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ABSTRACT

Two Positive Temperature Coefficient of Resistivity (PTCR)
ceramics with composition A, (Ba0.997Sb0.003)Ti1.005O3, and composi-
tion B, (Ba0.997Sb0.003)Ti1.005O3 + 0.1 mole% MnO2 were fabricated
and examined herein.  The ceramic grain size, oxygen pressure and
annealing time need to be simultaneously controlled to obtain an
optimum PTCR resistor.  Additionally, the stoichiometric proportions
of the constituent elements must be weighted carefully in order to
produce good quality PTCR devices.  This study thoroughly explores
all the factors affecting the PTCR characteristics.

Experiments were developed to verify that PTCR phenomena
are strongly influenced by oxygen absorption.  As the samples were
annealed in Air atmosphere, the numbers of foreign ions compensa-
tion were increased by this oxidation process.  The Schottky barrier
is formed between grains and grain boundaries, improving the PTCR
effect and resulting in very steep gradient Resistivity-Temperature
(R-T) plots.  Annealing samples in oxygen atmosphere also im-
proves the PTCR effect and reduces the annealing time dramatically,
but increases the room-temperature resistivity.  By contrast, anneal-
ing in reduced air (98% N2 + 2% H2) atmosphere decreases the
resistivity of the ceramics, and also diminishes the PTCR effect of
the ceramics.

The complex-plane-impedance method was used to analyze the
influence of annealing condition (temperature, time and atmosphere)
on the PTCR devices.  Our study inferred that PTCR mechanism
originated from the grain boundaries rather than the bulk.  Annealing
at 1200°C was found to control the PTCR characteristics of the
ceramics more effectively than the traditional cooling rate control
process.  The annealing processing technology and theoretical mecha-
nism affecting the PTCR ceramics were designed and discussed in
detail.  Factors influencing the PTCR phenomena were studied,
showing that the design of the PTCR devices is practical.

INTRODUCTION

Oxidized barium titanate (BaTiO3) is an insulator.
N-type semiconducting BaTiO3 can be formed in two

ways, by doping with donors, or treating it in a reduced
oxygen atmosphere.  High-temperature in reduced oxy-
gen (98% N2 + 2% H2) atmosphere produces a semicon-
ducting material with room temperature resistivity as
low as 1 Ω-cm.  The conduction in these oxygen defi-
cient ceramics with the formula BaTiO3-X probably
arises from the two electrons which are necessarily left
behind to ensure that each oxygen vacancy maintains a
charge balance [3].  Substitution of 0.15-0.3 at% (atomic
percentage) of donor ions of higher valency than barium
or titanium ions leads to semiconductive behavior
even after sintering in air for a long time, with a
resistivity of 10 Ω-cm or above.  The conductivity
apparently results from the electron exchange between
Ti+4 and Ti+3 [15].

The resistivity of semiconducting barium titan-
ate formed either by annealing in oxygen deficient
atmosphere or donors doping methods can be in-
creased by annealing in an oxidizing atmosphere.
However, only the doped semiconducting barium
titanate fired in an oxidizing atmosphere [12] dem-
onstrates the so-called PTCR effect, which is an
abrupt increase in resistivity above the Curie point.
The PTCR effect is believed to be related to oxygen
absorption [16] and subsequent trapping of conduc-
tion electrons at the grain boundaries.  However,
Daniel et al. [8] have proposed that the acceptors at
the grain boundary layer consist of Ba vacancies
forming a three-dimensional zone extending inside
the grains.

The purpose of this research is to investigate the
annealing effect on the PTCR characteristics of Sb-
doped BaTiO3 ceramics by annealing them in different
gas atmospheres [1] with and without addition of MnO2.
The experiments also confirm that the PTCR effect is a
grain boundary rather than a bulk phenomenon, while
oxygen can significantly influence this resistivity
anomaly.  By annealing the sample at a specific tem-
perature for a period of time can control the PTCR
characteristics more precisely than annealing the samples
during the cooling process (ramp down the temperature
to room temperature at a specific cooling rate), and this
can offer a quantitative reference for designing the
PTCR ceramics.
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EXPERIMENTAL  PROCEDURES

Merck Industrial grade BaCO3, and TiO2 powders
were first weighed in accordance with the basic compo-
sition of BaTi1.005O3.  The weighed powders were mixed
by wet-milling with agate balls in rubber ball mills for
about 2 hours.  Distilled water was utilized in the
milling, and the mixtures were then dried and pulverized.
To ensure complete formation of perovskite BaTi1.005O3

ceramics, the pulverized mixtures were calcined at
1100°C for 2 hours.

The calcined powder was ball-milled, dried and
ground again with the composition BaTi1.005O3 + x
mole% Sb2O3, with 0.025 < x < 0.25.  The powder was
then pressed into disk-shape samples (15 mm in diam-
eter by 2 mm thick) under a pressure of 350 kg/cm2,
using distilled water pluses 50% PVA as binder.  The
disc-shape samples were sintered at 1350°C for 30
minutes and then cooled down to room temperature at a
rate of –10°C/min.  After the sintering process, a spe-
cific percentage of Sb2O3 was selected to form the
semiconducting ceramic specimens with the composi-
tion (Ba1-xSbx)Ti1.005O3.

The semiconducting samples were then annealed
at 1200°C for various periods of time ranging from 0 to
28 hours.  Various gases (air, reduced air and oxygen)
were introduced into the furnace during annealing.  The
semiconducting ceramics were formed and densified by
sintering.

Once the specific mole percentage of Sb2O3 to
form semiconducting ceramic specimens with the mini-
mum resistivity at room temperature was found, an
additional dopant MnO2 was then added to form the
material with composition BaTi1.005O3 + x mole% Sb2O3 +
y mole% MnO2 to enhance the PTCR phenomena.  The
final mixture was then undergone further sintering and
annealing procedure.  Most of the MnO2 was presumed
to be segregated at the grain boundary of (Ba1-xSbx)
Ti1.005O3 but some MnO2 could still go into the grains.
The characteristics of ceramic specimens with compo-
sitions BaTi1.005O3 + x mole% Sb2O3 (composition A)
and BaTi1.005O3 + x mole% Sb2O3 + y mole% MnO2

(composition B) were measured and compared after
annealing in different conditions.

After the sintered ceramic pellets were polished, a
metalization paste (Dupant 4102) was brushed on both
surfaces of the pellets to provide ohmic contacts.  The
specimens were kept at room temperature for more than
24 hours for stabilization after the metalizations were
fired.  The Resistivity-Temperature and Dielectric-Tem-
perature characteristics of the samples were measured
from room temperature to 300°C with a temperature rise
rate of 5°C/min, using a two-probe method with dc bias
applied in the ohmic regions.  Two point probe method

is utilized to measure the resistance of the PTCR device.
The resistivity of the device can be obtained by referring

to the equation R = ρ
A

, where R is the resistance, ρ is

the resistivity, A is the area,  is the length.

RELATED  THEORIES  OF  PTCR  PHENOMENA

1. Heywang model

The PTCR phenomena can be described by the
original grain boundary barrier model of Heywang [10]
as extended in subsequent studies.  In this model as
illustrated in Figure 1, we assumed that oxygen ions are
absorbed on the grain boundaries at a concentration of
Ns per m2, attracting electrons from the surface layers of
the crystals with a concentration of ns per m2 and
creating a surface charge density of Q = –2qNs = -qns

m-2 and two space-charge layers with a thickness b =
Ns/n1, where n1 denotes the bulk electron concentration.
Consequently, the maximum electric potential at the
grain boundary is derived as [10]

ψ0 = –
KT
q

(
b

LD
)2 = –

Q2(T – θ)
8ε0n1qC

= –
qns

2

8ε0εr n1
, (1)

where q is the positive elementary charge, εr = (
C

T – θ
)

the relative dielectric permittivity, θ the Curie point,
C = 1.2 × 105 is the dimensionless Curie constant and LD

denotes the Debye length, given by

LD = (
2ε0εr KT

n1q
2

) . (2)

Heywang revealed that the barrier is governed by the
available amount of surface traps Ns = –Q/2q, and ψ0

Fig. 1.  Heywang model of a grain boundary barrier.
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also increases in proportion to T – θ.  This phenomenon
reveals that the resistivity increases due to the increase
of the temperature.  As the temperature increases above
the Curie temperature [17], the energy states (traps) of
the absorbed oxygen atoms Ns rise together with the
surface potential until they meet the Fermi level EF of
the semiconductor, and gradually acquire a reduced
electron concentration (ns), so that the electric potential
begins to decrease slowly and showing the low resistiv-
ity characteristic.

Significantly, ferroelectric materials have nonlin-
ear dielectric characteristics.  Therefore, Daniels and
Wernicke [9] modified the Heywang model and re-
ported that the Poisson equation needs to be utilized and
can be expressed as

d (ε0E + Ps)

dx
= ρ , (3)

where ρ is the volume charge density, ε0 is the dielectric
permittivity in vacuum, E is the electric field intensity,
Ps is the electrical polarization.
Subsequently, the maximum electric potential at the
grain boundary is modified to be [9]

ψ0 =
q (Ns – 2Ps)

2

8ε0εr n1
. (4)

Since Ps > zero, the maximum electric potential will be
lower for ferroelectric materials.  Eq. (4) implies the
resistivity will also be lowered at room temperature.

2. Defect chemistry

When the donor-doped Bariun-Titanate ceramic
specimens are fired in a high temperature environment,
considering only an oxygen partial pressure equivalent
to that of air, the simplified conditions of electroneu-
trality obtained from these calculations can be coordi-
nated with the following scheme [7]:

T > 1500°C;
ND = N; electron compensation (5-1)

1220°C < T <1500°C;
ND = 2[VBa] + n; mixed compensation (5-2)

T < 1220°C;
ND = 2[VBa]; vacancy compensation (5-3)

This scheme reveals that vacancy compensation
takes place preferentially with decreasing temperature
in donor-doped BaTiO3.  In our study, the specimens

were sintered in air at 1350°C in an atmosphere that the
oxygen partial pressure is in equilibrium with that of air,
and then the temperature was hen ramp ramped down to
the annealing temperature of 1200°C at a rate of –10°C/
min.  According to Eq. (5-2), a homogeneous, mixed
compensation happens within the material in the cool-
ing process.  Since the specimen is cooled at the normal
furnace rate, the equilibrium restoration [7] initially
follows the temperature decrease.  However, as the
temperature continues to drop, the equilibrium restora-
tion stops, meaning that the atomic defects are frozen
into the grain of the specimen.  If the specimens are
annealed at 1200°C, the regions close to the grain
boundary [4] will remain in equilibrium, while the
defect concentration in the bulk of the grain is unable to
change.  This heterogeneous defect distribution implies
that, according to Eq. (5), a thin layer at the grain
boundary has already achieved complete Ba vacancy
compensation (Eq. 5-3), while the mixed compensation
(Eq. 5-2) is maintained within the bulk of the grain.  It
means that there is a potential barrier built-up in the grain
boundary because of the annealing process at 1200°C,
but the bulk of the grain remains semiconductive.

RESULTS  AND  DISCUSSIONS

1. Effect of annealing on the temperature dependency of
resistance

In Figure 2, the DC resistivity values of the com-
position A, BaTi1.005O3 + x mole% Sb2O3, are expressed
as a function of Sb2O3 [6, 14].  The specimens were
sintered at 1350°C in air for 30 minutes and ramped
down to room temperature at a cooling rate of –10°C/
min without annealing at 1200°C.  The experimental
results show that pure BaTiO3 ceramic is an insulator,
and that by increasing the concentration of Sb2O3 will

Fig. 2.  Resistivity of Bariun-Titanate versus Sb2O3 additives.
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initially lower the resistivity to a minimum at approxi-
mately 0.1 mole% of Sb2O3 (or equivalently 0.2 mole%
of Sb).  The resistivity will then increase rapidly with
further addition of Sb2O3.  This phenomenon has two
possible explanations.  One explanation is that if the Sb
concentration exceeds that of TiO2, then the extra Sb
might occupy Ti sites and lead to an increase in
resistivity, or alternatively, the rapid increase in resis-
tivity might be due to formation of too many Ba vacan-
cies by incorporating more Sb molecules.

Figure 3 depicts the dependence of the R-T charac-
teristics on varying annealing time at 1200°C.  Figure 4
reveals that maximum resistivity (Rmax) initially in-
creases rapidly but then slows down for further
annealing; while the minimum resistivity (Rmin) shows

a linear increase with the annealing time.  Maximum
resistivity can be achieved by annealing for around 16
hours at 1200°C.  The value will then decrease for
annealing time longer than 16 hours.  For the non-
annealing case (curve A in Figure 3), the cooling rate
(–10°C) was so high that vacancy compensation (Ba
vacancies) did not have sufficient time to maintain
equilibrium with oxygen and diffuse into the grains,
meaning that the potential barrier could not be
established.  The rapid cooling resulted in a non-equi-
librium and a low activation energy, leading to a low
resistivity and unobvious PTCR effect, demonstrating
that the critical point for the non-equilibrium compen-
sation (electron compensation > barium compensation)
is around 1200°C.  If samples were held at that critical
temperature for a period of time, then further mixed
compensation could occur, which would be the best way
to control the barrier potential of the PTCR ceramics.

Figure 5 shows the magnitude (Log (Rmax/Rmin))
and slope (Log((Rmax – Rtc)/(Rtc(Tmax – Tc)))) of PTCR
as a function of the added MnO2 [5].  Under the same
annealing condition, the effects of PTCR were im-
proved by the addition of MnO2.  When the added
concentration of MnO2 was above 0.12 moles%, the
PTCR effect diminished, and the sample behaved as an
insulator.

Figure 6 displays the dependence of the R-T char-
acteristics of composition B on varying the annealing
time at 1200°C, respectively.  A comparison of Figure
6 with Figure 3 shows that an additional doping with
acceptors decreases the charge carrier density n1 of the
bulk and a change in the overall density of the grain-
surface acceptor states, (sum of intrinsic cation vacancy
enrichment and adsorbed oxygen and extrinsic acceptors)
and additionally shifts the centers of acceptor energy
levels [11] at the grain boundary, in those cases where
the doped acceptors start to dominate the PTCR-active
grain surface acceptor states with increasing concen-

Fig. 3. The resistivity profile of composition A for various annealing
time in air.

Fig. 4. The PTCR Characteristic of composition A for various anneal-
ing time.
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tration.  Hence, Mn could increase the room tempera-
ture resistivity and enhance the  magnitude and steep-
ness of PTCR.

Figure 7 illustrates the dependence of the PTCR
characteristics of composition B on varying the anneal-
ing time at 1200°C.  When comparing Figures 7 and 4,
the magnitude of PTCR (Log (Rmax/Rmin)) demonstrate
that adding 0.1 mole Mn+4 could enhance the magnitude
of PTCR from 3.5 to 6.5 for 16 hours annealing in air.
Mn+4 was found to form a deep level [11] and increase
the surface state, in turn increasing the potential barrier
of the grain boundary and the PTCR magnitude.  Since
both compositions A and B exhibited the highest mag-
nitude of PTCR for annealing at 1200°C for 16 hours, it
proves that the annealing process can precisely control
the thickness of Ba vacancy compensation layer very
well than the traditional process of cooling rate control.

2. Annealing in different gas atmospheres

The R-T characteristics of the specimens with
composition B annealed at 1200°C in different gas
atmospheres are illustrated in Figure 8, showing that
samples annealed in atmosphere of high oxygen content
have the following results:
1. An increase in the steepness of the R-T plot in the

transition temperature range from low to high.
2. An increase in the magnitude of PTCR .
3. An increase in the room temperature resistivity.

While the samples were annealed in reduced air
(98% N2 + 2% H2) [2], anion vacancies (oxygen
vacancies) were generated and electron compensation
would occur to maintain the electrical neutrality, in-
creasing the conductivity of the ceramics.  Heywang
considered that no oxygen was absorbed in the grain
boundaries to form a depletion layer, and therefore that

vacancy compensation (Ba compensation) was sup-
pressed and the potential barrier was not built, the
ceramic exhibited a poor PTCR effect.  As the oxygen
pressure increases, foreign ions are increasingly com-
pensated by the oxidation process (formation of barium
vacancies), and this Schottky barrier was formed be-
tween grains and grain boundaries to benefit the PTCR
effect producing steep R-T plots.

As shown in Figure 9, the samples of composition
B were first treated in air to obtain a high magnitude of
PTCR, shown as curve A.  Subsequently, the electrodes
were removed from the samples and were re-annealed in
a reduced atmosphere for 2 hours, thus the R-T plots
were obtained as curve B.  The samples’ electrodes were
again removed and re-oxidized in an oxygen atmo-
sphere for 2 hours.  The results of R-T plots are shown

Fig. 6. The Resistivity profile of composition B for various annealing
time.

Fig. 7. The PTCR Characteristic of composition B for various anneal-
ing time.
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as curve C, showing the PTCR phenomena was strongly
influenced by the oxygen absorption.  Annealing in a
reduced atmosphere reduces the resistivity of PTCR
ceramics, and also diminishes the PTCR effect of PTCR
ceramics.  When the sample was re-annealed in an
oxygen atmosphere, it became an insulator ceramic with
small PTCR phenomena (curve C), showing that an-
nealing in reduced atmosphere improves the conductiv-
ity of ceramics without contributing to PTCR effects.

3. Complex plane analysis

The equivalent circuit of PTCR ceramic can be
expressed as in Figure 10.  Since the surfaces of the
ceramics were metalized with ohmic contacts and the
grains were conductive, the capacitor existed on the
surface of ceramic and in the grains can be disregarded.
The equivalent circuit of Figure 10 can thus be simpli-
fied as in Figure 11.  The complex-plane-Impedance
analysis [13] method was applied to identify the grain
resistance and the grain boundary resistance.  An
HP4192A impedance analyser was employed to mea-
sure the impedance variation corresponding to the fre-
quency changes from DC to 13MHZ.  The impedance of
Figure 11 is expressed as

Z = Rb +
Rgb

1 + j ω RgbCgb
, (6)

where Rb denotes the effective grain resistance, Rgb

denotes the effective grain boundary resistance, and Cgb

denotes effective grain boundary capacitance.  Since
the measured impedance depends on the input signal
frequency, the impedance is Z = Rb in the high frequency
region, and Z = Rb + Rgb in the low frequency region.

Fig. 9. PTCR characters of composition B annealed sequentially in (1)
air for 18 hours; (2) reduced atmosphere (N2 + 2% H2) for 2
hours; (3) oxygen for 2 hours.
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Figures 12 and 13 show that the grain boundary
resistance increases as the annealing time increases.
However, the grain resistance remains the same as
observed in Figure 14 and Figure 15, showing that the

Fig. 10.  The equivalent circuit of PTCR ceramic.
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complex-impedance measurements of the specimens
agree with the theoretical deductions of equivalent cir-
cuit in Figure 11.

The complex plane measurement results confirm
that the grain boundary, unlike the grain resistance,
depends strongly on the annealing process.  The in-
crease in the grain boundary resistance is due to the
formation of a space charge layer caused by the anneal-
ing process, showing that the annealing process is an
effective way, rather than the cooling process, to con-
trol the characteristics of PTCR ceramics and approves
with the PTCR mechanism presented in previous
discussions.

The grain resistance was found to be about 3.5 ohm
for (Ba0.998Sb0.002)Ti1.005O3 ceramics (Figure 14).  The
grain boundary resistance increased significantly when
0.1 mole% Mn+4 was added to the samples, while the
grain resistance increased with the annealing time in the

range of 4.5-6.6 ohms (Figure 15), possibly because
most of the Mn ions were segregated at the grain
boundary, increasing both the resistance and barrier
height of the grain boundary.  However, some Mn ions
came into the bulk of the grains (substituting Ti sites)
and decreased the electron density, increasing the grain
resistance.  The grain resistance of the ceramics of
composition A, was independent of annealing time,
while that of composition B increased as the annealing
time increased, because the Mn was incorporated into
the crystals reducing the electron density.

CONCLUSION

This work examines and discusses the effect of the
annealing on the properties of PTCR ceramics.  Barium
titanate can be made conductive both by donor dopants
(valency-controlled) and by anion vacancies (vacancy-
controlled).  However, PTCR ceramics can be produced
only by the valency-control method.

In this investigation, extensive high temperature
annealing the valency-controlled ceramics in an oxygen
atmosphere produces the formation of barium vacancies
that compensate the electron donors.  annealing at
1200°C was found to control the characteristics of
PTCR ceramics well.  The annealing process results in
the development of the potential barrier by increasing
the acceptor state density (Barium vacancies) and en-
hancing the PTCR effects.

The effects of reduction/re-oxidation on samples
annealed in air at 1200°C for long period clearly show
the presence of an insulating layer, validating the model
of Daniels and his co-workers.  The dramatic decrease
in Rmin and the disappearance of the PTCR effect ob-
served in the reduced specimen was explained by ex-

Fig. 13.  The impedance plot of composition B for various annealing
time.

Fig. 14. The expanding impedance plot of Figure 12 by different an-
nealing time at high frequency region.
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Fig. 15. The expanding impedance plot of Figure 13 by different
annealing time at high frequency region.
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tending the above model to include the formation of
oxygen vacancies, which coexisted with the Ba
vacancies.  This experiment confirms that oxygen is a
significantly influences on the PTCR effect.

The complex-plane-impedance method was used
to verify the influence of annealing condition (tempera-
ture, time and atmosphere) on the PTCR devices, find-
ing that PTCR mechanism came from the grain bound-
aries rather than the bulk phenomenon.

The processing technology and theoretical mecha-
nism of the annealing effect on the PTCR ceramics were
designed and discussed in detail herein.  Factors which
are essential in controlling the PTCR ceramics were
studied, showing that the design of the PTCR devices is
practical.
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