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ABSTRACT

Metamorphosis and puberty are two major events of the postem-
bryonic development in Vertebrates.  Based on some examples from
fish species, we review the definition, role and regulation of these
events, analyze their common and different features, as well as their
impact on the evolution and diversity of life cycles.

The term of puberty, firstly defined in humans, has been subse-
quently extended to the first acquisition of the capacity to reproduce
in all mammalian and non-mammalian vertebrates as well as in
invertebrates.  By definition, puberty occurs only once in the life
cycle.  However, some similarities may be found with other events,
such as annual re-activation of the reproductive function in seasonal
breeders or sex-change in adults, as observed in some fish species.

Metamorphosis allows the transition from one developmental
stage in a specific environment to the next stage in a different
environment, and includes a migration between the two habitats.
Metamorphosis corresponds to drastic changes in body shape, physi-
ology and behavior, and, unlike puberty, is encountered only in
some phyla/species.  In Vertebrates, the most described metamor-
phosis is the transformation in Amphibians of the aquatic larva
(tadpole) into the terrestrial juvenile.  Larval metamorphosis is also
encountered in some other Vertebrates, such as lampreys and some
teleosts (Elopomorphes and Pleuronectiformes).  Less drastic
morphological, physiological and behavioral changes occur in juve-
niles of some migratory teleosts.  This is the case of smoltification
in salmons and silvering in eels, which are referred to as “secondary
metamorphoses”.

Investigations on the regulation of puberty and metamorphoses
in Vertebrates reveal the crucial roles of the neuroendocrine axes.  In
all Vertebrates, puberty is triggered by the activation of the gonadot-
ropic axis, constituted of brain neuropeptide (gonadotropin-releasing
hormone, GnRH), pituitary glycoprotein hormones (gonadotropins:
luteinizing hormone, LH and follicle stimulating hormone, FSH) and
gonadal steroids.  Sex steroids induce the morpho-physiological and
behavioral transformations characteristic of puberty.

Metamorphosis in Amphibians is triggered by the thyrotropic
axis, constituted of brain neuropeptide corticotropin-releasing hor-

mone (CRH), instead of thyrotropin-releasing hormone, (TRH), pitu-
itary glycoprotein hormone (thyrotropin, TSH) and thyroid hormones
(TH: thyroxine, T4 and triiodothyronine, T3), which play a key-role
in the induction of morpho-physiological and behavioral changes.  A
similar control is suggested for larval metamorphosis in teleosts.

Studies on smoltification also indicate an important role of
thyroid hormones in secondary metamorphoses in teleosts, even
though other hormones such as growth hormone (GH) and corticoster-
oids may be of prime importance.  In contrast, recent investigations in
the eel reveal that the gonadotropic axis, and ultimately sex steroids
would be the major triggering control of silvering.  The similarities of
the morpho-physiological and behavioral changes between the two
species indicate remarkable evolutionary convergences in the mor-
phogenetic roles and target tissues of TH and sex steroids for the
induction of secondary metamorphoses.  In all cases, the possible
synergistic role of cortisol is highlighted.

Comparison of puberty and metamorphosis may also favor our
understanding of the internal and environmental triggering signals of
these postembryonic developmental events.  In teleosts, the large
plasticity in the occurrence and timing of metamorphosis and puberty,
which contributes to the high diversity of fish life cycles, may provide
new and relevant models to such investigations.

INTRODUCTION:  DEFINITION  OF
PUBERTY AND  METAMORPHOSIS

Metamorphosis and puberty are two major events
of the postembryonic development.

1. Puberty and related events

The term of puberty, firstly defined in humans, has
been subsequently extended to the first acquisition of
the capacity to reproduce in all mammalian and non-
mammalian vertebrates as well as in invertebrates.

By definition, puberty occurs only once in the life
cycle after a certain period of juvenile growth phase.
However, some similarities may be found with other
physiological events, such as the annual re-activation of
the reproductive function, as observed in seasonal breed-
ers [43, 143].  Furthermore, in the remarkable case of
fish species that are able to change sex during their life
cycle [4], the new ability to reproduce as a member of
the opposite sex could also be considered as a “second
puberty”.
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2. Metamorphosis and related events

Metamorphosis allows the transition from one de-
velopmental stage in a specific environment (ecophase
1 in habitat 1) to the next stage in a quite different
environment (ecophase 2 in habitat 2), and normally
includes the occurrence of a migratory phase between
the two habitats.  Metamorphosis corresponds to drastic
changes in body shape, physiology and behavior, and,
unlike puberty, is encountered only in some phyla/
species.  In Vertebrates, the classical and most de-
scribed model for metamorphosis is the one of the
Anuran Amphibians, which transforms the aquatic larva
(tadpole) into a terrestrial, adult-like shaped, juvenile.
Larval metamorphosis, also called “primary metamor-
phosis” is encountered in some other vertebrates, such
as in lampreys (Agnathans) and teleosts (Elopomorphes,
Pleuronectiformes) [157].

Other developmental events, which also encom-
pass morphological, physiological and behavioral
(migratory) changes, even though less drastic than for
the larval metamorphosis, are encountered in some mi-
gratory teleosts [116].  This is the case of smoltification
in salmons and silvering in eels.  These developmental
events occur after some period of juvenile phase and
prepare the fish to the transition between the continental
habitat and the oceanic one.  They are traditionally
referred to as “secondary metamorphoses”.

Birth in mammals or hatching in oviparous
Vertebrates, which are abrupt transitions from egg/
maternal to outside environment, may also present some
common features with metamorphoses.

Investigations on the regulation of puberty and
metamorphoses in Vertebrates reveal the key roles of
the brain-pituitary neuroendocrine axes.

NEUROENDOCRINE  CONTROL  OF  PUBERTY

1. Neuroendocrine control of puberty in mammals

Puberty in mammals is clearly characterized by an
activation of the gonadotropic axis [31, 127].  This neu-
roendocrine axis is constituted of a brain neuropeptide,
the gonadotropin-releasing hormone (GnRH), which
stimulate synthesis and release of pituitary glycopro-
tein hormones, the gonadotropins, luteinizing hormone
(LH) and follicle stimulating hormone (FSH), which act
on the gonads to  act ivate  gametogenesis  and
steroidogenesis.  Sex steroids (androgens and estrogens)
act as potent morphogenic hormones on the peripheral
target tissues, inducing various morpho-physiological
and behavioral changes, characteristics of the puberty
(secondary sexual characters) [115, 127].  In addition,
sex steroids exert positive and negative feedbacks on

the brain-pituitary axis, allowing a regulatory cross talk
between central and peripheral components of the gona-
dotropic axis.

The pubertal activation of the gonadotropic axis
occurs after a certain duration of juvenile phase (also
called “infancy”), which allows the organism to reach
certain age, size, energy stores sufficient enough to
ensure the success of reproduction [7, 38, 39, 60, 68].
The duration of this phase depends on genetic, internal
and environmental factors.  It can be short (for instance
in the mice) or long (as in humans) depending on the life
cycle strategies.  In seasonal breeders (for instance in
sheep), a seasonal reactivation of the gonadotropic axis
occurs every year after puberty and presents many
common features with puberty itself [143].  Thus, alter-
nate phases of inhibition and re-activation of the gona-
dotropic axis are at the basis of the annual cycles of
reproduction.

Recent studies showed that a peptide named
kisspeptin (or metastin), product of the Kiss-1 gene,
played a major role in the onset of puberty in mammals
[12, 95, 122, 130].  In 2003, three groups described the
effects of knock-out [40, 123] and mutation [21] of
GPR54, which is kisspeptin receptor.  They observed
that when GPR54 is absent or mutated, mice or humans
were unable to undergo puberty, because of small gonads,
and low concentrations of sexual steroids and
gonadotropins.  In 2005, Messager and collaborators
showed that in mice lacking GPR54, the anatomy and
localisation of GnRH neurons, as well as GnRH concen-
tration in the brain, remained unchanged.  These results
suggested that there was no problem in GnRH synthesis
in these mice, but that GnRH release was blocked.
Hypothalamic expression of kisspeptin and its receptor
increase dramatically at puberty and is modulated by
sex steroids (rat: [97]; mouse: [130]; rhesus monkey:
[124]).  Recently, studies demonstrated that GPR54
receptor was expressed within GnRH neurons in mam-
mals (mouse: [86]; ovins: [108]).  Kisspeptin injections
to different animal models can induce the release of
GnRH release, as well as FSH and LH, whereas admin-
istration of antibodies against kisspeptin block repro-
ductive function, even when puberty has been initiated
[25, 44, 82, 144].  Concomitant injection of kisspeptin
and GnRH antagonist blocks the stimulatory effect of
the peptide on FSH and LH release [124], and kisspeptin
has no direct effect in vitro on FSH and LH release
[144].  All these data show that at puberty, kisppeptin,
which brain expression is increased, acts via GPR54
receptor directly on GnRH neurons in order to induced
GnRH release which then stimulates the pituitary pro-
duction of LH and FSH .  In a seasonal model, the Syrian
hamster, it was shown that melatonin impacted on Kiss-
1 expression to control reproduction and that Kiss-1
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expression was significantly higher in hamsters kept in
long-day as compared to short-day [111].  These data
suggest that photoperiod, via melatonin, modulates Kiss-
1 neurons to drive the reproductive axis in seasonal
breeders [111].

2. Neuroendocrine control of puberty in teleosts

This scheme (GnRH/LH-FSH/sex steroids) is
largely conserved among Vertebrates [101], even though
additional controls may occur such as the dopaminergic
inhibition of gonadotropin production in some teleosts
[29, 104].  Indeed, pioneer works from Peter and col-
laborators on goldfish using hypothalamic lesions dem-
onstrated the existence of a GRIF (gonadotropin re-
lease-inhibiting factor) [105-107] Subsequent studies
using agonists or antagonists in vivo [9, 10], primary
culture of pituitary cells in vitro [11] and immunocy-
tochemistry [64-66] provided evidences that GRIF was
dopamine (DA).  An inhibitory role of DA on the control
of LH has been evidenced in many adult teleosts at the
time of ovulation and spermiation (catfish: [16, 145];
coho salmon: [146]; rainbow trout: [76, 118]; common
carp: [75]; tilapia: [154]).  However, DA does not play
an inhibitory role in all adult teleosts (Atlantic croaker:
[13]; gilthead seabream: [161]).

Concerning the early stages of gametogenesis and
the control of puberty, up to now, the possible involve-
ment of DA has only been studied in a few species.  In
juvenile striped bass [55] and red seabream [72], data
refuted a role for DA in the prepubertal control of
gonadotropins, as GnRH alone was able to trigger pre-
cocious puberty.  In contrast in European eel, only a
triple treatment with testosterone, GnRH agonist and
pimozide (DA-receptor antagonist) could induce in-
creases in LH synthesis and release, indicating that
removal of DA inhibition is required in prepubertal eel
for triggering GnRH-stimulated LH synthesis and re-
lease [148].  A recent study in the grey mullet has
demonstrated that D2 type receptor expressions in the
brain and in the pituitary were high at the early and
intermediate stages of puberty [98], when inhibition of
the reproductive function by DA is particularly pro-
nounced [1].

In male tilapia, GPR54 mRNA was found to be co-
localized within all three GnRH neuron subtypes [103],
and the number of neurons expressing GPR54, as well
as the level of GPR54 expression, increased with go-
nadal maturation [103].  In cobia Rachycentron canadum,
concomitant expression patterns of GPR54 and GnRH
mRNAs were reported during different stages of larval
and juvenile developments [92].  Moreover, an increase
in GPR54 was observed during early puberty [92], as in
pubertal rats [97] and rhesus monkey [124].  Similarly,

in female grey mullet (Mugil cephalus), significantly
high levels of GPR54 mRNAs were demonstrated in
brain at the early stage of puberty that subsequently
decreased as puberty advanced [98].

NEUROENDOCRINE  CONTROL  OF  LARVAL
METAMORPHOSIS

1. Neuroendocrine control of amphibian metamorphosis

Early data on the regulation of metamorphosis
came from Amphibians and demonstrated the key-role
of a surge in thyroid hormones (TH: thyroxine, T4 and
triiodothyronine, T3), in the induction of the many
morpho-physiological and behavioral changes charac-
teristics of the larval metamorphosis.  The role of the
thyroid gland in the control of larval metamorphosis
was first demonstrated by Gudernatsch in 1912 after he
observed the acceleration of the tadpole transformation
into frogs when feeding them with thyroid gland extracts.
Inversely, Allen [2] was able to completely prevent
metamorphosis by thyroidectomy.  As the thyrotropic
axis is activated, a series of sequential morphological
transformations occur.  An early change is the growth
and differential of the limbs, which in the absence of
hormone, still form but will not progress beyond the bud
stage.  The final morphological change, tail resorption,
occurs when the level of TH is highest at the climax of
metamorphosis [67, 142].

Thyrotropin (TSH), a pituitary glycoprotein
hormone, belonging to the same family as gonadotropins,
controls the production of TH in Amphibians [80], as
classically shown in mammals [85].  Early studies of
hypophysectomy and immunization demonstrated that
TSH played a central role in amphibian metamorphosis
[26, 32].  Indeed, Dodd and Dodd [26] showed that the
negative effect of hypophysectomy prior to metamor-
phosis could be reversed by treatment with mammalian
TSH.  Furthermore, passive immunization of tadpoles
with an antiserum to bovine TSH prevented spontane-
ous metamorphosis [32].  Morphological and biochemi-
cal changes observed during metamorphosis, such as
complete regression of tail and gills, de novo formation
of bone, visual pigment transformation or functional
differentiation of liver, can be induced by TH [126,
141].  In contrast to the situation in mammals in which
the brain peptide discovered for its stimulatory control
on TSH is TRH (for Thyrotropin Releasing Hormone)
[93], the brain neurohormone responsible for the activa-
tion of TSH production during amphibian metamor-
phosis, is corticotropin-releasing hormone (CRH) and
not TRH [23].  In fact, in amphibians, the production
and release of TSH by the pituitary appears to be regu-
lated by different neuropeptides according to the life
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stage.  Indeed, in premetamorphic amphibians, stimula-
tion of the pituitary-thyroid axis is only responsive to
CRH-like peptides and unresponsive to all other neuro-
hormones tested, including TRH [22, 24].  Thus, CRH is
the thyrotropin-releasing factor during the induction of
metamorphosis in tadpoles, and the stimulatory action
of TRH on TSH secretion develops after metamorphic
climax [23, 142].

Although TH is the only obligatory signal for the
initiation and completion of amphibian metamorphosis,
other hormones can modulate the onset and progression
of metamorphosis [142].  These include glucocorticoids
and prolactin (PRL), which can accelerate and prevents
TH-induced metamorphosis, respectively [70, 140, 151].
In Amphibians, the importance of CRH in metamorpho-
sis is reinforced by its traditional and evolutionary
conserved role in the corticotropic axis itself (activation
of pituitary corticotropin (ACTH) and adrenal cortisol).
Indeed, cortisol has been shown to act in synergy with
TH for the induction of various metamorphosis-related
morphogenetic changes.

2. Neuroendocrine control of larval metamorphosis in
lamprey

Lampreys, which are extant representatives of some
of the oldest known vertebrates, the jawless fish or
Agnatha [35, 36], also show a larval metamorphosis,
first described by Muller [94], in their life cycle [158].
During this metamorphosis, there are major changes in
external and internal features, and among them: final
development of the eye; total regression of the larval
kidney, replaced by an adult one; transformation of the
epithelium in the intestine, gills and endostyle; devel-
opment of teeth and tongue needed for adult feeding
[156, 157].

Opposite to the situation observed in amphibians,
larval (ammocoete) metamorphosis in lampreys is char-
acterized by a sharp drop in T4 and T3 plasma levels
(sea lamprey, Petromyzon marinus: [152, 159]; sea
lamprey and Lampetra lamottenii: [77]; southern hemi-
sphere lamprey, Geotria australis: [74], whereas con-
centrations of thyroid hormones during their larval life
are among the highest recorded in any vertebrate [77].

Accordingly, immersion of ammocoetes in potas-
sium perchlorate (KClO4) (which inhibits iodide uptake
and TH synthesis by the thyroid: [8] resulted in preco-
cious metamorphosis (Lampetra planeri: [55, 134];
Lampetra reissneri: [136]).  Moreover, both T4 and T3
treatment can block KClO4-induced metamorphosis [81,
158] and T3 treatment can inhibit spontaneous meta-
morphosis [160].  However, the use of propythiouracil
(PTU), another inhibitor of TH synthesis, was unable to
induce metamorphosis in the southern hemisphere

lamprey, despite the decline in serum levels of T4 and
T3 [74].  In addition, artificial maintenance of serum
concentrations of thyroid hormones in immediately
premetamorphic lampreys did not block metamorphosis
in all individuals [158].

Studies on deiodinases and TH receptors gave
interesting data, which may help to understand the
involvement of TH in lamprey metamorphosis.  Indeed,
there is a shift in monodeiodinase pathways between
larval and adult life in lampreys that may account for the
decline in serum levels of TH at the beginning of the
metamorphosis [30].  In addition, a reduction in the
capacity of T3 nuclear receptors in hepatocytes follow-
ing larval life may reflect the importance of this hor-
mone to the larval phases of growth and metamorphosis
[78].

All these data, even if still controversial, suggest
that, lamprey metamorphosis is unlike any other verte-
brate metamorphosis in that TH appear to be antagonis-
tic (inhibitory) to the process.  Indeed, in contrast to
amphibians, in lampreys, induction of metamorphosis
seems to be driven by a drop of TH [158].

These two opposite examples show that, during
the evolution of vertebrates, the role of thyroid hor-
mones in the endocrinology of larval metamorphosis
may have differed dramatically, being possibly inhibi-
tory in lampreys and stimulatory in amphibians.

3. Neuroendocrine control of larval metamorphosis in
teleosts

Typical larval metamorphosis in teleost fish is
restricted to Anguilliformes, Elopiformes, Notacanthi-
formes and Pleuronectiformes [158].  The two groups,
Anguilliformes and Pleuronectiformes, represent one
of the most ancient and one of the most recent groups of
teleosts, respectively.  This suggests that larval meta-
morphosis may have been acquired independently by
these two groups during teleost evolution.  The alterna-
tive hypothesis would be that larval metamorphosis
could have been lost in most other teleost groups.  The
most spectacular (and studied) larval metamorphoses in
teleosts are the metamorphosis from leptocephalus larva
to glass eels and the flatfish metamorphosis.

(1) Anguilliformes

Early studies on leptocephali of Anguilla anguilla
showed increased thyroid gland development [96] and
activation [128] during metamorphosis, a result later
confirmed in Conger myriaster [71, 153].  During early
metamorphosis, T4 body content increases about six-
fold in C. myriaster, and then decreases as metamorpho-
sis progresses; T3 body content increases gradually in
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early metamorphosis and then increases abruptly (about
13-fold) toward the end of the period [153].  In
agreement, histological evidence revealed an activation
of the thyroid gland [153].

Exogenous thyroid hormone has been shown to
stimulate metamorphosic changes in leptocephali of
Conger myriaster [69] and of Anguilla anguilla [149],
confirming the major role of TH in the induction of
elopomorph larval metamorphosis.

(2) Pleuronectiformes (flatfish)

Hormone assays in flatfish showed a surge in TH
concentration during metamorphosis with a peak around
the time of metamorphic climax [17, 50]; Japanese
flounder, Paralichthys olivaceus: [90, 139]).  In agree-
ment with the activation of the thyroid function during
larval metamorphosis, histological study of the pitu-
itary also showed an activation of TSH cells (plaice,
Pleuronectes platessa: [128]; Japanese flounder: [87]).

Accordingly, early works by Miwa and Inui [61,
88] in flounder (Paralichthys olivaceus) reported that
exogenous TH could induce metamorphosis (eye
migration, settling behavior and length of second dorsal
fin ray) with the production of a miniature of the nor-
mally metamorphosed juvenile, while thiourea treat-
ment arrested the metamorphic process of the fish.
Subsequent experimental studies by various authors
have demonstrated that TH treatment was able to induce
the many morphological, physiological and behavioral
changes, characteristics of flatfish metamorphosis, such
as shift in erythrocyte populations [89], histological and
biochemical changes in muscle [153], development of
gastric glands [57, 91, 131], changes of gill mitochon-
dria-rich cells from larval to juvenile form [121] and
bone remodelling for eye relocation [100, 132].  Also,
[62] showed that injection of bovine TSH into flounder
larvae increased tissue concentrations of T4 and accel-
erated the metamorphic process, such as shortening of
the second fin ray and eye migration.

These data demonstrated that the thyrotropic axis
(TSH-T4/T3) would be the main axis controlling meta-
morphosis in flatfish.  However, nothing is yet known
on the brain neurohormones potentially involved in this
activation.

Beside the thyrotropic axis, cortisol was shown to
synergize with thyroid hormones, while sex steroids
and prolactin exhibited an antagonist effect (for review:
[20]; Japanese flounder: [18, 19]), in agreement with
data in amphibians.  Changes in tissue cortisol concen-
trations closely parallel those of thyroid hormones,
except that cortisol peaks a few days earlier than T4
(Japanese flounder: [17]).  Both PRL and growth hor-
mone (GH) expression increased gradually but steadily

during metamorphosis and showed a dramatic rise in
post-climax fish [20].  In contrast, tissue levels of
estradiol and testosterone remain low and do not show
marked change during metamorphosis [16].

These data demonstrated the involvement of thy-
roid hormones as major triggers of metamorphosis in
eels as in flatfish.  Further studies are clearly needed to
investigate the potential synergistic or antagonistic roles
of other hormones as well as to determine the brain-
pituitary control of thyroid function.

A few data in adult teleosts suggest also a role for
CRH and/or TRH in the control of TSH, with variations
possibly depending on species or physiological status
(coho salmon: [73]; European eel: [109]).  Further
studies are clearly needed to investigate which brain
neuromediator is specifically implicated in the trigger-
ing of larval metamorphosis in teleosts.

In conclusion, these data indicate that thyroid
hormones play a key role in the induction of larval
metamorphoses in teleosts, as well as in amphibians,
while in lampreys TH would be inhibitory.  This sug-
gests that the stimulatory role of TH in metamorphosis
may have been acquired in a common ancestor of teleo-
s ts  (act inopterygian l ineage)  and amphibians
(sarcopterygian lineage) posteriorly to the emergence
of agnathans.  An alternative hypothesis is that the
stimulatory role of TH in larval metamorphosis could
have been acquired independently in amphibians and in
teleosts.

NEUROENDOCRINE  CONTROL  OF
SECONDARY  METAMORPHOSES

Secondary metamorphoses have been described in
some diadromous migratory teleosts.  They prepare the
fish to the river downstream migration, to the transfer
from fresh to seawater and finally to the oceanic
migration.

1. Neuroendocrine control of smoltification

In teleosts, a well-known example of “secondary
metamorphosis” is provided by smoltification in
salmons.  This transformation from parr to smolt, which
occurs in the river, encompasses various morphological
(s i lver ing  of  the  body color ) ,  phys io logica l
(osmoregulation, vision) and behavioral (rheotaxism)
changes, and preadapts the smolt to its future oceanic
growth ecophase [5].  According to the crucial role of
smoltification in the salmon capacity to adapt to seawa-
ter and thus in the success of its biological cycle and
aquaculture, many investigations have been performed
on the endocrine control of smoltification.

A number of endocrine investigations emphasized
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the role of TH in these changes.  Thyroid involvement in
smoltification was originally suggested by Hoar [51]
who observed histological activation of thyroid tissue
of the Atlantic salmon (Salmo salar).  The availability
of radioimmunassay (RIA) procedures has enabled dif-
ferent groups to demonstrate T4 and T3 surges during
the smoltification process [52, 53].  Moreover, the
administration of exogenous TH to juvenile parr-status
salmonids results in morphological and physiological
changes, which are consistent with the parr-smolt trans-
formation [27, 34, 49, 84, 113, 135].

Many other studies revealed the key-role in
smoltification of other hormones, such as growth hor-
mone (GH) and cortisol.  Hypertrophy and hyperplasia
of somatotrophs [27] and a rise in plasma GH have been
observed during smoltification (coho salmon: [137, 138,
155]; Atlantic salmon: [110]).  Moreover, administra-
tion of GH clearly improves hypo-osmoregulatory abil-
ity and seawater survival of parr (for review: [5, 27]).  In
addition, GH treatment also induces other smoltification-
related changes, such as condition factor and skin pig-
mentation [27].  Variations of plasma levels of cortisol
suggest a potential synergistic role during smoltification
[133, 150].  Data suggest that cortisol could also play a
significant stimulatory role in osmoregulation.  Indeed,
prolonged cortisol treatment in pre-smolt coho salmon
caused an increase in Na+/K+-ATPase activity, while
treatment of smolts had no effect [112].

This is leading to a complex scheme of the pitu-
itary control of smoltification.  Moreover, neuroendo-
crine investigations on the brain components of the
control of smoltification are still lacking.

2. Neuroendocrine control of silvering

Another exemple of “secondary metamorphosis”
is provided by another migratory teleost, the eel.
Silvering, which transforms the yellow eel into the
silver eel, shares many similarities with smoltification,
such as change in body color, preparation to osmoregu-
lation in seawater, and downstream migratory behavior.
Because of these analogies, it had been classically
assumed that silvering and smoltification would be
under a similar endocrine control.  However, our recent
studies have contributed to reveal striking discrepancies,
with a potential key-role of the gonadotropic axis in the
induction of silvering.  Indeed, a significant increase in
FSH( mRNA level could be observed during the early
stages of silvering and may correspond to the first
appearance of lipid vesicles in oocytes (endogenous
vitellogenesis) [3].  This increase in FSHβ is followed
by a sharp increase in LHβ mRNA levels at the late
stages, which may be related to the beginning of exog-
enous vitellogenesis [3].  At the peripheral level, sig-

nificant increases in plasma levels of sex steroids
(oestradiol, testosterone and the teleost specific andogen,
11-ketotestosterone) have been measured between yel-
low and silver stages (A. australis and A. dieffenbachii:
[3, 120]; A. anguilla: [79]; A. rostrata: [14]; A. japonica:
[47]).  This control strongly differs from smoltification,
which is in contrast inhibited by sex steroids.

Experimental data using exogenous sex steroids
are in agreement with the involvement of the gonadot-
ropic axis in the induction of silvering, as treatment
with androgens can induce increases of eye diameter [3,
114] and of skin thickness [114], regression of digestive
tract [3, 114] in yellow eels, and amplification of silver-
ing parameters in silver eels (eye diameter: [6, 102];
skin thickness and darkening: [102]; regression of the
digestive tract: [148]).

In contrast, measurement of pituitary TSH mRNAs
and plasma levels of TH during silvering shows no
change in TSH and T3, and a moderate increase in T4
(Anguilla anguilla: [3]; Anguilla japonica: [48]).
Similarly, no increases were observed in GH plasma
levels, pituitary content neither in GH mRNA levels
throughout silvering in European eel [3].

This discrepancy is likely related to the position of
silvering versus smoltification in the migratory fish life
cycle, silvering corresponding to the initiation of the
reproductive phase in the ocean, while smoltification
prepares the fish to the growth phase.  The similarities
of the morpho-physiological and behavioral changes
between the two species indicate remarkable evolution-
ary convergences in the morphogenetic roles and target
tissues of TH and sex steroids for the induction of
secondary metamorphoses.  Furthermore our ongoing
studies suggest a synergistic role of glucocorticosteroids
on sex steroid-induction of silvering parameters [56,
119], a synergism recalling that observed with TH dur-
ing larval and possibly also secondary metamorphosis.

It is of great interest to note that while smolti-
fication and silvering share many similarities in term
of morphological changes, the endocrinology of these
two secondary metamorphoses drastically differs, with
the major involvement of different neuroendocrine
a x e s ,  t h e  t h y r o t r o p i c / s o m a t o t r o p i c  o n e  f o r
smoltification and the gonadotropic one for silvering.
This suggests that secondary metamorphoses may have
been acquired independently, via different endocrine
mechanisms, during teleost evolution.  The conver-
gence between some morphological (skin silvering,
eye size and pigments), metabolic and behavioural
changes reflects that the control of the same peripheral
target organs (skin, eye, muscle...) and target genes is
exerted by different hormonal receptors (thyroid hor-
mone receptors in salmon versus androgen receptors in
the eel).
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CONCLUSIONS:  COMPARATIVE
NEUROENDOCRINOLOGY  OF  PUBERTY  AND

METAMORPHOSIS.

1. Neuroendocrine “crises”

Metamorphosis and puberty are triggered by tran-
sient activations of neuroendocrine axes namely of the
thyrotropic axis for classical larval metamorphosis and
the gonadotropic axis for puberty.  Beside this classical
scheme, more complex situations are revealed.  As
discussed above, other axes, such as the somatotropic
and corticotropic axes, may also play a key-synergistic
role in the induction of all morphological, physiological
and behavioral changes characteristic of metamorpho-
sis and puberty.  Furthermore, distinction between meta-
morphosis and puberty vanishes when studying a tradi-
tionally so-called “secondary metamorphosis” such as
silvering in the eel.

Common features are the transient and large acti-
vation of brain-pituitary-peripheral neuroendocrine axes
(“neuroendocrine crises”) during which classical regu-
lations such as homeostatic maintenance of hormones
levels and negative feedbacks may be overruled.  Thus,
in teleosts, strong positive feedbacks by sex steroids on
the brain and pituitary have been evidenced that are
largely amplifying the activation of the gonadotropic
axis at puberty.  In other cases, a reset of negative
feedbacks to another threshold level may occur.

The “neuroendocrine crises” also reflect the key-
role of the brain in the timing and coordination of these
developmental events.  Internal and environmental cues
(triggering signals) are integrated at the brain level
leading to the activation of specific neuroendocrine
axes.  Coordinated implication of neuroendocrine axes
may result from common brain control.  Such a case is
exemplified by the common role of CRH in the
corticotropic axis and thyrotropic axis at metamorpho-
sis in amphibians and also possibly in fish.  Interrela-
tionships between neuroendocrine axes may also result
from interaction by peripheral hormones.  For instance
we could demonstrate stimulatory roles of cortisol
(corticotropic axis) and IGF (somatotropic axis) in the
pubertal simulation of LH (gonadotropic axis) in the eel
[58, 59, 117].

2. Triggering signals

Comparison between puberty and metamorphosis
may also favor our understanding of the triggering
signals of these postembryonic developmental events.
For instance, metamorphoses as well as puberty or even
sex change, should occur only when body size and
energy stores are sufficient enough to allow the success

of the next phase (migration/reproduction) [125].  Thus,
metabolic signals such as insulin-growth factors or the
more recently discovered hormone, leptin and ghrelin,
could likely be involved in the triggering of both types
of events (mammals: [15, 33, 41, 147]; non-mammals:
[101, 125]).  Comparative studies would help decipher-
ing the brain networks implied in the integration of the
internal and environmental signals of puberty/
metamorphosis, as well as the pathways of the activa-
tion of the gonadotropic /thyrotropic and corticotropic
axes, respectively.  In teleosts, the large plasticity in the
occurrence and timing of metamorphosis and puberty,
which contributes to the high diversity of fish life
cycles, may provide new and relevant models to such
investigations.

3. Threats on metamorphosis and puberty: Environmen-
tal and endocrine disruptions

The crucial morphogenetic roles of TH and ste-
roids at the time of metamorphosis and puberty, as well
as their role on peripheral and central (feedback actions
on the brain and pituitary) target tissues, make the
organism particularly vulnerable to the endocrine dis-
rupting effects of xenobiotics.  Furthermore, aquatic
species are specially concerned by the increasing num-
ber of endocrine disruptors, currently accumulating in
fresh as well as in marine hydrosystems.  Indeed, the
aquatic existence means that the animal is bathed con-
stantly in a solution containing pollutants, and that
uptake of chemicals readily occurs via the gills and skin,
in addition to the diet.  Impacts of contaminants are
various and range from subtle changes in the physiology
and sexual behavior to permanently altered sexual dif-
ferentiation and impairment of fertility (wild freshwater
fish: [63]; marine fish: [83]; invertebrates: [99]; aquatic
mammals: [37]; amphibians: [42]; reptiles: [46]).  In
fish, the three major neuroendocrine axes involved in
the control of puberty and metamorphoses: HPG
(hypothalamo-pituitary-gonads), HPT (hypothalamo-
pituitary-thyroids) and HPI (hypothalamo-pituitary-
interrenals) are potentially affected by endocrine
disruptors (for reviews: freshwater fish: [63]; marine
fish: [83]).
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