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ABSTRACT

An increase in atmospheric CO2 concentration leads to a rise in
CO2 concentrations and a decrease in pH of the ocean surface water
due to continuous gas exchange between air and seawater, which may
have serious impacts on neritic marine organisms.  In this study, we
assessed the impacts of elevated CO2 concentrations on meiobenthic
organisms by exposing them to seawater equilibrated with air (control:
CO2 concentration 380 ppm) or CO2-enriched air (2,000 ppm higher
than control, CO2 concentration predicted by the year 2300) for 56
days in microcosms.  We observed no significant differences in the
abundance of total meiofauna, nematodes, harpacticoid copepods
(including adults and copepodites) and nauplii by the end of the
experiment.  These results suggest that the projected atmospheric CO2

concentration in the year 2300 does not have acute effects on the
meiofauna.  However, further studies are needed to evaluate longer-
term effects of elevated CO2 on meiobenthic organisms.

INTRODUCTION

The atmospheric concentration of carbon dioxide
(CO2) has increased from the pre-industrial level of 280
parts per million (ppm) to 380 ppm as a result of
anthropogenic CO2 emission associated with industrial-
ization [11].  The resulting global warming has already
impacted terrestrial and marine ecosystems [18, 24],
and a further rise in temperature is predicted to intensify
sea surface stratification and drastically alter marine
ecosystem [1, 19].  In addition to the indirect effects of
CO2 due to global warming, recent studies have re-
vealed direct effects of CO2 on terrestrial ecosystems,
and have predicted serious impacts on interactions be-
tween plants and insects [4, 7].

Due to continuous gas exchange between air and
seawater [22], an increase in atmospheric CO2 concen-
trations will raise CO2 concentrations at the ocean

surface, and decrease seawater pH through the dissocia-
tion of carbonic acid formed by the increased CO2 [5].
The atmospheric CO2 concentration is predicted to in-
crease to above 2,100 ppm, and thereby reducing the pH
of the ocean surface water by about 0.77 units by the
year 2300 [5].  These chemical changes in seawater
likely have significant impacts on neritic marine
organisms.

Most published studies on the effects of CO2 on
marine organisms have focused on calcification re-
sponses to elevated seawater CO2 concentration (for
review, see Supporting Online Material of Feely et al.
[8]).  Riebesell et al. [17] also demonstrated that the
growth rate of marine diatoms Thalassiosira punctigera
and Rhizosolena  cf .  alata  increased with CO2

concentration.  These previous studies mostly employed
short-term exposure protocols and only very few evalu-
ated long-term effects of increased CO2 on marine
organisms.  Recently Michaelidis et al. [15] reported
that the growth and metabolic rates of the marine mus-
sels Mytilus galloprovincialis decreased when exposed
to CO2-acidified seawater (pH 7.3) for 3 months.
Shirayama and Thornton [21] demonstrated that growth
of sea urchins Hemicentrotus pulcherrimus and
Echinometra mathaei was suppressed by 6-month expo-
sure to seawater equilibrated with CO2-enriched air
(580 ppm).  It is therefore conceivable that long-term
exposure of marine organisms to elevated CO2 concen-
tration seawater for several generation could potentially
result in decreases of population size.

In the present study, we incubated meiobenthic
communities under elevated CO2 conditions (2,000 ppm
above ambient) for 56 days to investigate changes in
abundance and biomass of nematodes and harpacticoid
copepods.  Meiofauna is suitable for studying long-term
effects because of its short generation time, rapid growth,
and high abundance in a small area.  In addition, despite
their small size, meiobenthic faunas are important in the
energy flow of marine benthic ecosystems [9].  Here, we
focused on nematodes and harpacticoid copepods be-
cause they usually account for more than 90% of the
total meiofauna in mud environments [10], and owing to
their confinement in the oxidized layers of sediment
(usually in the top 1 cm, [6]), they may be more suscep-
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tible to the direct and indirect effects of seawater CO2.
We also investigated the effects on nauplius larvae,
because the early developmental stages are thought to
be particularly sensitive to environmental changes [14].

MATERIAL  AND  METHODS

Sediments were sampled with a Smith McIntyre
grab from the seafloor (approximately 10 m in depth) of
the Tanabe Bay, in the Kii Peninsula, Japan (33°
42.2’N, 135° 22.9’E) on 30 January 2001.  The top 5 cm
layer was used for the experiment.

The experiment was conducted for two months
(from 1 February to 29 March, 2001) in an indoor
microcosm system.  The sediments were homogenized
by stirring and were placed in six microcosms (capacity
30L) to a depth of 7 cm and covered with seawater.
Microcosms were placed in a flow-through container
into which coastal seawater was pumped continuously.
Air was supplied at a rate of 500 ml min-1 to the water
in three microcosms, (CO2 concentration 360 ppm, con-
trol groups) whereas the water in the other three micro-
cosms were aerated with CO2-enriched air (CO2 con-
centration 2,000 ppm higher than the air, CO2 groups).
The flow rates of air (500 ml min-1) and CO2 (1 ml min-

1) were controlled using flow meters (Kofloc).  The pH
and temperature of water in each microcosm was mea-
sured daily using a pH meter (Horiba, D-25).  No food
was supplied.  The entire volume of seawater in each
microcosm was renewed once a week throughout the
experiment.  The photoperiod was set to 14L:10D.

To monitor changes in the meibenthic community,
sediment was sampled on days 0 (untreated cores), 7,
14, 21, 28, and 56.  At each sampling, one sediment core
(1-cm deep) was taken from each microcosm using a
plastic syringe, the tip of which was cut off to make a
cylinder (2.0 cm internal diameter).  Sediment samples
were preserved in 5% borax-buffered formalin seawater.
Rose Bengal was added to stain the meiofaunae.  The
samples were sieved through stainless steel sieves with
mesh size of 500, 250, 125, 63, and 32 µm, and the
number of meiofauna was counted under a dissecting
microscope.  The biomass of the meiofauna was calcu-
lated by using the standard ash-free dry weight per
individual as reported by Shirayama [20].  Treatment
effects were evaluated statistically using Student t-test
and two-way ANOVA.  Values are given as means ±
S.D..

RESULTS

1. Temperature and pH

During the experiment, seawater temperature of

each microcosm varied between 13.0°C to 17.8°C
(Figure 1).  The difference in water temperature was
less than 0.1°C between any two microcosms through-
out the experiment.  The average seawater pH values of
the control and CO2 groups were 8.20 ± 0.05 and 7.40 ±
0.07, respectively (Figure 1).

2. Effects on the abundance and biomass of meiofauma

The abundance of total meiofauna was signifi-
cantly lower in the CO2 groups than in the control of the
same day only on day 7 (t-test, p < 0.05, Figure 2).  The
total biomass fluctuated in both control and CO2 groups
during the experiment (2-way ANOVA, p < 0.05,
Figure 2), but there was no difference between the two
groups at any given day of observation throughout the
experiment (t-test, Figure 2).

The composition of meiobenthic community in
this study consisted of nematodes (67.8 ±  7.5%),
harpacticoid copepods (24.4 ± 4.4%), nauplii larvae
(4.3 ± 2.7%), ostracods (1.6 ± 1.6%), turbellarians (1.9
± 1.4%) and polychaeta (0.1 ± 0.3%).  The foraminifer-
ans were excluded from our analysis because of their
fragile nature.

The abundance and the biomass of the two domi-
nant taxa, nematodes and copepods (including adults
and copepodites), were further investigated to examine
possible changes in meiofauna composition.  The abun-
dance of nematodes varied significantly with time in
both control and CO2 groups (2-way ANOVA, p < 0.05,
Figure 3), whereas there was no difference between the

Fig. 1. Mean seawater temperature and pH of the control and CO2

microcosms during the experimental period.

10 

12 

14 

16 

18 

20 

T
em

pe
ra

tu
re

 (
°C

) 

Control 
CO2 

7.2 

7.4 

7.6 

7.8 

8.0 

8.2 

8.4 

pH
 

0 7 14 21 28 35 42 48 56
Days 



H. Kurihara et al.: Effects of Elevated Seawater CO2 Concentration on the Meiofauna 19

two except on day 7 (t-test, p < 0.05, Figure 3).  There
was a decreasing tendency in nematode biomass in both
groups (2-way ANOVA, p < 0.05, Figure 4), although
no significant difference was detected between the
two groups at any given day of observation (t-test,
Figure 4).

No difference in the abundance of harpacticoid
copepods was either detected throughout the experi-
ment between the two groups (t-test, Figure 3).  On day
7, the biomass of harpacticoid copepods in CO2 groups
was significantly higher than control groups, whereas
the reverse was true on day 21 (t-test, p < 0.05, Figure
4).

No difference in the abundance of harpacticoid
nauplii was detected throughout the experiment be-
tween the two groups (t-test, Figure 3).  The abundance
of other components of meiofauna, such as polychaetes,
ostracods, and turbellarians, were also unaffected by
CO2.

3. Effects on the different sizes of meiofauna

We analyzed the size structure of nematodes and
harpacticoid copepods to evaluate the size dependency

of CO2 tolerance.  The most abundant sizes of nema-
todes and harpacticoid copepods were between 250 and
125 µm (Figures 5, 6).  For nematodes, there was a
significant difference between treatments in the abun-
dance of 250- to 125 µm size classes on day 7 (t-test, p
< 0.05, Figure 5c), but not in the other size classes
(Figure 5).  For harpacticoid copepods, no significant
differences were observed between treatments in any
size class throughout the experiment (Figure 6).

DISCUSSION

Our results suggest that atmospheric CO2 concen-

Fig. 2. Change in abundance and biomass of total meiofauna in con-
trol and CO2 groups from day 0 to day 56.  Initial abundance
of total meiofauna was 385 × 103 ± (16 × 103) ind. m-2 (control)
and 475 × 103 ± (147 × 103) ind. m-2 (CO2 groups).  Initial
biomass of total meiofauna was 437 × 197 mgC m-2 (control)
and 521 ± 400 mgC m-2 (CO2 microcosms).  Mean ± SD of three
replicate microcosms. * Significant difference between control
and CO2 groups (p < 0.05, t-test).
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Fig. 3. Changes in the abundance of nematodes, harpacticoid copep-
ods and nauplii in sediment in control and CO2 groups from
day 0 to day 56.  Initial abundance of nematodes was 274 × 103

± (16 × 103) ind. m-2, copepods was 90 × 103 ± (18 × 103) ind.
m-2, and nauplii was 10 × 103 ± (3 × 103) ind. m-2 (control).  Initial
abundance of nematodes was 302 × 103 ± (86 × 103) ind. m-2,
copepods was 122 × 103 ± (25 × 103) ind.  m-2, and nauplii was
31 × 103 ± (22 × 103) ind. m-2 (CO2 groups).  Mean ± SD of three
replicate microcosms. * Significant difference between control
and CO2 groups (p < 0.05, t-test).
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tration projected by the year 2300 (2,000 ppm higher
than the control) does not induce lethal effects on most
meiofaunae, at least within 56 days.  In contrast,
Shirayama and Thornton [21] showed that increased
mortality of sea urchins and a gastropod after 6 months,
when they were exposed to only 200 ppm above ambient
or 580 ppm CO2.  Similarly, we observed increased
mortality of shrimps Palaemon pacificus exposed to
1,000 ppm CO2 for 30 weeks and to 2,000 ppm CO2

concentrations for 15 weeks (submitted).  Thus, CO2

tolerance differs markedly among marine organisms.
The apparent higher tolerance of the benthic meiofauna
may be attributable to several factors.  First, the sea
urchins, gastropod and shrimps are epibenthos, expos-
ing themselves to ambient seawater, whereas the organ-
isms examined in the present study largely confine
themselves in sedimentary mud.  Because of larger
fluctuations of CO2 concentration in pore water, species
dwelling in sediments may be more tolerant to CO2 than
pelagic organisms [16].  Second, calcified marine or-
ganisms such as snails, echinoderms and crustaceans
are thought to be more sensitive to CO2 than other
organisms due to the high sensitivity of CO2 effects on
calcification mechanisms [8].  Specific difference in the
response to elevated CO2 may change community

Fig. 4. Change in the biomass of nematodes and harpacticoid copep-
ods in control and CO2 groups from day 0 to day 56.  Initial
abundance of nematodes was 132 ± 17 mgC m-2 and copepods
was 282 ± 203 mgC m-2 (control).  Initial abundance of nema-
tode was 310 ± 367 mgC m-2 and copepods was 133 ± 55 mgC
m-2 (CO2 groups).  Mean ± SD of three replicate microcosms. *
Significant difference between control and CO2 groups (p <
0.05, t-test).

* 
*

0 7 14 21 28 56
Days 

B
io

m
as

s 
(m

g 
C

 m
-2
) 

 
B

io
m

as
s 

(m
g 

C
 m

-2
)

Control
CO2

200

150

100

50 

0
 

800

600

400

200

0

Nematodes 

Copepods

Fig. 5. Changes in the abundance of nematodes of different size classes:
(a) > 500 µm, (b) 500-250 µm, (c) 250-125 µm (d) 125-63 µm, and
(e) 63-32 µm in control and CO2 groups from day 0 to day 56.
Mean ± SD of three replicate microcosms. * Significant differ-
ence between control and CO2 groups (p < 0.05, t-test).

0 

100

200 

300

80

0

5

10

15

20

200

150

100

50

0
60

40

20

0

60

40

20

0

0 7 14 21 28 56

0 7 14 21 28 56

Days

(a)

(d)

(e)

(b)

(c)

Control

CO2

A
bu

nd
an

ce
 (

10
3  in

d.
 m

-2
)



H. Kurihara et al.: Effects of Elevated Seawater CO2 Concentration on the Meiofauna 21

structure, and thereby have ecosystem-level conse-
quences.

Even though meiobenthos are not lethally affected
by elevated CO2, it is highly possible that raised CO2

have sub-lethal effects on reproduction, metabolism
and growth rate.  Michaelidis et al., [15] reported that
long-term exposure (3 months) of the marine mussels to
CO2-acidified seawater (pH 7.3) resulted in a depres-
sion of respiration rate.  Similarly, reduced growth rate
and feeding activity under low pH were observed in
clams and oysters [2, 3].  When sea urchin eggs were
reared under elevated CO2 levels, the fertilization rate
of the eggs tended to decrease with increasing CO2

concentration [13].  In the present study, the abundance
of small-sized nematodes (Figure 5e) and nauplius em-
bryos (Figure 3) never disappeared throughout the
experiment, although their abundance fluctuated in both
control and CO2 microcosms.  This suggest that may
have been successful recruitments under elevated CO2

conditions, and therefore elevated CO2 had not im-
pacted the reproduction of nematodes and harpacticoid
copepods.  However, it is possible that, there could have
been a change in the species composition of nematodes
or harpaticoid copepods, in spite of no observed change
in the abundance or biomass of meiofauna in the el-
evated microcosms.  Indeed, Takeuchi et al. [23] dem-
onstrated in CO2 tolerance between marine nematode
species.  Analyses of nematodes and harpacticoids to a
lower taxonomic level are needed to more closely evalu-
ate impacts of raised CO2 on these meiofaunal taxa.

Investigating biological impacts of elevated CO2

is of importance in the context of understanding envi-
ronmental impacts of not only ocean acidification due to
increasing atmospheric CO2, but also of potential seep-
age from sub-seabed geological CO2 storage, for which
no scientific information is currently available [12].
Biological impacts should differ depending on the ex-
tent (from geologically localized to spatially dispersed),
duration (slow gradual to sudden intermittent), the mag-
nitude of CO2 flux leaked, and the phase of CO2

(supercritical, liquid or gas), let alone the local fauna
and flora of seepage sites.  However, endobenthic or-
ganisms may well be subjected to much higher CO2

concentrations than the projected maximum concentra-
tions of atmospheric CO2.  Appropriate experimental
protocols must be employed to evaluate the risk of
potential seepage from sea-bed geological storage, be-
cause the expected hazards are distinctly different from
the impact of CO2 injection into mid-water depths [12].

In conclusion, the results demonstrated that the
increased seawater CO2 concentration used in the present
study does not have acute impacts on the abundance and
biomass of the meiofauna.  Yet, it is possible that the
meiofauna is sublethally affected when exposed to raised

Fig. 6. Changes in the abundance of harpacticoid copepods of differ-
ent size classes: (a) > 500 µm, (b) 500-250 µm, (c) 250-125 µm (d)
125-63 µm, and (e) 63-32 µm in control and CO2 groups from
day 0 to day 56.  Mean ± SD of three replicate microcosms. *
Significant difference between control and CO2 groups (p <
0.05, t-test).
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CO2 concentration for longer durations and that the
meiobenthic community structure changes due to dif-
ferences in CO2 tolerance among species.  Further stud-
ies are needed to understand the future impacts of
increasing atmospheric CO2 on the marine ecosystem.
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