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ABSTRACT

Many mesoscale convective systems (MCSs) accompanied by
heavy rainfall are frequently observed over the Taiwan Strait along
the Mei-Yu front.  An objective potential index of air-sea interaction
was proposed by employing satellite data for pointing out areas where
oceanic convective clouds may occur and develop into MCSs [11].
The aim of present research is to evaluate that index through the data
of 2001 and 2002.

The results show that a greater objective potential index is
correlated with a larger probability of colder infrared brightness
temperature.  In addition, the analysis of serial correlation for these
two discrete parameters (objective potential index and GMS-5 IR1
brightness temperature) showed that the correlation coefficient is
bigger in the South areas than in the North areas.  Also, the leading
time is larger in the Southareas.  That may imply the air-sea interac-
tion play a more important role and the oceanic convective clouds are
more possible to start-up due to the effect of air-sea interaction in the
South areas.

Since the synoptic scale environmental condition does also play
an important role in oceanic convective systems’ development, an
improved objective potential index with the information of air condi-
tional instability is under the investigation and it will be proposed in
the near future.

INTRODUCTION

The role of air-sea interaction in oceanic convec-
tive systems has been a common topic since the late
1980s.  Sanders and Gyakum [13] have pointed out that
explosive winter cyclones occur most frequently near
the regions with a strong sea surface temperature
gradient.  Bosart [1], Bosart and Lin [2] and Uccellini et
al. [15] have all suggested that the large surface heat and
moisture fluxes in the vicinity of the Gulf Stream along

the east coast of the United States could have important
effects on a storm’s development.  Kuo and Low-Nam
[6] suggested that upward fluxes of water vapor and
heat can pre-condition the storm environment for subse-
quent development.  Kuo et al. [7] studied the effects of
surface energy fluxes during the early development and
rapid intensification stages of seven explosive cyclones
in the western Atlantic Ocean by using the Pennsylvania
State University/National Center for Atmospheric Re-
search mesoscale model.  They showed that the surface
energy flux had a much stronger effect during the early
stage of a storm’s development than in the rapid cyclo-
genesis stage.  Touchton [14] noted that the air-sea
fluxes in the early stages of cyclone development might
have helped to enhance its associated low level baroclinic
zone and destabilize the lower atmosphere making the
environment potentially unstable.

Many mesoscale convective systems (MCSs) ac-
companied by heavy rainfall are frequently observed
over the Taiwan Strait and western Taiwan during May
and June [3].  These systems often take a heavy toll on
the local economy.  Liu et al. [9] investigated the
relationship between changes in the sea surface tem-
perature and the MCSs’ intensity over the oceans neigh-
boring Taiwan during the Mei-Yu period.  They found
that a local increase in the sea surface temperature
seemed to have a strong connection to the formation and
intensification of MCSs.  Liu and Liu [8] studied the
relationship of the air-sea interaction with the MCS
development, through several air-sea parameters de-
rived from satellite data.  The study also showed that the
interactions between the atmosphere and the ocean
seemed to be connected to the MCSs’ genesis and
development.  In order to find information related to the
development of MCSs, an algorithm for retrieval of near
sea surface air temperature by using satellite was pro-
posed [10, 12], and an objective potential index (OPI)
was developed by employing satellite data [11].  They
proved that OPI is a good reference in pointing out areas
where convective clouds may occur and develop into
MCSs.  The purpose of this paper is to survey the
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applicability of OPI.
The paper is structured as follows. Data collection

and processing are shown in Section 2.  Afterwards, the
methodology for surveying the applicability of OPI are
described in Section 3.  Some results and discussion are
shown in Section 4.  Finally, a summary is given in
Section 5.

DATA

The satellite data used in this research included
The Special Sensor Microwave/Imager (SSM/I) and
The Geostationary Meteorological Satellite (GMS-5) in
May and June from 2001 to 2002. SSM/I are mounted on
the Defense Meteorological Satellite Program (DMSP)
sun-synchronous satellites, which orbit the earth at a
height of 833 km and are oriented with an inclination of
98.8° [5].  Generally, any area on the earth can be
observed by these SSM/I sensors in less than 72 hours,
except for two circular areas within a radius of 280 km
from the South and North Poles. The SSM/I sensors
provide four channels (19G Hz, 22G Hz, 37 GHz and
85 GHz), each having two polarization components
(vertical and horizontal), except for the vertical polar-
ization component at 22G Hz.  GMS-5 satellite is a
geostationary meteorological satellite that observes from
a height of 36,000 km over the meridian at 140°E.  It
provides hourly, plus 4 half-hourly observations in
one visible, two infrared (IR1, 10.5~11.5 µm and IR2,
11.5~12.5 µm), and one water vapor (WV, 6.5~7.0 µm)
channel.  To keep out the microwave data that are
affected significantly by heavy rainfall drop particles,
the SSM/I data are discarded if the following two rela-
tionships provide identical results [4].

Tb(19 V) > 165 K

[Tb(37 V) − Tb(37 H)] < 37 K

where Tb(19 V), Tb(37 V) and Tb(37 H) are the bright-
ness temperatures observed on different channels. two
channels (19.35 GHz and 37.0 GHz) which each has two
polarization components (vertical and horizontal
components; V and H)

The OPI was derived through SSM/I data.  The
0.5° × 0.5° longitude-latitude grid IR1 infrared bright-
ness temperature of the GMS-5 was used to match the
resolution of SSM/I channels and to compare the de-
rived OPI.

METHODOLOGY

Since the air-sea interactions may play an impor-
tant role in the development of oceanic convective

systems, Liu et al. [11] proposed the OPI to locate in
advance the probable areas where energy may be trans-
mitted from the ocean to the atmosphere, encouraging
the development of MCSs.  The complete procedure of
OPI’s derivation was illustrated in their paper.  The
brief interpret as following: At first, some SSM/I satel-
lite-derived air-sea parameters (sea surface temperature,
near sea surface air temperature, near sea surface air
humidity, difference in temperature/humidity between
air and sea, near sea surface wind, near sea surface
latent/sensible heat flux) and their change rate per day
were calculated for May and June 2001 to 2002.  Liu et
al. [11] have set the climatic maximum and minimum
value of each SSM/I derived air-sea parameter and its
daily variation as 1 and 0, respectively.  Therefore, each
estimated air-sea parameter and its change rate per day
were denoted as variables “a” and “b (where b was
computed with a daily backward difference)” in this
research, respectively within this scale, by using an
interpolation technique.  The index for each air sea
parameter could then be set to be (a × b)/(1 × 1).  Then,
the OPI were derived by combining all the indices of air
sea parameters as the following:

OPI = Σ
x = 1

x = 8
w x × I x

where w is the normalized coefficient of the index for
each air-sea parameter and I is the value of each air-sea
parameter index.  The subscript x indicates each air-sea
parameter.

In order to understand correlation between oce-
anic convective systems and air-sea interaction, the
correlation coefficient used to mean the coefficient of
linear correlation between OPI and GMS-5 IR1 bright-
ness temperature (IR1-TBB) was calculated in this
research.  Also the time lagged the correlation analysis
of OPI and IR1-TBB was computed.  The process of
computing the time lagged correlation can be visualized
by imagining two copies of a sequence of data pairs
(OPI and IR1-TBB) being written, with one of the series
shifted by one hour.  The zero lagged time denotes the
OPI and IR1-TBB being at the same time.  While the
positive lagged time denotes that the OPI appears ear-
lier than IR1-TBB does.  On the other hand, the negative
lagged time denotes that the IR1-TBB brightness tem-
perature appears earlier than OPI does.  If the correla-
tion coefficient of positive time lagged data pairs is
larger than 0.5 (experience), it is reasonable to expect a
higher probability for oceanic convective systems’ ap-
pearance only thinking of air-sea interaction.  That is
OPI may serve as a good reference in pointing out areas
where convective clouds may occur and develop into
MCSs.
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RESULTS  AND  DISCUSSIONS

Many MCSs accompanied by heavy rainfall are
frequently observed over the Taiwan Strait along the
Mei-Yu front, then travel along with the front to Taiwan
from the southeastern coast of Mainland China during
May and June.  Three small areas were set to be experi-
mental areas in this research, covering from 25°N to
27°N and 120°E to 122°E (North Area), 22°N to 24°N
and 118°E to 120°E (Middle Area), 19°N to 21°N and
115°E to 117°E (South Area), respectively.  Figure 1
shows the locations of three experimental areas.  The
mean IR1-TBB and SSM/I derived OPI in the North
Area during the period from May to June in 2001 and
2002 were shown in Figure 2.  They show the fact that
the majority of the events of IR1-TBB dropping down
(smaller than 240 K) accompany the OPI rising up
(bigger than 0.5).  The result seemed to imply strong
correlation between air-sea interaction and oceanic con-
vective systems.  However, there are many other impor-
tant conditions affecting the oceanic convective sys-
tems’ development, such as a synoptic scale low level
jet, a warm and moist air advection, and a convectively
unstable layer.  Therefore, the correlation coefficient

for all the data pairs in Figure 2 was only -0.51 (shown
as Figure 3).  Moreover, there exists a reasonable infer-
ence that the different magnitude of air-sea interaction
could play a different role to start-up or maintain the
growth of oceanic convective systems in a different
synoptic scale condition.  That is, a pronounced air-sea
interaction (with a bigger OPI) may not induce oceanic
convective systems in a very stable and dry synoptic
scale environment.

To the contrary, a faint air-sea interaction (with a
smaller OPI) may induce a convective system in a very
unstable and moist synoptic scale environment.  To
examine the probable application of OPI in pointing out
areas where convective clouds over ocean may occur
and develop into convective systems, the mean prob-
ability distribution in North Area for various situations
of IR1-TBB and OPI was shown in Figure 4.  The
smaller (bigger) IR1-TBB values show higher (lower)
height of cloud top.  The smaller (bigger) OPI values
show weaker (stronger) air-sea interaction.  Generally
speaking, a bigger OPI value goes with a larger prob-
ability of small IR1-TBB.  It shows a potential worthi-
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Fig. 1. The locations of three experimental areas covering from 25°N
to 27°N and 120°E to 122°E (North Area), 22°N to 24°N and
118°E to 120°E (Middle Area), 19°N to 21°N and 115°E to
117°E (South Area).
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ness for monitoring the probable development of oce-
anic convective systems in the operational center.

Figures 5 show the mean IR1-TBB and SSM/I
derived OPI in the Middle Area during the period
from May to June in 2001 and 2002.  The correlation
coefficient for all the data pairs in Figure 5 was also
only -0.51 (shown as Figure 6).  Figure 7 show the mean
probability distribution in the middle Area for various
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Fig. 4. The mean probability distribution in North Area for various
situations of GMS-5 IR1 brightness temperature and satellite
derived objective potential index during the period from May
to June in 2001 and 2002.
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Fig. 5. The mean GMS-5 IR1 brightness temperature and satellite
derived objective potential index in the Middle Area during the
period from May to June in 2001 and 2002.
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situations of IR1-TBB brightness temperature and OPI.
Figure 8 shows the IR1-TBB and SSM/I derived OPI in
the South Area during the period from May to June in
2001 and 2002.  The correlation coefficient for all the
data pairs in Figure 8 was -0.53 (shown as Figure 9).
Figure 10 shows the mean probability distribution in
South Area for various situations of IR1-TBB and OPI.
The results of analysis of the relationship between IR-
TBB and OPI in Middle and South areas also show the
fact that a bigger OPI value goes with a larger probabil-
ity of small IR1-TBB.  However, it should be empha-
sized that aforemotioned synoptic scale situations
also important for the oceanic convective system’s
development.  For example, the air-sea interaction was
expected to induce or maintain oceanic convective sys-
tems in the North areas during the periods from 11 to 16,
and 26 to 31 May 2001, while, there was not any telling
convective system over these areas under such a weak
and stable environment (not shown).  In contrast, the air
sea interaction was not expected to induce or maintain
oceanic convective systems in the middle areas during
the period from 9 to 20, June 2002, while, there did exist
a telling convective systems over ocean (not shown).  Of
course it is more probable to see the development of
oceanic convective systems in a suitable environment
(both pronounced air sea interaction and strong synop-
tic conditions).

To figure out the serial correlation (also referred
as lagged correlation) for two discrete parameters “OPI”
and “IR1-TBB”, two copies of a sequence of OPI and
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Fig. 7. The mean probability distribution in Middle Area for various
situations of GMS-5 IR1 brightness temperature and satellite
derived objective potential index during the period from May
to June in 2001 and 2002.

Fig. 8. The GMS-5 IR1 brightness temperature and satellite derived
objective potential index in the South Area during the period
from May to June in 2001 and 2002.
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IR1-TBB were written, and one of the series shifted by
one hour.  Then, the correlation coefficient was com-
puted through the shifted data pairs.  Figures 11, 12, and
13 show the variations of correlation coefficient of OPI
and IR1-TBB for different shifted data pairs in the
North Area, Middle Area, and South Area, respectively.
The plus (negative) in the x-axis of Figures 11, 12, and
13 mean that OPI appears earlier (later) than IR1-TBB.
The zero in the x-axis means no shift process, and the
correlation coefficient was computed through the origi-
nal data pairs with the same time.  The bigger correla-
tion coefficient (larger than 0.5) appears while leading
time is four, eight, and twelve hour in North, Middle,
and South areas, respectively.  Therefore, the OPI may
serves as a good reference (not necessary) in pointing
out areas where oceanic convective clouds may occur.
In addition, the correlation coefficient is bigger in the
South areas than in the other two areas.  And the leading
time is also larger in the South areas than in the other
two areas.  That the thermodynamic conditions prob-
ably dominated the MCSs’ early genesis and develop-
ment over oceans may be the reason why the leading
time of the South areas was longer than the other areas.
That may also imply that air-sea interaction play a more
important role in the South areas than in the other two
areas.  In other words, that shows a South areas’ feature
that the oceanic convective clouds are more possible
to start-up over the oceans due to the effect of air-sea
interaction.  Of course, this research focuses only on the
conditions at the air-sea boundary layer.  It should be
noted that the structure of the weather systems and the

synoptic conditions also play an important role
(sometimes more important than the boundary con-
ditions).
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Fig. 11. The variations of correlation coefficient of GMS-5 IR1 bright-
ness temperature and satellite derived objective potential index
for different shifted data pairs in the North Area during the
period from May to June in 2001 and 2002.
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CONCLUSION

Under the hypothesis that air-sea interaction plays
an importance role in MCSs’ development, Liu et al.
[11] proposed OPI by employing satellite data and
demonstrate it be a good reference in pointing out areas
where convective clouds may occur and develop into
MCSs.  The present research evaluates the applicability
of OPI in operational weather center through the data of
2001 and 2002.

The results seems imply a strong correlation be-
tween air-sea interaction and oceanic convective sys-
tems due to the fact that the majority of the events of IR1
brightness temperature dropping down accompany the
OPI rising up.  The correlation coefficients between
IR1-TBB and OPI are not big number due to the fact that
some environmental conditions such as a synoptic scale
low level jet, a warm and moist air advection, and a con-
vectively unstable layer may also play an importance
role.  Therefore, a different strength of air-sea interac-
tion could play a different role to start-up or maintain
the growth of oceanic convective systems in a different
synoptic scale condition.  However, Generally speaking,
a bigger OPI value goes with a larger probability of
small IR1-TBB.  It shows a potential worthiness for
keep watching the probable development of oceanic
convective systems through OPI in the operational
weather center.  In addition, the analysis of serial corre-

Fig. 13. The variations of correlation coefficient of GMS-5 IR1 bright-
ness temperature and satellite derived objective potential index
for different shifted data pairs in the South Area during the
period from May to June in 2001 and 2002.
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lation for two discrete parameters “OPI” and “IR1-
TBB” showed the fact that the correlation coefficient is
bigger in the South areas than in the other two areas.
And the leading time is also larger in the South areas
than in the other two areas.  That may imply that air-sea
interaction play a more important role in the South areas
than in the other two areas.  In other words, the oceanic
convective clouds are more possible to start-up over the
former areas due to the effect of air-sea interaction.

The aim of OPI’s original setting out is to survey
the air-sea interaction which was hypothesized to be
important for the development of oceanic convective
systems.  However, there only exist the thermodynamic
information in OPI.  Actually, the synoptic scale envi-
ronmental condition does also play an important role in
their development absolutely.  Therefore, the OPI should
include the information both thermodynamic and dy-
namic condition.  An improved OPI is under the inves-
tigative stage and it will be proposed in the near future.
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