plane
bounded by a line with a given negative real value.  The
objective function is selected to ensure the real parts of
electromechanical modes.  At the end of the iterative
procedures, all of the electromechanical modes will be
moved to or near this region if the objective function can
converge to a value.  In the conventional optimal
approaches, the design works under several operating
conditions should be done.  The design result of each
operating condition is obtained.  A better one is chosen
from those design results.  Using the benefit in choosing
the objective function in the HDE approach, the design
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results, where only one operating condition is consid-
ered and where several operating conditions are consid-
ered at the same time, are compared.  From the design
and simulation results of a multi-machine power system,
the proposed PSSs can let the generators have enough
oscillation damping effects when there are tripping line
disturbances.

HYBRID  DIFFERENTIAL  EVOLUTION

A nonlinear optimization problem can be expressed
as

Minimize M(X) (1)

Subject to

gk(X) ≤ 0  k = 1, ..., ng (2)

hk(X) = 0  k = 1, ..., nh (3)

where M(X): objective function of variable vector X,

 X = [X1, X2, ..., Xj, ..., XD]T

gk(X): inequality constraints.

hk(X): equality constraints.

The differential evolution is a parallel direct search
method for minimizing nonlinear and non-differential
objective functions.  The fitness of an offspring is
determined by one-to-one competition with the corre-
sponding parent.  The solution procedures are given as
follows.

Step 1. Initialization

Several initial populations X0
i, i = 1, 2, ..., NP are

randomly selected.  They should cover the entire search
space uniformly.  The elements of each individual X0

i are
given by

X0
ji = Xj

min + ρi(Xj
max − Xj

min),

j = 1, 2, ..., D, i = 1, 2,  ..., Np (4)

where ρi ∈ [0, 1] is a random number, and NP is the
population size.  Xj

min and Xj
max are the lower and upper

bounds of the variable Xj, respectively.

Step 2. Mutation operation

At generation G, each mutant vector is generated

based on the corresponding present individual Xi
G by

Ui
G + 1 = Xi

G + F(XG
r1 − XG

r2), i = 1, 2, ..., Np        (5)

where i ≠ r1, i ≠ r2, and r1, r2 ∈ {1, 2, ... NP}.  F ∈ [0,
1] is a scalar factor.  XG

r1 and XG
r2 are two randomly

selected individuals.

Step 3. Crossover operation

To extend the diversity of individuals in the next
generation, the perturbed individual Ui

G + 1 = [U1i
G + 1,

U2i
G + 1, ..., Uji

G + 1, ..., UDi
G + 1]T and the present individual Xi

G

= [XG
1i, X

G
2i, ..., X

G
ji, ..., X

G
Di]

T are mixed to yield the trial
vector

U i
G + 1

= U 1i
G + 1

, U 2i
G + 1

, , U ji
G + 1

, , U Di
G + 1

T

  (6)

where

U ji
G + 1

=
X ji

G , if a random number > C R

U ji
G + 1, otherwise

j = 1, 2, ..., D, i = 1, 2, ..., NP (7)

where D is also the number of genes.  CR ∈ [0, 1] is the
crossover factor and must be set by the user.

Step 4. Evaluation and selection

The parent is replaced by its offspring in the next
generation if the fitness of the latter is better.  Contrarily,
the parent is retained.  The first step is one-to-one
competition.  The next step chooses the best individual,
Xb

G + 1 in the population.  That is

X i
G + 1 = arg – min {M (X i

G ), M (U i
G + 1

)},

i = 1, 2, ..., NP (8)

X b
G + 1 = arg – min {M (X i

G + 1)},

i = 1, 2, ..., NP (9)

where arg-min means the argument of the minimum.
The above steps are repeated until the maximum

iteration number or the desired fitness is obtained.  In
general, a faster descent usually leads to a local mini-
mum or a premature convergence.  Conversely, diver-
sity guarantees a high probability of obtaining the
global optimum.  The trade-off can be obtained by
slightly lowering the scaling factor F and by increasing
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the population size NP.  However, more computation
time is required.  The migrant and accelerated opera-
tions in HDE are used to overcome the local minimum
solution and time consumption.  The migrant and accel-
erating operations are inserted in the differential
evolution.

Step 5. Migrant operation if necessary

For increasing search space exploration, a migra-
tion operation is introduced to regenerate a diverse
population of individuals.  The migrant individuals are
selected on a “best individual” basis Xb

G + 1.  The jth gene
of Xi is regenerated by

X ji
G + 1 =

X jb
G + 1 + ρ1(X j

min – X jb
G + 1), if a ramdomnumberρ2 <

X jb
G + 1 – X j

min

X j
max – X j

min

X jb
G + 1 + ρ1(X j

max – X jb
G + 1), otherwise

(10)

where ρ1 and ρ2 are randomly generated numbers uni-
formly distributed in [0, 1].  The migrant population
will not only become a set of newly promising solutions,
but also avoid the local minimum trap.

The migrant operation is performed only if a mea-
sure fails to match the desired population diversity
tolerance.  The measure in this study is defined as

u =

Σ
i = 1
i ≠ b

N P

Σ
j = 1

D

D (N P – 1) < ε1
(11)

where

ηji =
1, if a gene div ersity

X ji
G + 1 – X jb

G + 1

X jb
G + 1

> ε2

0, otherwise

(12)

parameters ε1 ∈ [0, 1] and ε2 ∈ [0, 1] express the desired
tolerance of the population diversity and the gene diver-
sity with regard to the best individual, respectively.
Here ηji is defined as an index of the gene diversity.  A
zero ηji means that the jth gene of the ith individual is
close to the jth gene of the best individual.  If the degree
of population diversity u is smaller than ε1, the HDE
performs migration to generate a new population
to escape the local point.  Otherwise, HDE breaks off
the migration, which maintains an ordinary search

direction.

Step 6. Accelerated operation if necessary

When the fitness in the present generation is no
longer improved using the mutation and crossover
operations, a descent method is then applied to push the
present best individual toward a better point.  Thus, the
acceleration operation can be expressed as

X b
G + 1 =

X b
G + 1, if a objectivefunctionM (X b

G + 1) < M (X b
G )

X b
G + 1 – α∇M (X b

G + 1), otherwise

(13)

The gradient of the objective function, ∇M(Xb
G + 1),

can be approximately calculated with a finite difference.
The step size α ∈ (0, 1] is determined according to the
decent property.  Firstly, α is set to unity.  The objective

function M (X b
G + 1) is then compared with M(Xb

G + 1).  If

the decent property is achieved, X b
G + 1

 becomes a can
didate in the next generation, and is added into this
population to replace the worst individual.  On the other
hand, if the decent requirement fails, the step size is
reduced, for example, 0.5 or 0.7.  The decent search

method is repeated to find the optimal X b
G + 1

 , called Xb
N,

at the (G + 1) th generation.  This result shows the
objective function M(Xb

N) should be at least equal or
smaller than M(Xb

G + 1).

PSSS  DESIGN

1. Power system description

Determining the parameters of PSSs for an N-
generator power system should consider various load-
ing conditions.  When a linearized time-invariant sys-
tem is considered, the equations of generator i in the
two-axis model are expressed by

x i (t ) = A ii x i (t ) + Σ
j = 1, j ≠ i

N
A ij x j (t ) + B ii u i (t )

i = 1, 2, ..., N (14)

where xi(t) = [∆E'di  ∆E'qi  ∆ωi  ∆δi  ∆EFDi  ∆VSi]
T is the

state vector, ∆E'di and ∆E'qi are the d-axis and q-axis
transient voltages, respectively, and ∆ωi and ∆δi are the
rotor speed and angle, respectively.  ∆EFDi is the field
voltage, ∆VSi is the output signal of stabilizing
transformer.  The diagram of static excitation is given
signal in Figure 1.
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2. Lead-lag PSS

The conventional lead-lag phase compensation
PSSs are considered as shown in Figure 2.  The transfer
function is

u (s ) = K S
sT 5

1 + sT 5

(1 + sT 1) (1 + sT 3)
(1 + sT 2) (1 + sT 4)

∆ω(s )    (15)

If the washout time constant, T5, is given, the
remaining parameters, KS, T1, T2, T3, and T4, are to be
determined by the HDE.  The differential equations of
the multi-machine power system are linearized under an
operating point, the eigenvalues are computed, and the
objective functions are evaluated.  Only the unstable
and lightly damped electromechanical modes need to be
shifted.

3. Objective function

For a given negative real constant, σ0, the objec-
tive functions is selected to be

M = Σ
j = 1

np

Σ
σ i , j ≥ σ0

(σ0 – σi , j )
2 (16)

where np is the number of operating points considered
simultaneously in the design process, and σi, j is the real
part of the ith electromechanical mode under the jth

operating condition.  The relative stability condition
is determined by σ0.  This will move all of the electro-
mechanical modes to or rear the sector characterized by
σi, j ≤ σ0 as shown in Figure 3.  The flowchart of PSS
design is shown in Figure 4.  It is necessary to mention
here that only the lightly damped electromechanical

modes are relocated.

EXAMPLE:  A  MULTI-MACHINE  SYSTEM

Consider a multi-machine system as shown in
Figure 5, where bus 1 is assumed to be an infinite bus.
For the simplicity of the system model, generators 2-6
are equipped with static exciters as shown in Figure 1.
Four static loads are connected to bus 8, 11, 13 and, 14,
respectively.  The system data are given in Appendix.

sKf
1 + sTf

KA
1

Voltage
regulator Limiter

EFD

Vt

Vref

Vpss

+

+

−

−

Vs

Stabilizing
transformer

1 + sTA

1 + sT5

KssT5

1 + sT2

1 + sT1

1 + sT4

1 + sT3

Limiter
∆    (s)ω Vpss(s)

= u(s)

Fig. 1.  Block diagram of static excitation system.

Fig. 2. Block diagram of lead-lag phase compensation power system
stabilizer.

σσ0

jω

≤ σ0σi, j

Fig. 3.  A region where σi, j ≤ σ0.

Start

Yes

Yes

No

No

Input data

Set in itial population, parameter,
maximum generation

Step 1: Initialization

Step 2: Apply mutation

Step 3: Apply crossover

Step 4: Evaluation and selection

Step 5: Migration if necessary

Step 6: Acceleration if necessary

Maximum generation

End

Electromechanical
mode satisfy limits

Fig. 4.  Flowchart of HDEPSS.
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For the system in Figure 5, the output active power and
terminal voltage of the system for five operating condi-
tions are given in Table 1.  But in scheme 4 and scheme
5, the line from bus 12 to bus 14 is removed.

Five control schemes are compared.

Scheme 1: Without PSS.
Scheme 2: Generator 2, 5, and 6 are equipped with the

conventional PSSs, whose parameter val-
ues are designed by phase compensation
and root locus analysis and given in the
second column of Table 2 [11].

Scheme 3: Generator 2 and 6 are equipped with HDE
PSSs.  The parameter values of the PSSs are
designed under operating condition 1 only.

Scheme 4: Generator 2, 5, and 6 are equipped with
HDE PSSs.  The parameter values of the
PSSs are designed under operating condi-
tion 1 only.

Scheme 5: Generator 2, 5, and 6 are equipped with
HDE PSSs.  The parameter values of the
PSSs are designed when 5 operating condi-
tions are considered at the same time.

For the system without PSSs under the five oper-
ating conditions, the electromechanical modes are tabu-
lated in the second row of Table 3.  The damping is
inadequate.  Especially, the electromechanical modes
of generators 2, 5, and 6 have bigger real part values,
which mean the system has less damping forces.  To
improve the system damping effect, those modes should

G2

1

9

6

7
8

5

4

3
218 kV

16. 5 kV

230 kV

Load A

Load C

Load D

Load B

G1

230 kV

18 kV

10 11

12

G5

G3

G6

G4

13.8 kV

230 kV

230 kV

230 kV

18 kV

13

14

18 kV

230 kV

Table 1.  Five operating conditions

G2 G3 G4 G5 G6

Operating      
Loads (pu)

Pg Vt Pg Vt Pg Vt Pg Vt Pg Vt

condition  (pu)  (pu)  (pu)  (pu)  (pu)  (pu)  (pu)  (pu)  (pu)  (pu)

SLA = 2.5 + j 1.0

1
SLB = 1.8 + j 0.6

1.63 1.03 0.85 1.03 1.32 1.03 1.32 1.03 1.32 1.03SLC = 1 + j 0.35
SLD = 1 + j 0.35

SLA = 3 + j 1.2

2
SLB = 2.16 + j 0.72

1.96 1.04 1.02 1.04 1.58 1.04 1.58 1.04 1.58 1.04SLC = 1.2 + j 0.42
SLD = 1.2 + j 0.42

SLA = 1 + j 0.4

3
SLB = 0.72 + j 0.24

 0.65  1.01 0.34  1.01 0.53 1.01 0.53 1.01 0.53 1.01SLC = 0.4 + j 0.14
SLD = 0.4 + j 0.14

SLA = 2.5 + j1.0

4
SLB = 1.8 + j 0.6

1.63 1.03 0.85 1.03 1.32 1.03 1.32 1.03 1.32 1.03SLC = 1 + j 0.35
SLD = 1 + j 0.35

SLA = 2.5 + j1.0

5
SLB = 1.8 + j 0.6

1.63 1.03 1.28 1.03 1.32 1.03 1.32 1.03 1.98 1.03SLC = 1 + j 0.35
SLD = 1 + j 0.35

Fig. 5.  A multi-machine power system diagram.
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Table 2.  The parameters of PSSs

KS
T1 T2 T3 T4 T5

(sec)  (sec)  (sec)  (sec)  (sec)

G2 25 0.25 0.05 0.5 0.06 0.5
Scheme 2 G5 25 0.25 0.05 0.5 0.06 0.5

G6 25 0.25 0.05 0.5 0.06 0.5

Scheme 3
G2 38.89 0.26 1.96 0.63 0.03 5
G6 26.63 1.42 0.13 1.05 1.15 5

G2 3.02 0.8 0.35 1.85 0.19 5
Scheme 4 G5 37.38 0.80 1.45 0.4 0.02 5

G6 11.58 0.87 0.83 0.81 0.02 5

G2 27.18 0.04 0.99 1.96 0.01 5
Scheme 5 G5 4.75 1.23 1.82 1.28 0.01 5

G6 17.39 1.6 1.0 0.45 0.18 5

Table 3.  Design results of the electromechanical modes

Control Operation Operation Operation Operation Operation
scheme condition 1 condition 2 condition 3 condition 4 condition 5

G2 -0.57 ± j9.96 -0.42 ± j9.97 -1.44 ± j9.70 -0.35 ± j8.33 -0.31 ± j8.21
G3 -1.0 ± j14.2 -0.84 ± j14.1 -1.93 ± j14.1 -1.13 ± j14.39 -0.56 ± j14.53

Scheme 1 G4 -1.24 ± j15.1 -1.08 ± j15.3 -2.18 ± j14.6 -1.13 ± j14.6 -1.14 ± j14.35
G5 -0.97 ± j13.0 -0.82 ± j13.2 -1.91 ± j12.6 -0.52 ± j10.9 -0.41 ± j10.73
G6 -0.001 ± j6 0.1 ± j5.68 -0.39 ± j5.88 -0.05 ± j5.35 -0.36 ± j4.77

G2 -1.04 ± j12.17 -0.96 ± j12.36 -2.07 ± j11.74 -0.92 ± j7.09 -1.04 ± j6.88
G3 -1.14 ± j15.01 -1.07 ± j15.25 -2.19 ± j14.56 -1.13 ± j14.6 -0.7 ± j14.53

Scheme 2 G4 -11.83 ± j41.63 -11.63 ± j42.59 -13.12 ± j35.7 -11.83 ± j41.75 -11.99 ± j40.9
G5 -1.0 ± j14.19 -0.95 ± j14.39 -1.87 ± j13.88 -1.14 ± j13.84 -1.06 ± j13.73
G6 -0.65 ± j7.07 -0.62 ± j7.24 -1.19 ± j6.69 -0.41 ± j8.43 -0.32 ± j8.28

G2 -1.4 ± j10.76 -1.36 ± j10.85 -2.15 ± j10.34 -1.61 ± j8.89 -1.21 ± j8.62
G3 -1.48 ± j14.12 -1.52 ± j14.5 -2.36 ± j13.36 -1.74 ± j13.69 -1.7 ± j14.4

Scheme 3 G4 -2.29 ± j30.75 -2.23 ± j31.16 -3.13 ± j25.54 -2.87 ± j27.79 -2.48 ± j29.58
G5 -1.45 ± j14.12 -1.23 ± j14.16 -2.19 ± j14.06 -1.6 ± j14.45 -1.27 ± j13.41
G6 -1.28 ± j7.03 -1.38 ± j7.24 -1.46 ± j6.36 -0.51 ± j7.73 -0.51 ± j7.46

G2 -1.52 ± j11.83 -1.49 ± j12.05 -2.3 ± j11.13 -3.16 ± j10.82 -2.97 ± j10.66
G3 -17.55 ± j25.1 -1.76 ± j25.62 -10.84 ± j17.25 -17.21 ± j24.15 -16.84 ± j22.4

Scheme 4 G4 -17.74 ± j31.7 -17.69 ± j32.37 -15.59 ± j20.71 -19.45 ± j27.47 -19.12 ± j30.79
G5 -1.87 ± j14.66 -1.78 ± j14.88 -2.45 ± j13.86 -1.99 ± j14.77 -1.81 ± j14.44
G6 -2.35 ± j7.97 -2.33 ± j8.4 -2.06 ± j6.01 -0.61 ± j8.17 -0.61 ± j8.13

G2 -1.39 ± j11.58 -1.37 ± j11.78 -2.07 ± j10.91 -1.68 ± j8.84 -1.31 ± j8.24
G3 -1.64 ± j19.98 -1.6 ± jj20.25 -2.36 ± j17.87 -1.74 ± j17.78 -1.47 ± j18.46

Scheme 5 G4 -7.02 ± j14.05 -7 ± j14.12 -5.68 ± j14.65 -6.9 ± j14.24 -6.21 ± j14.16
G5 -1.82 ± j14.32 -1.74 ± j14.53 -2.32 ± j13.61 -2.11 ± j14.31 -1.94 ± j13.98
G6 -1.41 ± j7.21 -1.5 ± j7.47 -1.35 ± j6.47 -0.95 ± j8.01 -1.29 ± j8.23
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Fig. 6.  Convergent characteristics of objective functions.

Fig. 7. Location of electromechanical modes of the system with scheme
4 under operation conditions 1-5.

Table 4.  Design results of the objective functions

Operation Operation Operation Operation Operation Operation
condition 1  condition 2 condition 3 condition 4 condition 5 conditions 1-5

Scheme 1 2.24 4.80 1.24 4.66 4.92 17.86
Scheme 2 1.31 1.56 0.1 1.8 2.42 7.19
Scheme 3 0.06 0.1 0.0016 0.98 0.98 2.12
Scheme 4 0 0.0001 0 0.79 0.79 1.58
Scheme 5 0.02 0.012 0.023 0.3 0.08 0.435

be moved toward certain desirable locations.
In the design of schemes 3-4, it is selected that σ0

= −1.5.  All of objective functions have converged to
approach zero as revealed in Figure 6, which means that
all electromechanical modes have been moved to or
near the designated region.  The design results of PSSs
are given in the columns 3-7 of Table 2.  The electrome-

chanical modes of five operating conditions are tabu-
lated in Table 3.  Since scheme 3 is designed under the
operating condition 1 only, the real part of each electro-
mechanical mode approaches −1.5 in this operating
condition.  However, this is not true in operating condi-
tions 4 and 5.  Although scheme 4 is also designed under
operating condition 1 only, it gives better damping
effect.  But the damping conditions in operating condi-
tions 4 and 5 are still not satisfied.  Since in the design
of scheme 5, five operating conditions are considered at
the same time, the light damping electromechanical
modes have been moved to approach the designated
region for all operating conditions.

With the designed PSSs, the values of objective
functions are given in Table 4.  Since all of five operat-
ing conditions are considered, the objective function of
the system with scheme 5 is smallest.  This means that
this scheme could give better damping effect under a
wide range of operating condition.  Figures 7 and 8 show
location of electromechanical modes of the system with
scheme 4 or 5 under operation conditions 1-5.

In the time domain simulations, nonlinear differ-
ential equations must be used to examine the damping
effect of PSSs.  The tripping of line 7-13 is used as a
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Fig. 8. Location of electromechanical modes of the system with scheme
5 under operation conditions 1-5.
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larger disturbance.  Simulation results of generator 6 are
given in Figures 9-13 for the system under five operat-
ing conditions.  The system with scheme 5 is better if
five operating conditions are considered at the same
time.

CONCLUSION

A novel pole placement design approach of the
lead lag phase compensation power system stabilizers
has been successfully achieved by using the hybrid
differential evolution method.  A multi-machine system
is used as an example to demonstrate the developed
method and reveal the convergent procedures.  Several
control schemes are given and one of them can give
better design results.  The chosen region to assign the
real part of electromechanical modes could be relatively
important in the design.  It wants to guarantee a system
with enough damping effects on oscillations over wide

range of loading conditions.  From the simulation results,
the HDE gives a good method in tuning power system
stabilizers to improve system dynamic stability.
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APPENDIX

System data (pu, except as indicated)
The two-axis model describes the generator [5].

The power base is 100MVA.

Generator:

H D Xd Xq X'd X'q T'do T'qo

(sec) (sec)  (sec)

G 2 6.4 0 0.8958 0.8645 0.1198 0.1969 6.0 0.535

G 3 3.01 0 1.3125 1.2578 0.1813 0.25 5.89 0.6

G 4 4.69 0 1.219 1.1695 0.1619 0.215 5.95 0.573

G 5 4.7 0 1.2166 1.1742 0.1627 0.225 5.92 0.575

G 6 4.71 0 1.2121 1.1789 0.1628 0.228 5.91 0.578

Exciter:

KA TA Kf Tf
(sec)  (sec)  (sec)

G 2 400 0.05 0.025 1.0
G 3 400 0.05 0.025 1.0
G 4 400 0.05 0.025 1.0
G 5 400 0.05 0.025 1.0
G 6 400 0.05 0.025 1.0

Excitation voltage limits: Vmin = -7.3 Vmax = 7.3
PSS output limits: Vmin = -0.1 Vmax = 0.1
PSS washout time constant: T5 = 5 sec

Transmission lines:

Line No. From To R X B/2

1 1 10 0 0.0576 0
2 2 7 0 0.0625 0
3 3 9 0 0.0586 0
4 4 12 0 0.0605 0
5 5 13 0 0.0605 0
6 6 14 0 0.0605 0
7 10 13 0.01 0.085 0.088
8 7 13 0.032 0.161 0.153
9 9 14 0.039 0.17 0.179

10 12 14 0.017 0.092 0.079
11 7 8 0.0085 0.072 0.0745
12 8 9 0.0119 0.1008 0.1045
13 10 11 0.0085 0.072 0.0745
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