
Volume 14 Issue 2 Article 2 

REINFORCING EFFECTS AND MECHANICAL PROPERTIES OF RC BEAM REINFORCING EFFECTS AND MECHANICAL PROPERTIES OF RC BEAM 
WITH CFS UNDER STATIC AND RUNNING LOADS WITH CFS UNDER STATIC AND RUNNING LOADS 

Ming-Chien Hsu 
Doctor Course of Graduate school of Industrial Technology, Nihon University, Narashino-shi, Chiba 275-8575., 
c33830@cit.nihon-u.ac.jp 

Tadashi Abe 
Professor, Department of Industrial Technology, Nihon University, Narashino-shi, Chiba 275-8575. 

Tetsukazu Kida 
Professor, Department of Industrial Technology, Nihon University, Narashino-shi, Chiba 275-8575. 

Toshiaki Sawano 
Associate Professor, Department of Industrial Technology, Nihon University, Narashino-shi, Chiba 275-8575. 

Kazuhiko Minakuchi 
Research Fellow, Department of Industrial Technology, Nihon University, Narashino-shi, Chiba 275-8575. 

Follow this and additional works at: https://jmstt.ntou.edu.tw/journal 

 Part of the Mechanical Engineering Commons 

Recommended Citation Recommended Citation 
Hsu, Ming-Chien; Abe, Tadashi; Kida, Tetsukazu; Sawano, Toshiaki; and Minakuchi, Kazuhiko (2006) "REINFORCING 
EFFECTS AND MECHANICAL PROPERTIES OF RC BEAM WITH CFS UNDER STATIC AND RUNNING LOADS," Journal of 
Marine Science and Technology: Vol. 14: Iss. 2, Article 2. 
DOI: 10.51400/2709-6998.2060 
Available at: https://jmstt.ntou.edu.tw/journal/vol14/iss2/2 

This Research Article is brought to you for free and open access by Journal of Marine Science and Technology. It has been 
accepted for inclusion in Journal of Marine Science and Technology by an authorized editor of Journal of Marine Science and 
Technology. 

https://jmstt.ntou.edu.tw/journal/
https://jmstt.ntou.edu.tw/journal/
https://jmstt.ntou.edu.tw/journal/vol14
https://jmstt.ntou.edu.tw/journal/vol14/iss2
https://jmstt.ntou.edu.tw/journal/vol14/iss2/2
https://jmstt.ntou.edu.tw/journal?utm_source=jmstt.ntou.edu.tw%2Fjournal%2Fvol14%2Fiss2%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/293?utm_source=jmstt.ntou.edu.tw%2Fjournal%2Fvol14%2Fiss2%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
https://jmstt.ntou.edu.tw/journal/vol14/iss2/2?utm_source=jmstt.ntou.edu.tw%2Fjournal%2Fvol14%2Fiss2%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages


Journal of Marine Science and Technology, Vol. 14, No. 2, pp. 73-83 (2006) 73

REINFORCING  EFFECTS  AND  MECHANICAL
PROPERTIES  OF  RC  BEAM  WITH  CFS  UNDER

STATIC  AND  RUNNING  LOADS

Ming-Chien Hsu*, Tadashi Abe**, Tetsukazu Kida**, Toshiaki Sawano***,
and Kazuhiko Minakuchi****

Paper Submitted 04/12/05, Accepted 07/05/05.  Author for Correspondence:
Ming-Chien Hsu.  E-mail: c33830@cit.nihon-u.ac.jp.
*Doctor Course of Graduate school of Industrial Technology, Nihon

University, Narashino-shi, Chiba 275-8575.
**Professor, Department of Industrial Technology, Nihon University,

Narashino-shi, Chiba 275-8575.
***Associate Professor, Department of Industrial Technology, Nihon

University, Narashino-shi, Chiba 275-8575.
**** Research Fellow, Department of Industrial Technology, Nihon

University, Narashino-shi, Chiba 275-8575.

Key words: RC beam, static load, running load, reinforcing effects.

ABSTRACT

Through a series of experiments on RC beams reinforced with the
carbon fiber sheet (CFS) under the static and running loads, the
authors verified the effects of the aspect ratio (ratio of beam width to
depth) and CFS reinforcement on the failure mechanism.  The experi-
ments revealed that: (1) CFS can effectively reinforce beams sub-
jected to static loads in the flexural region, and increase the strength
of beams subjected to running loads but such beams failed in shear,
and (2) the tensile strength of CFS is greatly influenced by the aspect
ratio.  The authors evaluated how the aspect ratio influences the
strength increasing effect of CFS; in addition, developed a theoretical
equation for calculating the ultimate bending strength of RC beams
reinforced with CFS, and approximated the experimental results by
the theoretical results derived from the equation.

INTRODUCTION

The adhesion of carbon fiber sheet (CFS) offers
various advantages such as the construction ability and
the reduction of construction time.  Therefore, it has
been recently found in the increasing applications to the
strengthening of RC beam and the repair of cracked
structural member.  This strengthening method has been
the subject of a number of studies leading to reports on
suitable design methods, mechanisms and its reinforc-
ing effects [3, 8-10, 12, 14, 15].

As for the flexural and shear load-carrying capaci-
ties of RC beam under running loads, it is well known to
be considerably lower than under static load [1, 7, 11].

Particularly, the RC beam under the running loads re-
sults in shear failure rather than flexural failure [1, 2, 6,
7].  Accordingly, it is very important to clarify the
reinforcing effect of CFS in the shear span of RC beam.

The present paper deals with the effects of the
aspect ratio of RC beam reinforced with CFS on the
beam failure mechanism.  Three types of experimental
specimens with different cross-sections were used.  In
the event of evaluating the flexural load-carrying ca-
pacity of RC beams reinforced with the CFS, the strength
increasing effect of CFS is influenced greatly by the
aspect ratio (that is the ratio of width (bw) to height (h))
of RC the beams.  Therefore, the authors have tried to
introduce a correction factor of reinforcing effect to
evaluate the effects of the aspect ratio on the strength-
ening effect of CFS and have proposed theoretical load-
carrying capacity equations.

PREPARATION  OF  EXPERIMENTAL
SPECIMENS

1. Materials used for experimental specimens

Ordinary Portland cement and coarse aggregate
with a maximum size of 20 mm were used for the
experimental specimens.  The D16 reinforcements of
SD 295A type were used.  The physical properties of
concrete and reinforcements are listed in Table 1.  The
high-strength continuous carbon fiber sheet with a unit
weight of 202 g/m2, a thickness of 0.111 mm, and a
width of 30 cm was used.  The physical properties of
CFS are listed in Table 2.  The epoxy resin was used as
an adhesive agent (The adhesive strength to concrete:
2.6 N/mm2).

2. Specimen size and reinforcement arrangement

The aspect ratios at which shear failures occur
under the running loads were previously investigated
[7].  According to the experimental results, the shear
failure became dominant when the width (bw) was less
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than the effective depth (d) of the RC beam.  Therefore,
the three types of RC beam specimens with different
widths and depths were prepared.  The specimen sizes
and the selected measuring points are shown in Figure 1.
The RC beam specimens not reinforced with CFS and
those reinforced with CFS are referred to as “non-
reinforced RC beams” and “CFS-reinforced RC beams,
” hereafter.
(1) Type I: It had the span of 200 cm, the width of 30 cm

and the height of 21 cm as to the cross-section.  There
were three reinforcements on the tension sides with
the effective depth of 17.2 cm and two reinforce-
ments on compression sides.

(2) Type II: It had the span and the width same as Type
I, but the height was 25 cm.  The arrangement of the
reinforcements were same as Type I, but the effec-
tive depth was 21.2 cm.

(3) Type III: It had the span same as Type I, the height
same as Type II, but the width is 20 cm.  The
arrangement of the reinforcements were same as
Type I, but the effective depth was same as Type II.

3. CFS Bonding procedure

A single layer of CFS was bonded to the bottom of

Table 1.  Physical properties of concrete and reinforcements

Compressive Reinforcement (SD295A/D16)

Test strength of
Yield strength

Tensile Young's
specimen concrete strength modulus

(N/mm2)
(N/mm2)

(N/mm2) (N/mm2)

Type I 38.5
368 568 196Type II 41.5

Type III 30.0 373 544 200

Table 2.  Physical properties of CFS

Reinforcing Unit weight Tensile strength Young’s modulus
material (g/m2) (N/mm2) (kN/mm2)

Carbon fiber 202 4,420 243

400 400

40 40220

40 402@110
300

21
0

13
4

38
38

2,000
400 4004@300 = 1,200CFS

: Reinforement strain gauge : CFS strain gauge

: Deflection measurement point

(1) Type I
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40 40220

40 402@110
300

25
0

17
4

38
38

2,000
400 4004@300 = 1,200CFS

(2) Type II

400 400

35 35130

35 352@65
200

25
0

17
4

38
38

2,000
400 4004@300 = 1,200CFS

(3) Type III
(Unit: mm)

Fig. 1.  Specimen size and reinforcements arrangement.
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beam specimen in the direction of the primary
reinforcement.  The CFS was bonded over the whole
bottom surface over the supports for Types I and II.  For
Type III, CFS was applied between both supports only.

OUTLINE  OF  EXPERIMENTS

1. Flexural experiment under static load

This was a flexural experiment in which a wheel
was rest at the center of the span (that was at the point
of maximum flexural stress) as illustrated in Figure 2
(1).  The load was increased in increments of 5.0 kN by
the loading controller.

2. Experiment under running load

The running load was placed at the center of the
beam and moved between Supports A and B until finally
coming to a stop at the center.  This step is illustrated in
Figure 2 (2).  The load was increased in increments of
5.0 kN at each cycle until the experimental specimen
fails.

FAILURE  MODES  AND  MAXIMUM
LOAD-CARRYING  CAPACITY

1. Failure modes

Figure 3 denotes the cracking patterns occurred
during the experiments, and Table 3 also indicates the
failure modes inclusively.

(1) Non-reinforced RC Beams

In the flexural experiments under the static load,
all types of RC beam suffered the flexural failure as the

load was being increased with cracks developing at an
angle of 55-60 degrees from a point directly below the
wheel (Figures 3 (1a), (2a), and (3a)).  In the experi-
ments under the running load, Types I and II suffered
the flexural failure as the load was being increased, and
Type III suffered the shear failure at a location of 55 cm
away from the Support A disruptively (Figures 3 (1b),
(2b), and (3b)).

Static load
   (5.0 kN with a load controller)

SpanA B

M

(1) Flexural test under static loading

Running wheel load
   (5.0 kN at each cycle until the specimen fails)

Span

Running speed (22 cm/sec)

A B

R

(2) Test under Running wheel loading

Fig. 2.  Loading procedures.
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(b) Test under moving load
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(3) Type III
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Fig. 3.  Characteristic cracking patterns.
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(2) CFS-reinforced RC beams

In the flexural experiments under the static load,
Types I and II suffered the flexural failure as the load
was being increased with cracks developing at an angle
of approximately 60 degrees (Figures 3 (1c), (2c), and
(3c)).  The cracks occurred at intervals of 5 to 7 cm
apart, and the flexural load-carrying capacity increased
as resulting from the crack dispersion effect.  Type III
suffered the shear failure with many cracks developed
and grew away from the CFS as the load was being
increased, and another macroscopic cracks developed
from the loading point at an angle of 45 degrees.  For the
CFS, it peeled away from the concrete surface due to the
tension at the center of the RC beam, with the peeling
progressing toward the supports.  The CFS was not torn
on any of the specimens.

In the case of Type III, the shear load-carrying
capacity was lower than the flexural load-carrying
capacity, as shown in Table 3; so, the specimen, III-R-
1, without the CFS reinforcement suffered the shear
failure.  The specimens reinforced with the CFS, which
suffered the shear failure, had even greater flexural
load-carrying capacity.  That means Type III underwent
the shear failure.

In the experiments under the running load, the
diagonal cracks developed in the shear span from both
supports (Figures 3 (1d), (2d), and (3d)).  Type I suf-
fered the brittle shear failure at a location of 45 cm away
from Support A (a/d = 2.62; a = 45 cm, the distance
between the failure point and the support; d = 17.2 cm,
effective depth).  For Type II and III , the corresponding
position was 55 cm away from Support B (a/d = 2.59;
a = 55 cm, the distance between the failure point and
the support; d = 21.2 cm, effective depth).  These
results indicated that the RC beams reinforced with
the CFS had the higher flexural load-carrying capacity,
but there was no significant increase in the load-carry-
ing capacity within the shear span that could be expected.
Therefore, for all specimen types under the running
load, the specimens suffered the shear failure, and
the CFS was peeled off simultaneously with the occur-
rence of failure.  In any case, the CFS fracture never
occurred.

2. Maximum load-carrying capacity of RC beams

The maximum load-carrying capacities of non-
reinforced RC beams and CFS-reinforced RC beams are
listed in Table 3 along with the failure modes.

Table 3.  Comparison between load-carrying capacities and characteristic failure mode

Test Flexural Average
Ratio Failure modesspecimen load load

I-M-1 80.9
83.0 -

Flexural failure
I-M-2 85.1 Flexural failure
I-R-1 69

69 R/M = 0.83
Flexural failure

I-R-2 70 Flexural failure
I-C.M-1 120.9

120.3 C.M/M = 1.45
Flexural Failure

I-C.M-2 119.7 Flexural failure
I-C.R-1 109.7

109.4
C.R/R = 1.58 Shear failure

I-C.R-2 109.2 C.R/CM = 0.91 Shear failure
II-M-1 105.6

102.9 -
Flexural failure

II-M-2 100.1 Flexural failure
II-R-1 84.6

87.2 R/M = 0.85
Flexural failure

II-R-2 89.8 Flexural failure
II-C.M-1 139.8

137.5 C.M/M = 1.34
Flexural failure

II-C.M-2 135.1 Flexural failure
II-C.R-1 124.7

122.2
C.R/R = 1.40 Shear failure

II-C.R-2 119.7 C.R/C.M = 0.89 Shear failure
III-M-1 95.3 95.3 - Flexural failure
III-R-1 69.4 69.4 R/M = 0.73 Shear failure
III-C.M-1 109.5 109.5 C.M/M = 1.15 Shear failure

III-C.R-1 75.7 75.7
C.R/R = 1.09 Shear failure

C.R/C.M = 0.69 Shear failure

*I: Type I, II: Type II, III: Type III; M: Flexutal test under static; R: Test under running load; C: CFS; 1, 2: Test specimen No.
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(1) Non-reinforced RC beams

As shown in Table 3, the load-carrying capacity
ratios between the non-reinforced RC beam subjected to
running loads and those subjected to static loads (R/M)
were 0.83, 0.85 and 0.73 for Types I, II and III,
respectively.  The load-carrying capacities for Types I,
II, and III due to the running loads decreased by 17%,
15%, and 27%, respectively.

For the static loading, all three types failed
in flexure under the loading point.  With respect to
the specimens subjected to running loads, while
Types I and II failed in flexure at the center of span,
Type III failed in shear at 55 cm away from Support
A.

(2) CFS-reinforced RC beams

As shown in Table 3, the load-carrying capacity
ratios between the CFS-reinforced beam and non-rein-
forced RC beam subjected to static loads (CM/M) was
1.45 and 1.34, respectively, that CFS greatly improves
the beam strength under static loading for Types I and
II.  Type III showed shear failure and the ratio between
the CFS-reinforced beam and non-reinforced beam was
1.15.  Since the CFS-reinforced beam specimen failed
in shear, the strength improvement by CFS was less
significant than Types I and II.

CFS-reinforced beams of Types I and II subjected
to static load failed in flexure.  Although the Type III
had the first early flexural cracks as the loads increased,
it ultimately failed in shear.  Under the running load, all
CFS-reinforced RC beams failed in shear: Type I failed
at 45 cm away from Support A, and Types II and III at
55 cm away from Support B.

RELATIONSHIP  BETWEEN  LOAD  AND  STRAIN

1. Strain induced in tensile reinforcement

Figure 4 expresses the relationship between the
strain that induced in the tensile reinforcement at the
center of span and the load that was the static load
located at the center of the span.  The relationship
between the strain and the load in the shear experiments
on specimens under the static load was not given be-
cause the experimental methods were different from the
former.  The observed yield strains of reinforcements
were 1,840 × 10−6 for Types I and II and 1,885 × 10−6 for
Type III.  On the other hand, the theoretical strain
calculated from the physical properties listed in Table 1
was approximately 1,850 × 10−6 (= 370 N/mm2/200 ×
103 N/mm2), which approximately agrees with the ex-
perimental values.

(1) Strains induced in non-reinforced RC beams

The yield loads of the tensile reinforcement in the
Type I under the static and running loads were 65 kN
and 55 kN as can be seen in Figure 4.  The ratio of
yielding load under the running load to the static load
was 0.85 (= 55 kN/65 kN) for Type I.  In case of Type
II, the yielding loads under the static and running load
were 75 kN and 65 kN on average for a ratio of 0.87 (=
65 kN/75 kN).  The tensile reinforcements contributed
to maintaining the load-carrying capacity of the speci-
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Fig. 4.  Load-strain relation in tensile reinforcement at center of span.
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mens even after the yield.  In the case of Type III, the
yielding loads under the static and running load were 65
kN and 50 kN on average, respectively.  At the ultimate
stage, the specimen suffered the shear failure; so, the
strain in the reinforcement increased only marginally to
2,500 × 10−6.  The ratio of yielding loads was 0.77 (=
50 kN/65 kN) between the running load and the static
load.  The specimen suffered the shear failure after the
yielding of tensile reinforcement.

(2) Strains induced in CFS-reinforced RC beams

In the Figure 4, the yield load of tensile reinforce-
ment in the Type I under the static load was 87.5 kN.  In
the post-yield loading region, the strengthening effect
of the CFS was noticeable.  Therefore, the strain
increased, though gradually and almost linearly with
the loading.  Under the running load, the primary rein-
forcement began to yield at 80 kN and the gradual
increase in strain was observed, just as with the static
loading.  For the Type II, the yield load of the tensile
reinforcement under the static load was 105 kN.  Under
the running load, the reinforcement began to yield at 85
kN.  In the case of the Type III, the reinforcement began
to yield at 75 kN and 60 kN under the static and the
running load, respectively.  Since this specimen suf-
fered the shear failure, the gradual increase in strain was
observed.

In summary, under the static and running load, the
load-carrying capacities of specimens were maintained
by the reinforcing effect of the CFS, the strain increased
reinforcing effect of the CFS and the strain increased
linearly even after the yielding of the tensile reinforce-
ments.

2. Strains induced in CFS

Figure 5 indicates the relationship between the

strain induced in the CFS at the center of the span and
the load.  Although the nominal ability of fracture
strain of CFS was 18,190 × 10−6 (= 4420 N/mm2/243 ×
103 N/mm2), the actual strains exceeding 20,000 × 10−6

were measured during the loading.  Taking into account
the reliability of the data, a strain of 20,000 × 10−6

should be adopted as the maximum strain in the Figure
5 [10].

In the case of Type I and II under the static load,
the strain in the CFS increased linearly beyond the yield
load of tensile reinforcements.  In general, the strain at
which the CFS peels was approximately 6,000 × 10−6.
However, no remarkable increase in the strain that
would cause the CFS to fracture was observed even
beyond the nominal peeling strain.  For the Type III, the
failure mode was the shear failure, and the strain at the
ultimate state was approximately 7,500 × 10−6.  Under
the running load, all specimen types suffered the shear
failure during motion of the wheel, and therefore, the
gradual increase in the strain at the center of the span
was observed.  Particularly, the strain at a load of 80 kN
for the Type III was approximately 2,800 × 10−6.

For specimens that suffered the shear failure dur-
ing motion of the wheel, the strain in the CFS at loca-
tions of 10 cm and 190 cm away from Support A
remained below only 200 × 10−6 at the maximum load-
carrying capacity.  Accordingly, the CFS peeled simul-
taneously with the shear failure.

COMPARISON  OF  THEORETICAL  AND
EXPERIMENT  STRENGTH

1. Theoretical load-carrying capacity equations

In this paper, the theoretical flexural and shear
load-carrying capacities are evaluated by using equa-
tions for the ultimate flexural and shear load-carrying
capacities while taking into consideration for the failure
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Fig. 5.  Load-strain relation in CFS at center of span.
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mode.

(1) Ultimate flexural load-carrying capacity

The theoretical flexural load-carrying capacity,
Pu, of the experimental beam can be calculated from the
ultimate flexural load-carrying capacity equation for
the rectangular cross-section with reinforcements on
both tension and compression sides on the basis of the
ultimate limit-state design method.  The height of the
equivalent stress block, a, is not larger than the thick-
ness of the upper cover concrete for all specimen types.
Accordingly, the flexural ultimate moment, Mu, of the
specimen is given by the following Eq. (1):

Mu = As . fyd . (d − a/2) + As' . σs'(d' − a/2)       (1)

where, fyd is the yielding strength of reinforcement, σs'
is the stress of compression reinforcement, As is the
amount of reinforcement on tension side, As' is the
amount of reinforcement on compression side, d is the
effective depth, d' is the upper thickness of covering
concrete, and a is the height of equivalent stress block.

The theoretical flexural load-carrying capacity,
Pu, is calculated from the following Eq. (2):

Pu = 4 . Mu/L (2)

where, L is the span length.
The experimental and theoretical results for the

flexural load-carrying capacity of non-reinforced RC
beams, derived from Eqs. (1) and (2), are shown in
Table 4.  A comparison of the experimental and the
theoretical values for non-reinforced RC beams
shows that the ratio of the experimental to the theoreti-
cal is 1.16, 1.14, and 1.13 for Types I, II, and III under
the static load, respectively.  Under the running load,
the ratio is 0.97 for all specimen types.  Accordingly, a
load-carrying capacity reduction factor needs to
be added to Eq. (1) in the event of calculating the
flexural load-carrying capacity of beam under the run-
ning load.

(2) Shear load-carrying capacity of specimens without shear
reinforcement

According to the Specifications for Concrete [4],
the design shear load-carrying capacity of the RC beam
is given by the equation below.

Design shear load-carrying capacity:

Vcd = βd . βp . βn . fvcd . bw . d/γb (3)

where,

Table 4.  Experimental and theoretical load-carrying capacities

Test Flexural load-carrying capacity (kN) Experimental

specimen Experimental Theoretical theoretical value

I-M-1 80.9 71.7 Eqs. (1) and (2) 1.13
I-M-2 85.1 1.19
I-R-1 68.9 71.7 Eqs. (1) and (2) 0.96
I-R-2 69.6 0.97
I-C.M-1 120.9 93.1 Eqs. (5) and (2) 1.30
I-C.M-2 119.7 1.29
I-C.R-1 109.7 86.8 Eqs. (3) and (4) 1.26
I-C.R-2 109.2 1.26
II-M-1 105.6 90.1 Eqs. (1) and (2) 1.17
II-M-2 100.1 1.11
II-R-1 84.6 90.1 Eqs. (1) and (2) 0.94
II-R-2 89.8 1.00
II-C.M-1 139.8 113.7 Eqs. (5) and (6) 1.23
II-C.M-2 135.1 1.19
II-C.R-1 124.7 103.9 Eqs. (3) and (4) 1.20
II-C.R-2 119.7 1.15
III-M-1 95.3 84.7 Eqs. (1) and (2) 1.13
III-R-1 69.4 71.2 Eqs. (3) and (4) 0.97
III-C.M-1 109.5 103.7 Eqs. (5) and (2) 1.06
III-C.M-1 75.7 71.2 Eqs. (3) and (4) 1.06
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βd = 1 / d
4

,  (βd = 1.5 for βd > 1.5)

βp = 100pw3 ,(βp = 1.5 for βp > 1.5)

pw = As/(bw . d),

βn = 1,

f vcd = 0.20 f cd
' ,(for this experiment f 'cd = fc')

γb = 1

Shear load-carrying capacity:

Psu = Vcd . L/(L − x0) (4)

where, βd is the size effect factor, βp is the influence
factor for reinforcement ratio’s, βn is the axial loading
factor of shear capacity, pw is the reinforcement ratio, bw

is the width of beam, d is the effective depth, x0 is the
distance between support and the loading point, f 'cd is
the design concrete compression strength, fc' is the con-
crete compression strength, γb is the member factor
(when there is an experiment, γb is 1) and L is the span
length.

(3) Flexural load-carrying capacity of CFS-reinforced RC
beams

The flexural load-carrying capacity of RC beams
reinforced with the CFS has been analyzed by using
many experiment results.  Sakai et al., proposed Eq. (5)
for the ultimate flexural load-carrying capacity when
the CFS is bonded to the bottom only [13].  In this case,
the theoretical maximum flexural load-carrying capac-
ity is calculated by using Eq. (2).

Muc = (0.90 . As . fyd . d)

+ (0.90 . Acs . Ef/Es . fyc . a . h) (5)

where, AS is the amount of reinforcement on the tension
side, fyd is the yield strength of reinforcement, d is the
effective depth, Acs is the cross-sectional area of the
CFS (Table 2), Es is the Young’s modulus of rein-
forcement, Ef is the Young’s modulus of the CFS, fyc is
the tensile strength of the CFS, a is the reduction factor
(= 1/2), and h is the height of beam.

Table 4 shows the flexural load-carrying capaci-
ties of CFS-reinforced RC beams obtained from the
experimental and those derived from the theoretical
equation by Sakai et al. [13].

Comparing the experimental results and the theo-
retical results for static loading (derived from Eq. (5)

and Eq. (2)), we see that, on average, the experimental
is 1.29 times and 1.21 times larger than the theoretical
for Types I and II.  The reason for this relatively large
discrepancy may depend on that, since the reinforce-
ments used in the specimens were rusted, their yield
strengths as well as the tensile strength of CFS are
multiplied by a reduction factor of 0.9 in Eq. (5).  In
additional, the reduction factor of the CFS strain at
peeling is reduced by half (a = 1/2), and therefore, the
calculated results are on the safe side.  For the Type III,
the ratio is 1.06 because this specimen suffered the
shear failure, and the CFS has the little reinforcing
effect.

Under the running load, all specimen types are
suffered from the shear failure.  Comparing the experi-
mental results for the ultimate shear load-carrying ca-
pacity of CFS-reinforced RC beams with the theoretical
results for non-reinforced RC beams (given by Eqs. (3)
and Eq. (4)), the ratios between them are 1.26, 1.18, and
1.06 for specimen Types I, II, and III, respectively.
However, there is a little difference between the experi-
mental shear load-carrying capacity of specimens with-
out the CFS reinforcement and the specimens rein-
forced with the CFS in the shear span.

2. Proposal on the ultimate flexural load-carrying capac-
ity equation for CFS-reinforced beam

(1) Ultimate flexural load-carrying capacity of beam under
static load

The authors have corrected the ultimate flexural
load-carrying capacity equation, taking into account the
strain hardening of primary reinforcement, and pro-
posed Eqs. (6) and (7) for the ultimate flexural load-
carrying capacity of beams under the static and the
running load.  These theoretical equations are approxi-
mately to the values measured experimentally [2].

Ultimate flexural load-carrying capacity of beam under
static load:

Mus = {1.13 . As . fyd . (d − a/2)}

+ As' . σs'(d' − a/2) (6)

Ultimate flexural load-carrying capacity of beam under
running load:

MuR = Mus/ρM = {1.13 . As . fyd . (d − a/2)

+ As' . σs' (d' − a/2)}/ρM (7)

where, ρM is the load correction coefficient.
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(2) Coefficient of reinforcing effect of CFS considering as-
pect ratio

In Eq. (5) proposed by Sakai et al., the tensile load-
carrying capacity of the CFS is multiplied by a reduc-
tion factor a (= 1/2) [13].  In the later work, Rokugo et
al., calculated the flexural load-carrying capacity of
beams reinforced with the CFS by using the reduction
factors a of 1/3 and 2/3 (corresponding to a peel-off area
rate of 56%).  In this experimental results, as the rela-
tionship between aspect ratio and coefficient of rein-
forcing effect in Figure 6, coefficient of reinforcing
effect varies with the type of specimen or its aspect
ratio; additional, using the reduction factor as described
in the reference [5] will result in variations in the
flexural load-carrying capacity of beams reinforced
with the CFS.

The authors have defined the ratio of the linear
increase in the maximum strain to the strain at which
CFS fractures as a coefficient for the reinforcing effect
of CFS (βcf) and calculated the ultimate flexural
load-carrying capacity of CFS-reinforced RC beams
by multiplying the tensile load-carrying capacity of
CFS by this coefficient, which is derived from Eq. (8)
below:

βcf = eycf/ey (8)

where, eycf is the maximum strain of CFS, and ey is the
fracture strain of CFS.

Table 5 shows the coefficient for the reinforcing
effect of CFS derived from the ratio of the maximum
strain to the fracture strain of CFS using Eq. (7).  The
coefficient for the reinforcing effect of CFS (βcf) is
shown in Figure 6 as the relationship with the ratio of
beam width (bw) to beam height (h) (the aspect ratio =
bw/h).  Using the peel-off strain and fracture strain of
CFS (6000  × 10−6 and 18190 × 10−6), the reduction
factor is calculated to be 0.33.

Figure 6 also shows the relationship between the
aspect ratio (bw/h) and the coefficient for the reinforc-
ing effect of CFS (βcf) is given by Eq. (9).

βcf = 0.57(bw/h) − 0.15  (βcf = 0.7 for βcf > 0.7)
(9)

where, bw is the width of beam, and h is the height of
beam.

(3) Ultimate flexural load-carrying capacity of CFS-rein-
forced RC beams

The ultimate flexural load-carrying capacity of a
CFS-reinforced RC beam can be calculated by adding
the ultimate flexural loading capacity of CFS to the
ultimate flexural load-carrying capacity of a non-rein-
forced RC beam derived from Eq. (6).  Accordingly, the
ultimate flexural load-carrying capacity of the RC beam
reinforced with the CFS under static load can be ex-
pressed by the equation as below.

Muc = {1.13 . As . fud . (d − a/2)} + As'

. σs'(d' − a/2) + {0.90 . Acs . fycf . βcf(h − x/2)
(10)

where, βcf is from Eq. (9), Acs is the cross-sectional area
of CFS (Table 2), fycf is the tensile load-carrying capac-
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Fig. 6. Coefficient of CFS reinforcing effect as a function of beam
aspect ratio.

Table 5.  Coefficients of CFS reinforcing effect

Test specimen Type I Type II Type III

Maximum strain of CFS in linear increase part εycf(× 10−6)
10,697 12,767 5,800
10,171 11,767

Nominal fracture strain of CFS εy(× 10−6) 18,189 18,189 18,189

Coefficient of CFS reinforcing effect βcf = εycf/εy

0.59 0.70 0.32
0.56 0.65

Beam as spect ratio (bw/h) 1.42 1.20 0.80
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ity of the CFS, βcf is the coefficient of reinforcing effect,
bw is the width of RC beam, and h is the height of beam.

In Eq. (10), the yield strength of the reinforce-
ments is set to 1.13 . As . fyd (multiplying by an increase
factor of 1.13) that the specimen is an undamaged RC
beam, and its strength remains after the yielding of the
reinforcements due to the strain hardening.  On the other
hand, Sakai et al., proposed using 0.90 . As . fyd

(multiplying by a reduction factor of 0.9), that the
tensile reinforcements were rusted.  In addition, in Eq.
(9), although the coefficient for the reinforcing effect of
CFS is taken into consideration, the tensile strength of
CFS is set to 0.90 . Acs . fycf . βcf (multiplying by a
reduction factor of 0.9) so that a conservative result can
be obtained.

Summarizing the above, the ultimate flexural load-
carrying capacity and the theoretical flexural load-car-
rying capacity non-reinforced RC beam subject to static
loads are calculated by Eq. (6) and Eq. (2), and those of
the non-reinforced RC beams subject to running loads
are calculated by Eq. (7) and Eq. (2).  The ultimate
flexural load-carrying capacity of a CFS-reinforced RC
beam subject to static load is calculated by Eq. (10) and
Eq. (2). The theoretical flexural load-carrying capaci-
ties are shown in Table 6.  For running loads, since all
specimens failed in shear, the results are not shown in
Table 6.

3. Comparison between experimental and theoretical
results

(1) Non-reinforced RC beams

The theoretical flexural load-carrying capacity of

specimens without the reinforcement under the static
load is calculated by using Eq. (6) and Eq. (2), that given
a ratio of approximately 1.04, 1.03, and 1.01 times of
the theoretical load-carrying capacity for the Types I, II,
and III.  For specimens under the running load (Eq. (7)
and Eq. (2)), the load-carrying capacity of the experi-
mental is approximately 1.04 times of the theoretical
load-carrying capacity for the Types I and II.

(2) CFS-reinforced RC beams

The ultimate load-carrying capacity of specimens
reinforced with CFS under the static load is calculated
by using Eq. (10) and Eq. (2) with the reinforcing effect
coefficient obtained in the present paper.  The experi-
mental load-carrying capacities are approximately
1.05, 1.02, and 1.03 times of the theoretical values for
the Types I, II, and III, respectively.

CONCLUSION

(1) The flexural load-carrying capacities of non-rein-
forced RC beams under the running load were 17%
and 16% lower than the static load for the Types I
and II.  The Type III suffered the shear failure.

(2) The failure modes of RC beams reinforced with the
CFS under the static load were the flexural failure
for the Types I and II, and the shear failure was for
the Type III.  Under the running load, the mode was
the shear failure for all specimen types.  In any case,
the fracture failure was never occurred to the CFS
that peeled away from the concrete surface by virtue
of the tensile stresses at the center of the RC beam.

(3) The reinforcing effect of CFS on RC beams was

Table 6.  Experimental and proposed load-carrying capacities

Test Flexural load-carrying capacity (kN) Experimental

specimen Experimental Theoretical theoretical value

I-M-1 80.9
79.6 Eqs. (6) and (2)

1.02
I-M-2 85.1 1.07
I-R-1 68.9

66.9 Eqs. (7) and (2)
1.03

I-R-2 69.6 1.04
I-C.M-1 120.9

11.6 Eqs. (10) and (2)
1.05

I-C.M-2 119.7 1.04
II-M-1 105.6

100.3 Eqs. (6) and (2)
1.05

II-M-2 100.1 1.00
II-R-1 84.6

84.2 Eqs. (7) and (2)
1.00

II-R-2 89.8 1.07
II-C.M-1 139.8

131.1 Eqs. (10) and (2)
1.07

II-C.M-2 135.1 1.03
III-M-1 95.3

94.7 Eqs. (6) and (2)
1.01

III-R-1 69.4
III-C.M-1 109.5 106.7 Eqs. (10) and (2) 1.03
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45%, 34%, and 15% for the Types I, II, and III,
respectively, as compared with non-reinforced RC
beams.  These results indicate that the flexural load-
carrying capacity varies with the aspect ratio of
beam.

(4) The tensile load-carrying capacity of CFS, which is
required to calculate the ultimate load-carrying ca-
pacity of an RC beam reinforced with CFS, is af-
fected greatly by the aspect ratio (bw /h) of the beam.
Thus, the authors have proposed the coefficient of
reinforcing effect of CFS as a function of the aspect
ratio.

(5) It has been verified that the general flexural load-
carrying capacity of RC beam reinforced with the
CFS can be well evaluated by using a coefficient of
reinforcing effect proposed by this paper.
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