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ABSTRACT

An important aspect of the reproduction of European silver eels
is the huge distance (ca 6000-km) they have to swim to reach their
spawning grounds.  So, obviously endurance swimming is a major
requirement for successful reproduction.  As migrating eels don’t
feed, two major questions should be asked: 1) what are the energy
costs to cross the Atlantic Ocean, 2) How much fat do eels need to
cover the expenses.  From swim tunnel experiments run for days till
even 6 months we could determine the cost of transport (COT): 0.5 kJ
km-1 kg-1.  This amount is about 5 times lower than COT values of
salmonids of similar size, also those low costs allow eels to spend only
60 g fat/kg for the whole journey.  As eels have around 200g fat/kg,
there is more than enough left after reaching the spawning site for
gonad development and spawning behavior.  Although the swim
endurance of eels is impressive, large female eels (1-2 kg, 70-80 cm)
can swim for prolonged periods not much faster than 1.6 BL/s, with
their best performance around 0.8 BL/s.

When leaving the European West coast, silver eels are still in a
prepubertal condition, suggesting that somewhere during their jour-
ney sexual maturation needs to be activated.  We hypothesized that
swimming might be such a trigger.  Indeed we observed significant
changes in female eels already after several weeks of swimming.  We
observed a significant increase of eye size, gonad weight and oocyte
diameter, the latter mainly due to the deposition of many lipid
droplets.  However, no further development of oocyte size was
observed when the eels continued swimming.  The mechanism behind
the oocyte growth might be connected to stimulation of lipid
mobilisation required for swimming.  Lipid stores are not only impor-
tant for long distance swimming, but also for gonad growth and
gamete production.  Based on the lipid content of eggs, we estimated
that around 60g fat/kg eel is required for reproduction.  Combined
with the requirement for swimming, total lipid content of succesful
spawners must be at least 12%, i.e. 120 g fat/kg.

INTRODUCTION

1. Migration

An important aspect of the reproduction of Euro-
pean silver eels is the huge distance they have to swim
to reach their spawning grounds.  After leaving the West
European coast they still have to swim 5000-6000 km to
the Sargasso Sea, the assumed spawning site.  So,
obviously long term swimming capacity is a major
requirement for successful reproduction.  Migrating
eels don’t feed; therefore they rely completely on fat
stores for their energy.  Fat stores are up to 30% of their
body weight.  Silver eels must swim across the Atlantic
Ocean in about 5-6 months, this is the difference be-
tween the time they leave and the time the first larvae
are observed in the Sargasso Sea.  From the time needed
to cross the ocean in combination with the distance a
mean swimming speed of 0.4 m/s can be calculated.  The
long distance migration suggests 2 major questions: 1)
Do they have enough energy reserves? 2) Are they built
to swim long distances? To know whether they have
enough energy for successful reproduction, it is impor-
tant to know the energy consumption during long term
swimming as well as the amount of the initial fat stores.

Thus far long term swimming was, to our
knowledge, never carried out before with fishes.  This
requires the construction of special equipment, such as
available at the Institute of Biology Leiden.  Long term
swimming may be a much heavier burden to animals
than short term swimming, since under those conditions
the experimental animals do not have the opportunity to
recover.  This obviously causes a constant stress, which
makes them sensitive to otherwise harmless viral and
bacterial infections.  Thus far nothing was known about
the swimming and endurance capacity of eels.  Swim-
ming speeds, endurance capacity, and oxygen consump-
tion rates have to be measured to answer the above
questions.

European eels migrate great distances to reach
their spawning sites.  As silver eels they leave the
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European West Coast in the fall and are supposed to
reach the Sargasso Sea after about 6 months [69].  The
distance they have to cover is about 6,000-km, which
means for an 80-cm female eel (1-kg) a swimming speed
of about 0.5 BL/s.  Characteristic for silver eels is that
they stop feeding when they start migrating down the
rivers between August and October (Dutch situation).
Although they leave for the spawning site to reproduce,
they are still immature at that time.  So, the gonads have
to develop during or after their migration.  Eels have
much fat as energy stores, however it was not known
how much is required for crossing the Atlantic.  For
their long-distance migration to the Sargasso Sea the
energy reserves may easily become critical particularly
since the fat percentage varies largely [66, 67].  An
estimation of the energy required to cover the distance
was presented in a recent paper.  Based on the oxygen
consumption rates during a 10-day swim trial, the equiva-
lent fat consumption extrapolated to 6,000-km was 120
g per kg or 40% of the initial fat reserve [77].  More
extensive data were obtained from intermediate (1,000-
km) to even long term (5,500-km) swim trials [78, 80],
that showed the high endurance and low cost of swim-
ming of the European eel.

Johannes Schmidt [56] found the smallest eel lar-
vae (leptocephali) of the European eel (Anguilla anguilla
L.) at the beginning of the previous century near the
Sargasso Sea and the largest near the European coast
[58].  This is the only evidence to date that locates the
spawning grounds in the Sargasso Sea (neither eggs nor
mature adults have ever been found in this area).  For
Schmidt’s theory to be supported, the following three
conditions must be met:  a) Adult European eels must be
able cover a distance of 6,000-km in a fasting state,
implying that migrating eel must have sufficient energy
reserves to cover this enormous distance [72].  b) Ma-
ture European eels and fertilized eggs must be found in
the Sargasso Sea.  c) Eel larvae must be shown to
migrate towards the European coasts.  Questions (a) and
(b) are still not resolved.  As for condition (c), the most
recent observations on larval migration patterns were
published by McCleave et al. [37].  They clearly indi-
cate that the larvae are transported from the Sargasso
Sea to the European Coast.  However, not resolved are
questions concerning the large variation in age [2] and
the genetic make up [93] of glass eels.  These authors
suggest the existence of more than one spawning site.
To test condition (b), the group of Tesch [56] tried, so
far without success, to catch adult eels in the Sargasso.
Until now there are only two reports of incidentally
caught silver eels (A. anguilla) in the open Atlantic [6,
28].  Concerning condition (a), Tucker [72] expressed
severe doubts whether the European eel would be able
to swim across the ocean and suggested that all Euro-

pean eels are the offspring of the American eel.  Tucker’s
‘new solution to the Atlantic eel problem’ provoked a
long debate [17, 19] and was finally rejected when a
distinction could be made between the two Atlantic eel
species based on allozymes [91], enzymes [15], mito-
chondrial DNA [3, 4, 68] and genomic DNA [45].

2. Environmental factors

Three former studies investigated the influence of
the swim bladder parasite A. crassus on swimming of
eel.  Barni et al. [5] found lower cruise speeds for
infected eels.  Sprengel & Luchtenberg [64] found a
reduction of maximum swimming speed.  Recently,
Münderle et al. [42] did not find any negative relation
between swimming activity of eels and intensity of A.
crassus infection, at least in the short-term.  However,
studies were performed with elvers and not with silver
eels.  Only results on swimming of silver eels should be
extrapolated to migration to the Sargasso Sea.  Oxygen
consumption has not been measured in these studies
making it impossible to judge swim efficiency and cost
of transport of infected eels.  A new factor, that has not
received much attention to date, is the world-wide oc-
currence of eel viruses [79, 80].  Viruses are known to
affect blood-forming tissues in fish, and typically be-
come virulent during stress [94].  In salmon for example,
Infectious Haematopoietic Necrosis Virus (IHNV) and
Viral Hemorrhagic Septicemia Virus (VHSV), both
rhabdoviruses, can affect haematopoietic tissues, lead-
ing to severe anemia [94].  For eels, long-term migration
can certainly be considered as a major stressful event.
Therefore, one may assume that an outbreak of a virus
infection in infected individuals could take place during
this journey.

As eels have high fat levels (up to 30%), particu-
larly when they undergo silvering, they accumulate
lipophylic compounds from their environment.  Eels
have been even mentioned as suitable bio-indicators for
the occurrence of PCBs [83, 84].  Of the different
compounds the highest levels are always the PCBs
(polychlor bi-phenyl), some of which are endocrine
disruptors and some are interfering with gene-transcrip-
tion factors [55], and some are even direct toxic.  The
summated effect is in general expressed in TEQ (dioxin
toxicity equivalent quantity), however it is rather un-
known till what extent the effect holds for different
species (species specific effects), and how they could
interfere with the different processes of animals.  Espe-
cially the effect on spawning migration could be com-
plex as well as highly significant.  Toxicity may cause
major damage to liver and kidneys, both organs are
important during migration.  The liver plays an impor-
tant role in metabolite homeostasis, detoxification, and
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in the production of vitellogenin during maturation.
The kidney is important for excretion of wastes and
control of all ions except for Na+ and Cl-.  Probably the
worst effect of dioxin-like compounds will be on matu-
ration and embryonic development.  These compounds
have been shown to have adverse effects on fertility in
fish [65] and amphibians [31]) but also to disrupt mam-
malian oocyte maturation and follicle physiology in
every species studied [55].  Recently we showed that
embryonic development time is inversely correlated
with dioxin equivalent toxicity values, mainly based
PCB content [48, 51].  Significant effects were observed
at levels of 1 ng/kg gonad, which are 4 fold below the
allowable consumption norm.

SWIM  CAPACITY

1. Swim tunnel

The principle of the Blazka swim-tunnel was ex-
plained in earlier publications [9, 63, 76], but flow
characteristics of a Blazka-type swim-tunnel were to
our knowledge never described before.  In a recent study
we applied the very accurate Laser-Doppler system to
demonstrate the homogeneity of the flow in the swim
tunnels [75].  The actual flow in a 2-m long swim tunnel
was measured at different cross-sections and at differ-
ent distances from the wall (Figure 1).  A linear relation-
ship was observed between the number of revolutions
per minute and the measured water velocity.  The linear-
ity existed up to 0.9 m/s.  The flow between 40-mm from
the wall to the centre stayed within a few percent of the
set point.  So, fish with a width of > 40-mm can not swim
in the boundary layer.  The eels used in this study
needed an even wider space because of the amplitude of
their tail beat.  Furthermore we observed that that the
head of swimming eels remained between 50 and 100-
mm from the wall.  Figure 2 shows data of 5 eels
swimming 95 days at a swim speed of 0.5 BL/s, thus
corresponding to a distance of 2,850-km.

2. Swim fitness

Swim fitness could be determined in a single day
protocol, using the above described swim tunnel [50].
Eels swam 2 hours at each speed from 0.5 to 1.0 m/s in
steps of 0.1 m/s.  At each speed the oxygen consumption
was measured continuously for 90 min.  The aerobic
maximal speed was interpolated according to the method
of Brett [14].  From the data important fitness param-
eters were calculated: critical swim speed (CSS), opti-
mal swim speed (OSS), and the cost of transport (COT).
The data are listed in Table 1 and 2.  The most remark-
able result is that the COT and the OSS values were

almost the same for all 4 groups of female eels tested.
Highest critical swim speeds for eels of about 80 cm
were found at 1.64 BL/s which is low compared to other
fish species.  The optimum swim speeds, i.e. the speed
where the oxygen consumption per km is the lowest,
were found 0.61-0.67 m/s, and rather similar for a wide
size range.  COT was similar for all eels; all around 45
mg/kg/km.  The optimum swim speed was higher than
the generally assumed cruise speed of 0.5 BL/s.  This
would imply that female eels may reach the Sargasso
Sea within 3.5 months instead of 6 months [69].  The
same results were obtained when the eels were swum for
12h at each speed.  Figure 3 shows that there was no
difference between the speed test (2-h runs) and the
endurance test (12-h runs) indicating that eels are very
good sustained swimmers.

Fig. 1. The velocity profile of a 2-m swim tunnel (127-L, 30-cm diameter)
from the wall towards the center of the inner tube of the swim
tunnel.  The flow was measured by a Laser-Doppler system at
three cross-sections from the inflow site: ■■■■■ 110-mm, ◆◆◆◆◆ 610-
mm, and ▲▲▲▲▲ 1100-mm.  At each cross-section the flow was
measured at 5 distances from the wall: 5, 10, 20, 40 and 95-mm.
The water velocity at the center of the inner tube was 0.5 m/s.
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3. Swim bladder parasites

Infection with the swim-bladder parasite Anguilli-
cola crassus is suggested as one of the causes of the
collapse of eel populations worldwide.  This nematode
has been introduced 20 to 30 years ago from Asia and
parasitized in a short time various eel species in differ-

ent geographical regions of the world.  There are basi-
cally two kinds of adverse effects of A. crassus infection
[32]: 1) energy drain due to sanguivorous activities of
the parasites, and 2) mechanical damage of the swim-
bladder wall.  Concerning effect 1 Boon et al. [12]
found, that the sanguivorous activities of the parasites
decreased the number of circulating erythrocytes.  So,
highly infected eels will  have a lower aerobic
performance.  Molnár et al. [40] proved that in decreas-
ing oxygen content of the water severely infected eels
die first, while uninfected specimens endure the hy-
poxic condition for a long time.  Concerning effect 2:
The migratory activity of the larvae in the swim bladder
wall and the direct invasion of the pre-adults and adults
in blood vessels, result in extensive damage of the swim
bladder wall [40].  Pathological changes include
haemorrhages, formation of parasitic nodules, inflam-
matory cell proliferation, hypertrophy of connective
tissue, necrotic areas and oedema.  These changes even-
tually cause substantial thickening of the swim bladder
wall [7] and shrinkage of the swim bladder.  Thus cured
swim bladders are mostly non-functional or even absent,
resulting in negative buoyancy.

In a recent study [50] we attempted to estimate the
effects of the A. crassus infection on swim capacity and
endurance.  It was assumed that the parasite weight
would impair the endurance mainly by energy drainage.
On the other hand damage of the swim-bladder function

Table 1. Data of experimental eels used for fitness tests.  The tests included a stepwise increase in swimming speed
starting at 0.5 BL/s and incrementing with 0.1 BL/s.  n: number experimental animals; status: yellow/silver;
length (cm) ± SD; weight (g) ± SD; salinity (sal): fresh (FW) or sea water (SW); temp: water temperature (°C).

Origin N Status L (cm) W (g) Sal Temp
Mean Sd Mean Sd

Royaal 42 y 67.7 4.6 673 171 SW 18
Lake balaton 81 y/s 66.4 6.3 464 146 FW 18
Lake grevelingen 19 s 78.8 5.1 949 156 SW 18
Loire river 20 s 82.4 6.4 1018 253 FW 18

Table 2. Fitness parameters (average ± standard deviation) of eels from different locations.  Data and conditions of the
eels are given in table 1. CSS = critical swimming speed in m/s (x) with corresponding oxygen consumption in
mg O2/kg/h (y).  VO2 rest is the oxygen consumption in rest in mg O2/kg/h.  OSS = optimal swimming speed (at
lowest COT;  COT = cost of transport in mg O2/kg/km).

CSSx CSSy VO2 (rest) OSSx COT
m/s mgO2/kg/h mgO2/kg/h m/s mgO2/kg/km

Mean Sd Mean Sd Mean Sd Mean Sd Mean Sd

Farm 0.77 0.08 135 19 36 5 0.67 0.15 45 7
Balaton 0.67 0.14 144 44 39 9 0.65 0.14 45 12
Grevelingen 0.71 0.14 152 39 35 8 0.65 0.15 44 17
Loire 0.66 0.18 141 35 43 13 0.61 0.05 44 11

Fig. 3. Data from 2h and 12h speed test of farmed eels.  No difference
was observed between the curves for eels in both swim protocols.
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would impair buoyancy control.  As the eels without
buoyancy control will swim upwards, they must swim at
a higher energy cost of transport.  Most European eels
are moderate to heavy infected by the swim bladder
parasite (Figure 4).  We selected eighty eels, suffering
various degrees of infection, for a swim fitness test.  We
found that infection and, even more, damage had seri-
ous effects on cruising ability and efficiency.  Both
infection and damage caused higher O2 consumption
rates at all swim speeds.  Eels with damaged swim-
bladders had lower optimum swim speed (Uopt).  In-
fected eels have lower cruise speeds and higher cost of
transport.  Eels that were not infected, but had a dam-
aged swim bladder from a previous infection, showed
similar effects (Figure 5).  Almost half of those eels
stopped swimming at low speeds < 0.7 m/s.  The effects
thus seem to be associated with swim-bladder dysfunc-
tion and the resulting loss of neutral buoyancy.

Our results agree with Barni et al. [5] who also

found lower cruise speeds for infected eels.  However,
we did not find a significant reduction of the maximum
swimming speed in contrast to Sprengel & Lüchtenberg
[64].  Our results are also in contrast with Münderle et
al. [42], who did not find any negative effect of the
infection on the swim capacity of eels.  However, their
studies were performed with elvers and not with large
female silver eels like in our study.  Obviously only
studies with silver eels should be used to extrapolate
infection effects on spawning migration.  We found that
especially silver eels have significant higher infection
levels, possibly related to a pre-silver state of increased
food uptake.  This leads to the conclusion that infected
eels with damaged swim-bladders will likely fail to
reach the spawning grounds.

ENDURANCE  SWIMMING

1. Cost of swimming

During long-distance migration, animals are likely
to maximize the distance covered per given fuel unit,
which corresponds to maximizing efficiency.  The mi-
gration distance of the different eel species varies: the
European eel (A. anguilla) 5,500-km [58], the American
eel (A. rostrata) 4,000-km [37, 72]; the Australian eel
(A. australis) 5,000-km [33] and Japanese eel (A.
japonica) 4,000-km [71].  So, European eels need to be
the most efficient swimmers among eels.

The long-term swim experiments with 5 eels of
about 0.9-kg (Figure 2) indicated that eels can be forced
to swim under laboratory conditions for a very long

Fig. 4. Since swim bladders shorten as a reaction to infection by the
swimbladder parasite (A. crassus).  The length of the swim
bladder was taken as parameter for damage, which was mea-
sured non-invasively by x-ray.  The weight of the parasites was
taken as measure of infection level.

Fig. 5. The effect swim bladder parasite on swim performance of
European eel.  The oxygen consumption levels (M⋅ O2) and cost
of transport (COT) is presented for swim speed of 0.5, 0.6, 0.7,
and 0.8 (m/s) of healthy eels (white bars), infected eels (grey
bars) and damaged eels (black bars).  M⋅ O2 was higher
(ANCOVA; P < 0.01) for infected and damaged eels at all swim
speeds.  The same applied for the COT which was higher for
infected and damaged eels at all swim speeds.
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period without resting.  Five out of seven eels were able
to swim 3 months at 0.5 BL/s, covering a distance of
2,850-km [75].  In literature limited data are available
on swimming performance of eels or other anguilliform
swimming teleost [36, 90].  It is suggested that the
swimming movement of eel is less efficient than that of
for example salmonids [11, 85].  However, biome-
chanical efficiency is different from overall efficiency.
The latter is expressed in J/kg/km, which is for the
energy budget of the animal the most relevant measure.
Based on a 10 day swim trial with European Silver eel
we recently demonstrated that the energy costs of
swimming of those eels was extremely low: 0.137 cal
g-1 km-1 [77].  This is 2.4-3.0 times lower than values
reported in literature for other species [59].  Eels
have a fat content of 10-28% with a mean of 20% [66,
67].  Hence, fat is obviously the predominant energy
store.

In a recent study we exposed female yellow eels of
about 900-g to a 6 months swim trial [78].  The eels
swam 5,500-km at a mean swim speed of 0.5 BL/s.  The
oxygen consumption rates were measured each day.
The data shown in Figure 6 indicate that the swimming
eels have a 2-fold higher O2 consumption than the
resting eels.  Swimming eels have a higher weight loss
than the resting eels.  The body composition of the 3 eel
groups (control, resting, and swimming) was almost
identical (Table 3).  From the O2 consumption the
energy consumption can be calculated based on fat
combustion data given by Brafield & Llewellyn ([13];
19.6 KJ/l O2, 39.5 KJ/g fat).  Thus weight loss for the
resting and swimming eels can be converted to energy
consumption.  The oxygen consumption data on the
other hand provide an independent measure for energy
consumption.  The calculated values for the cost of
transport shown in Table 4 are rather close.  Those
values are some 4-5 fold lower than those obtained for
salmonids [59, 78].  When eels would swim at the same
energy consumption rate as salmonids, they would need
300 g fat/kg for crossing the ocean instead of
60-g of fat per kg.

2. Hydrodynamic performance

There are various levels of energy conversion in a
swimming animal.  The overall metabolic efficiency is
made up of the efficiencies of various processes, e.g.
propeller efficiency (how much momentum is gained by
the animal and wasted in the wake) and the muscle
efficiency (how many ATP molecules are used per
myosin-head cycle).  To reduce costs of transport and
increase overall metabolic efficiency, all or some of the
processes that determine the costs of transport can be
optimized.  A fish can alter its propeller efficiency by
changing its structural design and its motion pattern.
Both carangiform and anguilliform swimmers undulate
their body, the former with a narrower amplitude enve-
lope than the latter.  How the shape of the body undula-
tions affects locomotory efficiency has been estimated
using analytical approximations.  Lighthill’s elongated
body theory (EBT) concludes that efficient swimmers
should undulate only the most posterior section of their
body - in the ideal case only their trailing edge - to
maximize propeller efficiency [35, 74].  Daniel’s [18]

Table 3. Body-constitution in % of wet weight of female yellow eels at the start and after 6 months swimming or resting.

Start (n = 15) Awim (n = 9) Rest (n = 15)
Mean ± Sd Mean ± Sd Mean ± Sd

Fat 67.9 1.9 68.1 2.5 68.1 2.2
Protein 28.2 1.8 28.3 2.2 28.0 2.2
Carbohydrate 0.9 0.4 0.6 0.5 0.9 0.5
Ash 3.0 0.6 3.0 0.6 3.0 0.6
Sum 100.0 100.0 100.0
Dry matter % 49.6 2.4 50.3 2.9 50.7 2.2

Fig. 6. Oxygen consumption of fasting yellow eels from a hatchery
(860 ± 81.9 g, 73.1 ± 3.8 cm) during a 6 months period of rest or
a 6 months period of continuously swimming at 0.5 BL/s at 19
°C.  Regression lines: Rest-group: Y = 0.0326 X + 25.294; Swim-
group: Y = 0.0394 X + 54.86.  Diamonds: (swimming), circles
(resting). [81]
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predictions differ in part: propeller efficiency of undu-
latory swimming decreases linearly as the rearward
speed of the body wave increases relative to the swim-
ming speed, and it is independent of the frequency and
the amplitude of the body wave.  Given that the swim-
ming kinematics of trout and eel mainly differ in the
amplitude envelope of their body wave, but have a
similar range of body wave speeds [85], it is unlikely
that kinematical differences between trout and eel can
explain the difference in their overall metabolic
efficiency.

The combined effect of propeller shape and mo-
tion on performance can be studied by visualizing the
flow generated by anguilliform and carangiform
swimmers.  The ratio of forward to total momentum of
the entire wake provides the mean propeller efficiency
over a complete tail beat.  This approach, whether using
experimental or computational flow fields, requires the
quantification of the three-dimensional flow in the com-
plete wake, which so far has not been done.  The
currently available 2-dimensional slices through the
wake suggest that eels generate considerable lateral
momentum, which does not contribute to the forward
motion and therefore reduces efficiency [41, 74].  Tytell
estimated a hydrodynamic efficiency of 0.5 to possibly
up to 0.87 [74].  Equivalent estimates for carangiform
fish are reported in the range from 0.74 to 0.97 [21, 41,
44].  These values suggest that trout has a higher propel-
ler efficiency than eel, which does not to explain the
higher overall metabolic efficiency of eels.  Efficiency
is also inversely related to thrust [18, 35].  However, a
25% difference in swimming speed is insufficient to
explain a fourfold difference in efficiency.  So, the
currently existing evidence on the hydrodynamics of
undulatory swimming contradicts rather than explains
the high swimming efficiency of eels.

3. Muscle performance

The efficiency with which a muscle converts chemi-
cal energy into mechanical work is important in pro-
longed aerobic locomotion, such as migration.  Cruising
is characterized by cyclic contractions at a well-defined
frequency.  Swimming speed depends linearly on tail
beat frequency, and tail beat frequency corresponds to
contraction frequency.  The mechanical efficiency of
muscle contractions depends on contraction speed in a
non-linear fashion.  This relationship can be predicted
from Hill’s model of muscle contractions [39] and has
also been documented in fish swimming muscles [16].
There is a narrow range of contraction frequencies over
which efficiency remains high.  At contraction frequen-
cies above and below this range, efficiency drops off
progressively [16, 39].  McMahon [16] calculations
show that maximum efficiency occurs at a contraction
speed at 13% of the maximum contraction speed of the
muscle, which is slightly lower speed than the speed at
maximum power.  To swim at maximum muscle
efficiency, the fish should maintain a tail beat frequency
that allows the muscle to contract at this optimal speed.
If we take the contraction frequency that maximizes
power as a first approximation of the contraction speed
that maximizes efficiency, we can compare eel aerobic
swimming muscles to those of trout.  Eel muscles de-
liver peak power at much lower contraction frequencies
(0.5 to 0.8 Hz in silver eel; measured at 14°C; [27]) than
the muscles of trout (2 to 3 Hz, measured at 11°C) The
swimming speeds that correspond to these contraction
frequencies are 0.5 BL/s for eel and 0.4 to 1.0 BL/s for
trout [88, 89].  These values confirm that in our experi-
ments both eel and trout were swimming close to their
optimal swimming speed, and hence the much higher
COT of trout is probably not due to the trout having been

Table 4. Calculation of the energy cost of transport (COT) after long term swimming.  The energy consumption from
female yellow eels was calculated from the oxygen consumption based on the oxycaloric equivalent of fat.  In
experiment I 5 eels swam about 3,000-km during 3 months at 0.5 BL/s.  In experiment II 11 eels swam about
5,600-km during a period of 6 months at the same speed.

Experiment I 3 Months     Distance 2980-km

Length Mean VO2 Speed COT COT Fat use
M (mgO2/kg/h) km/d mgO2/km J/km mg/km g/6000 km

0.73 36.90 31.41 28.20 386.88 9.79 58.77

Experiment II 6 Months     Distance 5580-km

Length Mean VO2 Speed COT COT Fat use
M (mgO2/kg/h) km/d mgO2/km J/km mg/km g/6000 km

0.75 42.26 32.27 31.43 431.21 10.92 65.50
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forced to swim under considerably suboptimal condi-
tions for its swimming muscles.

At the low speeds used in this study, the eels will
recruit  only the posterior red muscle to swim
continuously.  As demonstrated in the work of Gillis
[30] muscle fiber type recruitment was clearly depen-
dent upon swimming speed.  A pattern of 'posterior-to-
anterior' recruitment within a fiber type was observed as
eels increased their swimming speed [30].  For example,
eels typically used mainly posteriorly located red muscle
(at 0.75 and 0.6L) to power slow-speed swimming, but
would then additionally recruit more anteriorly located
red muscle (at 0.45 and 0.3L) to swim at the higher
speeds [30].  This unusual muscle activation pattern and
kinematics may explain the low COT in eels compared
with trout, in which most of the red muscle on each side
of the body is stimulated during a tail-beat cycle -
assuming that the European and American eels are
similar in this regard.  In contradiction to this theory/
hypothesis of Gillis [30] to explain the low swimming
efficiency of eel by recruitment patterns of muscle,
Wardle et al. [87] have shown that the muscle activity
pattern (% time active during one tail beat cycle) does
not differ substantially between different undulatory
swimmers.  Wardle’s values for eel  agree with those
mentioned by Gillis [30].  Compared with trout and
other fish, recruitment in eel is certainly not less by a
factor of 2 to 4.  Hence it is not likely that more
posterior muscle recruitment in eel can explain the
many-fold difference in efficiency between eel and
trout.

4. Metabolism

Overall metabolic efficiency is also influenced by
the efficiency of the respiration and energy-conversion
processes.  The whole-organism locomotory perfor-
mance is determined by its metabolic machinery, bring-
ing us to the whole-body oxygen consumption (Routine
Metabolic Rate) of the animal.  In this study, we found
a RMR of 29.55 ± 4.2 ml O2 kg-1 h-1, which corresponds
to 42.21 ± 6.0 mg O2 kg-1 h-1.  This value is similar to
values reported in literature: 35 mg kg-1 h-1 (for the
same-size animals at 18°C, [20, 38]) for eel and also the
routine metabolic rate (RMR) measurements of other
fish species [92].  Hence, we may conclude that, based
on metabolic rate comparisons with other fish species,
the mitochondrial capacity remains the same.  However,
in the wild, eel do not migrate at the surface but in the
deep sea: a migrating eel has been photographed at the
Bahamas at a depth of 2,000 m [57].  There, they
experience considerably larger pressures that might
further increase metabolic efficiency at the mitochon-
drial level by increasing the efficiency of their oxidative

phosphorylation [70].  In a laboratory study, exposing
eels for 21 days at 10.1 MPa hydrostatic pressure,
Theron et al. [70] demonstrated that the ADP/O ratios,
c a l c u l a t e d  f r o m  m i t o c h o n d r i a l  r e s p i r a t i o n
measurements, were significantly increased.  Eels actu-
ally performing the migration will not only experience
higher pressures, but also lower temperatures, which
will also affect their efficiency.  Furthermore, eels
might adapt their migratory route to take advantage of
favorable sea currents, which would further reduce the
energy requirements.  However, with the migratory
routes unknown, nothing can be said about the possible
energy savings from pressure, temperature and sea-
current effects.

5. Energy requirements for migration and reproduction

Eels have a fat content of 10-28% with a mean of
20% [66, 67], which is obviously the predominant en-
ergy store.  Van den Thillart [75] calculated that 60% of
the total fat reserve of silver eels is required for
swimming.  Animals with fat percentages of less than
13% fat would not be able to swim 6000-km.  The
question is how much fat is required for reproduction e.
g. incorporation in the eggs.  To calculate this we used
characteristics of an eight year old female silver eel
F9FE from Lake Grevelingen which was treated with 23
weekly injections carp pituitary extract [47].  At a
weight of 1044 g (114%, GSI = 45.6%) she was hand-
stripped and eggs were fertilized.  About 1500 eggs
showed embryonic formation.  0.1 g gonad sample
contained on average 282 eggs (n = 6 counts).  Estima-
tion of the total amount of eggs by multiplying with
gonadal weight 476 g provides 1.34 million eggs.  Cal-
culation of the weight from one oocyte gives 0.355 mg.
The diameter of an egg with a single fat droplet is on
average 800 µm [47].  Calculation of the volume gives
0.268 mm3.  The diameter of a single fat droplet is on
average 343 µm [47].  Calculation of the volume gives
0.0211 mm3.  The volume amount of water calculated by
difference in volume of stage 7 vs a stage 0 egg which
gives 0.22 mm3.  This would represent 0.22 mg and 82%
of the stage 7 egg.  Fat represented in a single egg
would be 8% or about 0.06 mg; multiplying this with
the total amount of eggs gives 80.5 g fat.   This
represents 36.6% of the total fat reserves and 7.7% of
the animal.  Thus, it can be concluded that 60% of the
total fat reserves is used for swimming, 36.6% for
incorporation in eggs; together 96.6%.  At least 13%
is necessary for swimming which was found indepen-
dent of size.  On average 7.7% is incorporated in eggs
indicating that silver eels should have a fat percent-
age of 20.7% to be able to migrate and reproduce
success-fully.
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EFFECTS  OF  SWIMMING  ON  MATURATION

When eels migrate to the ocean in autumn, there is
a limited development of the gonads up to a Gonado-
somatic Index (GSI) of 1-2.  If we keep these animals in
aquaria, there is no further development of the gonads;
even regression is often observed [25].  So the external
environmental trigger for gonad maturation is lacking.
Dufour [24] demonstrated for European eel in the silver
stage, that there is a prepubertal blockage at the neu-
roendocrine level.  There is a deficiency of gonadotro-
pin releasing hormone (GnRH) at the level of the
pituitary, and also an inhibition by dopamine.  Both
factors could be responsible for inhibited production
and release of gonadotropin (GTH) by the pituitary,
resulting in an immature gonad.  This led to the hypoth-
esis that sexual immaturity in silver eels is caused by a
dual blockage, which is situated at the level of the
hypothalamo-pituitary axis in the brain.  The endocri-
nological mechanism by which this dual blockage is
abolished is not yet clear.  For artificial maturation
European eels must be weekly injected with CPE (carp
pituitary extract) for 3-5 months [53, 54].  This lengthy
procedure is due to the heavy blockage and prepubertal
stage of the silver eels.  During artificial maturation the
GSI values of mature female eels increase from 1-2 to
40-70 (references vide [81]).  As silver eels leave the
European West Coast in a prepubertal stage, maturation
must develop on the way to, or at the spawning grounds.
Therefore it is likely that maturation and development
of the gonads is triggered by external or internal factors
during their 6,000-km migration to the Sargasso Sea.

It is not known which environmental factors can
induce final maturation.  For the maturation of migrat-
ing silver eel several environmental stimuli were
suggested, including temperature [10], light, salinity
[46] and water pressure [29].  The latter factor is based
on one observation of a migrating eel with swollen belly
at the Bahamas at 2000-m depth [57].  The first three
environmental factors (temperature, light, and salinity),
did not show a clear effect on the hypothalamo-pitu-
itary-gonad axis [10, 46].  Water pressure has been
investigated in laboratory- [60, 61] as well as field-
studies [23].  In high pressure laboratory studies with
eel at respectively 25 [46] and 110 atmosphere [60, 61],
no physiological changes were observed in the metabo-
lism and no maturation of the gonads was observed.
This was even the case after long term exposure to high-
pressure of one month [61], or 4 months [46].  In one
study, stimulation of the HPG-axis was recorded.  In
this field-study[23], cages with silver eel were sunk in
the Mediterranean Sea at a depth of 450 m, correspond-
ing to 45 Atm.  A slight ovarian development was
observed: a GSI of 1.56 in the control group compared

to a GSI of 2.18 in the pressure exposed group.  But the
most remarkable change was the observation that the
pituitary gonadotropin content increased by a factor 27
compared to the control group [23].  Remarkably, exer-
cise has never been investigated as a potential stimulat-
ing factor.  However, major physiological and endocri-
nological changes are the result of exercise in catadromic
and anadromic fish species [62].  As European eels are
supposed to swim 5,000-6,000-km to their spawning
grounds we hypothesized that the effort itself may trig-
ger the onset of maturation.  A possible mechanism
might be the increase of cortisol levels during exercise,
which in turn may sensitize the pituitary for GnRH and
release the inhibition by dopamine.

1. Swim trials

The ovaries of silver eels show oocytes in the first
developmental stages [1] after transformation of the
oogonia.  Further progression requires incorporation of
lipid droplets (stage 3) and vitellogenin.  Although
separated in other fish species, these two processes
occur simultaneously in artificially matured Japanese
eel [1] and European eel [47], which suggests an un-
natural situation.  Untreated silver eels are in a prepu-
bertal stage, still far from sexual maturity [22, 24, 34]
and remain as such when kept resting in aquaria.  Fur-
ther sexual development of silver eel appears to be
blocked by dopaminergic inhibition of hypothalamus
and pituitary resulting in insufficient FSH and LH lev-
els [24].  This blockage is likely required in order to
allow the long spawning migration.  Obviously there
must be natural conditions that lead to release of this
blockage.  As European eels have to swim about 6000-
km to reach their spawning site, we hypothesize that
swimming is the crucial trigger for releasing the dopam-
inergic inhibition.

Studies on the interaction between migration and
maturation are scarce, which is surprising since espe-
cially migrant fish are often commercially interesting
but difficult to reproduce in captivity.  Exercise has
never been thoroughly investigated as a stimulating
factor for maturation in fish.  Recently, Van Ginneken
et al. [82] observed increased oocyte diameters in 3 year
old hatchery eels after swimming 5,500-km.  Signifi-
cant higher levels of pituitary LH and plasma estradiol
were found in the swim group as compared to the
controls, also the oocyte diameter was increased.  Those
results indicate that long term swimming had an effect
on maturation.  Recently, we found indications that
older eels have a higher capacity to incorporate fat from
the muscle in the oocytes.  In thirteen hormone-treated
eels, we found a negative correlation between age with
the amount of fat in muscles, and a positive correlation
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between age and the amount of incorporated fat in the
gonads.  This result indicates an increased capacity of
older eels to incorporate fat in the gonads.  This finding
was confirmed by Durif et al. [26] who found positive
correlations between age with condition factor, liver
weight and vitellogenin level.  Thus older eels have
higher energy stores, and have a more efficient
vitellogenesis.  This is further supported by recent
results showing that older eels require a shorter hor-
monal treatment to mature.

In a recent study, eels from Lake Balaton (Hungary)
were subjected to a swimming period of one, two or six
weeks.  Most eels were silver and 13-21 years old.
Changes in morphometrical parameters and develop-
mental characteristics of the oocytes were determined
(Table 5).  Already after one week of swimming, the
gonadal mass increased and oocytes became larger with
large numbers of lipid droplets.  After two and six weeks
of swimming we found in addition significant enlarge-
ment of the eyes (Figure 7), which is a sign of sexual
maturation.  Continuous swimming at 0.5 BL/s resulted
in an increase of the eye index (EI), which was apparent
already after two weeks and occurred in all eels exposed
to the swim trial.  In contrast no change could be
observed in the EI of the rest groups, indicating that
neither waiting nor starvation could not have caused
this.  The observed changes appeared even stronger
after six weeks of swimming.  As increase of EI is
connected with progression of sexual maturation, these
observations clearly suggest that swimming induces
maturation.  The mean eye index of all the eels at arrival
was 8.2 ± 3.0, corresponding with 59% silver eels.  The
degree of silvering and oocyte development was posi-
tively correlated with size for all parameters.  This
observation of silver eels in Lake Balaton contradicts
Bíró [8], who stated that in Lake Balaton eels never

metamorphose into silver eels.  Already in the control
group some silver eels were in migrant SI stage 5.  These
eels had a GSI >1 and gonads with some stage 3 oocytes
although with few lipid droplets.  Surprisingly, the
migrant SI stage 4 [25] was not represented at all, not
before nor after the swim experiments.  This stage is
characterized with elongated pectoral fins, however no
changes of the pectoral fins were observed due to
swimming.  In field studies it was found that down-
stream silver eels have longer pectoral fins, from which
was concluded that swimming likely causes the fins to
grow [25, 69].  As in our swim trials no change in fin
length occurred, we must conclude that the increase in
fin size during down stream migration must be due to
other factors than swimming.  However, swimming did
result in other silver parameters like eye size and GSI

After six weeks of swimming, changes were much
more pronounced than after two weeks of swimming,

Fig. 7. Swimming induced changes of eye index (EI).  Individual
measurements are expressed in (%) increase of the Eye Index
(EI).  Eels swam for 2 and 6 weeks at 0.5 BL/s. The EI was
significantly increased after both periods.
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Table 5.  Swimming induced changes.  Eels from Lake Balaton (13-21 yrs old) were swum at 0.5 BL/s for up to 6 weeks.
Bold figures in upper part indicate pair wise differences (pre- vs. post swim).  Bold figures in lower part indicate
significant differences with respect to the controls.

2 Weeks 6 Weeks
Control Pre-swim Post-swim Pre-swim Post-swim

N 10 6 6 9 9
Body length (cm) 59 62 62 63 63
Body weight (g) 267 347 333 429 366
Condition factor 0.13 0.14 0.14 0.16 0.14
Eye index 6.2 8.3 10.3 6.9 9.1

Gonado somatic index 0.26 0.74 0.8
Oocyte stage 1.7 2.4 2.4
Oocyte diameter (µm) 83 136 109
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both GSI and oocyte diameters were significantly higher.
More than 50% of the eels that had swum for two and six
weeks had oocytes predominantly in stage 3, while in
contrast resting eels had no stage 3 oocytes at all (Figure
8).  The lipid vesicle stage was observed only in eels that
swam, also the number of eels with a progressed stage of
development increased with the length of the swim
period (Figure 9).  Obviously the lipid deposition in the
oocytes is enabled by the activated lipid mobilization
required for the increased energy consumption during
swimming.  Oocytes in stage 3 show a high variation in
numbers and diameter of lipid droplets, in other words
in total lipid content.  This increase of lipid content is
typical for stage 3.  During this stage no vitellogenin is
incorporated, the oocytes almost double in size only due
to fat deposition (Figure 10).  It appears therefore that
this process is a natural (and possibly also a) crucial step
in oocyte maturation.

Recently, Van Ginneken et al. [82] simulated a
complete migration of 5,500-km using 3 year old silver
eels from the farm.  Those eels were 71 ± 4 cm long and
weighed 792 ± 104 g, bigger than the ones used in the
Balaton study.  Significantly higher levels of pituitary
LH were found in the swim group as compared to the
controls, also the oocyte diameter was increased.  These
results indicate that long term swimming had an effect
on maturation of younger farmed eels.  However, in this
study no changes in EI and GSI were found.  Thus,

despite the increased hormone levels, the gonads did not
develop.  The more explicit changes in the Balaton
study, already after two weeks of swimming, might be
explained by the difference in age.  The hatchery eels
were young (3 years) while the Lake Balaton eels were
much older (13 to 21 years).

Information about GSIs of silver eels caught in the
open ocean is scarce.  In the literature only two cases
were described where silver eels were caught during
their journey to their spawning grounds in the Sargasso
Sea.  One female eel was caught near the Azores and had
a GSI of 9.8 [6], another was caught near the Faroe
Islands and had a GSI of 2.9 [28].  This GSI is far away

Fig. 8. Typical pictures of coupes stained with HE form a rest group
and from a group that swam for a week.  Magnification 40x.  In
the swim group significantly larger oocytes, larger nuclei and
a higher number of nucleoli were found compared to the rest
group.

Fig. 9. Distribution of oocyte stages in eels of control, rest and swim
groups after 2 and 6 weeks swimming.  White: stage 1 oocytes.
Black: stage 3 oocytes.  Grey: stage 2 + 3 oocytes.  The swim
groups had significantly more eels with further developed
oocytes.
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Fig. 10. Relationship between oocyte diameter and lipid deposition in
the oocytes.  Depicted are the relation between the oocyte
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from the value observed for hormone treated sexually
mature females [47, 81].  The field data indicate that
final maturation may develop at the end of the journey
and not during.  Experimental data show that swimming
plays a major role in the natural oocyte development,
and may as well sensitize eels for final maturation.

CONCLUSIONS

Our respiratory measurements as well as the car-
cass analyses suggest that eels have a much higher
metabolic efficiency than trout.  In eel, the COT values
obtained from oxygen consumption data and carcass
analyses are 0.42 and 0.62 kJ/kg/km, respectively,
whereas trout has a much higher COT value of around 2.
7 kJ/kg/km.  The COT in trout matches the value mea-
sured by Webb [88], and is similar to other salmonids
[14] and many adult fish species [85].  This means that
eel swim 4 to 6 times more efficiently than other fish
species, even across swimming styles.  European eel is
able to swim 5,500-km, a distance corresponding to
their supposed spawning area in the Sargasso Sea at a
remarkably high swimming efficiency and at low en-
ergy costs.  So, we can conclude that healthy well fed
eels are able to reach the Sargasso leaving enough
reserves for reproduction.

Swim fitness and the ability to migrate are nega-
tively influenced by infections with A. crassus.  High
infection levels result in a damaged swim bladder; both
the parasite weight as well as the damaged swim bladder
interferes with swim performance.  Both swim-bladders
with high parasite weight causes as well as damaged
swim bladders have reduced volume causing negative
buoyancy.  Thus in both cases the chance to reach the
spawning site is very low.

There is strong evidence that swimming triggers
silvering and early maturation.  Long term swimming
with young eels resulted in increased hormone levels,
with only small effects on gonad development.  On the
other hand several weeks of swimming were sufficient
for much older Balaton eels to increase eye index and to
cause extensive lipid deposition in the oocytes.  There-
fore it is obvious that swimming plays an crucial role in
natural maturation of eel.
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