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ABSTRACT

The objective of this paper is to study the dynamics and control
of an Euler-Bernoulli beam with an attached mass rolling on an
initially curved beam based on a simplified control model.  The
optimization of the performance index of linear quadratic regulator
(LQR) is considered.  Three actuators are placed along the beam that
provide the necessary forces to control the response of the beam-mass
system.

Based on Euler-Bernoulli beam theory and Newtonian mechanics,
the coupled non-linear equations of motion combining with a simple
closed-loop feedback control are obtained.  Results of present study
show that with appropriate regulator design, the vibration of the
system can be suppressed significantly even if a simplified control
model is applied.

INTRODUCTION

The dynamics and dynamic control of flexible
structures with an attached moving mass have been the
subjects of many studies.  Ting et al. [6] discussed the
problem regarding the interaction between the moving
mass and the supporting structure.  They concluded that
if “correct” formulation is desired the convective accel-
eration terms should be included.

Mohamed et al. [2, 3] studied the problem of active
control of flexible structures under moving loads.  The
tendon control is used to suppress the vibration of the
beam.  Sung [5] studied similar problem except in his
study, he employed two piezoelectric actuators that are
bonded at the bottom of the beam at different locations
to suppress the vibration of the beam under a moving
mass.

Wang [7] studied the transient dynamics of a beam-
mass system carrying multiple masses moving along an
initially curved beam and showed that the initial curva-
ture of a beam can result significant effects to the
dynamics of the system even if the initial imperfection
of the beam is small.

Gardonio et al. [1] analyzed the controlled re-
sponse of a beam with direct velocity feedback control.
They found that new regions of natural frequencies and
mode shapes are generated if very high control gains of
the velocity feedback control are applied to the system.

The problem of moving mass has been studied by
many authors, however, the dynamics and control of an
attached mass rolling on an initially curved beam has
not been studied yet.  Hence, a beam-mass system with
a geometric imperfection beam is considered.  In this
paper, the mechanics of the problem is Newtonian.  The
control law considered is based on the optimal linear
quadratic regulator (LQR) method.  The equations of
motion combining with a simple closed-loop feedback
control are derived.  The dynamics of the system with
and without control are studied.  The effects produced
by the variation of physical parameters to the response
of the system are examined.

MODEL  FORMULATION

In this study, a moving mass rolling on a finite,
simple supported, initially curved beam is considered.
The beam rests on a uniform elastic foundation and is of
length  and initial variation v 0 (s) .  Here v 0 (s), v 0 (s) = v0

*

sin
π s

, is the initial deviation of the beam measured

from straight axis with v*
0 being the amplitude of initial

deviation.
From Figure 1, the equations governing the motion

of the system can be derived from the dynamic equilib-
rium of forces and momenta and are given as

{[T cos (θ + θ0) – V sin (θ + θ0)]i

+ [T cos (θ + θ0) + V sin (θ + θ0)]j}, s + f
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≈ {[T + EIv,sss (v,s + v 0,s ) ] i + [T (v,s + v 0,s )

– EIv,sss ]j},s + f = mr,tt    0 < s < l, t > 0 (1)

with the inextensibility constraint r,s · r,s = 1.  In the
above equation, i and j represent the unit vectors of the
coordinate system in the x and y directions, respectively;
v (s, t) is the transverse displacements of the beam from
the undeformed state; T, V, m, E, and I are the axial force
in the beam, the transverse force in the beam, the mass
per unit length of the beam, the Young’s modulus, and
the area moment of inertia of the beam, respectively; the
subscript s and t denote the s and t differentiation.
r (s, t) is the Cartesian position vector of point s along
the beam at time t.  The force f denotes the external
forces including the weight of the moving mass, the
moving reaction of the mass upon the beam, and the
control force applied and is given as

f = – (kv + uk(t)δ(s – sk))j + (Nn + µNτ̂ )δ (s – s–)
(2)

where s–(t) is the distance along the arc of the beam
designating the position of the moving mass; δ (s – s–)
and uk(t) are Dirac delta function and control force of
the kth actuator at the location sk, respectively; τ̂  ≈ i +
(v,s + v–0,s)j and n ≈ – (v,s + v–0,s)i + j.

The equation of motion of the moving mass obeys

MaM = Mg + fm – µNτ̂  – Nn (3)

where M = mass of the moving mass, aM =
d 2

dt2
[r (s ( t ), t )],

g = gj, fm = tangential propelling force with f being a
prescribed function of time = Mf τ̂ , N = reaction of beam
on the mass, and µ = coefficient of friction,

In the following, the attached mass moves along
the beam with constant velocity and the condition of

small deformations are assumed.  For this, one sets aM

= 0 and substitutes Eq. (3) into Eq. (2) to eliminate the
term µNτ̂ , Nn.  For the second assumption, one neglects
nonlinear terms when compares these terms to the linear
term in the displacement field and unity.  In addition,
the axial force T can be determined by integrating
equation (1) in i direction under the assumption that the
variation of axial force is assumed to remain constant at
the moving mass and uses the boundary condition in i
direction.  After some manipulations, it is found that the
axial force T is in the second-order of nonlinearity and
can be neglected.

By introducing the following dimensionless
quantites

τ =
EI

ml 4
t, M =

M
ml

, f =
ml 3

EI
f , g =

ml3

EI
g,

k =
kl 3

EI
, η =

s
l
, ξ =

s
l

, v =
v
l
, v 0 =

v 0

l
(4)

the equation of motion associated with the boundary
conditions in j direction can be obtained.  By representing

v̂ as a continuous function, v = An(τ)Σ
n=1

∞
 sin nπη, 0 < η

< 1, τ > 0, such that the simple supported boundary
condition in j direction is satisfied, the approximate
solution of the beam-mass system then can be obtained
by employing the Galerkin’s method.  Using Galerkin’s
procedure for minimizing error, one obtains

Aj (τ) + ωj
2Aj (τ) = 2M{gSj (ξ )

+ µg Rjn (ξ) v0An (τ) + (ξ)2Sj 1(ξ) v0Σ
n=1

∞

– [SjnΣ
n=1

∞
(ξ) An (τ) + 2ξRjn (ξ) An (τ)

– (ξ)2Sjn (ξ) An (τ)]} – SjΣ
k =1

r
(ηk ) u k ,

0 < η < 1, τ > 0 (5)

where û k =
uk l 3

EI
, v0 =

v0
*

l
, ω2

j = ((jπ)4 + k̂ ),

v 0 =
v0 =

v0
*

 sin πη ≡ v0 sin πη,

Rjn (ξ) = (nπ) cos nπξ sin jπξ,

Sjn (ξ) = (nπ)2 sin nπξ sin jπξ ≡ (nπ)2 Ŝ jn (ξ),

Ŝ n (ξ) = sin nπξ, Ŝ j (ηk) = sin jπηk.

To write the equation of motion in matrix form, it
allows the parameters j and n to have the range from 1
to N; the parameter k has the range from 1 to r.  Let y =Fig. 1.  System configuration and force equilibrium diagram.

M

M

Mg

fµ

x

y

τ̂

^

–Nn

–µNτ

R(-) R·dR

V
V V+dv

P

r

H+θ θ0



C.C. Chang & Y.M. Wang: The Dynamics and Control of an Moving Mass Traveling on an Initially Curved Beam 275

(A1, A2, ....., AN)T, then, Eq. (5) can be written as

M(ξ)y(τ) + K1(ξ)y(τ) + K2(ξ)y(τ) = h(ξ) + Bu (6)

The initial conditions are

y(t0) = y0, y· (t0) = y· 0, ξ
·
(t0) = Vξ, ξ(t0) = Vξ t0 (7)

where ξ
·
(t0) and ξ (t0) are the initial speed and position of

the mass along the beam at time t0, respectively.  The
components of the previously defined matrices, vectors
and scalars in Eq. (6), i.e., M, K1, K2, h–, B– and u– are
given in the Appendix.

Introducing new state vectors z into Eq. (6) to
obtain the numerical integration scheme of the system
with the associated initial conditions as specified in Eq.
(7), let z = (y· T, yT), where z is the 2N vector.  The initial
condition of z is z(t0) = (y· T

0, yT
0), then the Eq. (6) can be

written as

Mz + Nz = Bu + h (8)

or

z· = Az + Bu + d (9)

where A = –M
~ -1N

~
, B = M

~ -1B̂, d = M
~ -1h. In addition,

M =
M [0]
[0] I

, N =
K1 K2

– I [0]
, h = ( h T, 0T)

B =
B [0]n – r

[0]r [0]n – r

, u = ( u T, 0n – r
T )

T

where A = 2N × 2N matrix,
B = 2N × 2N matrix,
u = (N + r) × (N × (N – r) + 1)matrix,
d = 2N × 1 matrix, I = N × N unit matrix,
B– r = N × r matrix, [0] = N × N matrix,
[0]r = N × r matrix, u– r = r × 1 matrix,
[0]n–r = N × (N × r) matrix.

OPTIMAL  CONTROL  DESIGN

1. Basic formulas

The linear quadratic regulator optimal control is
employed to obtain suitable control gains for the beam-
mass system.  The performance index is

J =
1
2

zT(tf ) Hz(tf ) +
1
2

{ [zT(t) Q (t) z (t)
t0

tf

+ uT(t) R(t) u(t)] dt} (10)

where the state weighting matrices H
–

, Q and R are
symmetric semi-definite and positive-definite matrices,
respectively; t0 and tf are the initial and final time of the
control interval.  The control input is given by (Shahian
et al., 1993).

u* (t) = –R–1BTP(t)z(t) (11)

where R–1BTP(t) is the optimal control gain of the state
by minimizing Eq. (10) subjected to the constraint, Eq.
(9).  Here, P(t) is a self-adjoint, positive definite Riccati
matrix satisfying the nonlinear differential equation.

–P
·
 = PA + ATP – PBR–1BTP + Q (12)

The controlled system is then expressed as

z· = [A – BR–1BTP]z + d (13)

The corresponding block diagram of the closed-
loop system governed by Eq. (9) is given in Figure 2.

2. Actuators placement

It is known that the placement of actuators plays a
major role in optimal active control of flexible structures.
In order to maximize the performance of the controlled
system and minimize the number of actuators, the best
locations of actuators can be chosen and achieved by
iteration such that the performance index is minimized.
In order to diminish the error produced by the uncon-
trolled modes of vibration, three actuators are selected
to provide better control behavior than the result of a
single actuator.  Figure 3 shows the comparison of the
controlled response of the system by using a single
actuator (dashed line) at the mid-span and by three
actuators (solid line).  It clearly indicates that the result
of applying three actuators is better than the result of
using a single actuator at the mid-span.

Fig. 2.  Block diagram of optimal feedback control.

d +

u

B
zz·

SystemController

A

R
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NUMERICAL  SIMULATION

As mentioned previously, three actuators attached
on the beam at different locations are sufficient to
provide the required control force to the system.  After
some manipulations, it is found that the locations of the
three actuators are at ŝ 1 = 0.26, ŝ 2 = 0.5 and ŝ 3 = 0.82.
Other parameters, unless otherwise specified, are: EI/
ml4 = (9.4/π)2, µ = k̂  = 0.0, Q = 106, and R = 1.  Figure
4 shows the control performance (deflection at midspan)
vs.  the values of matrix Q for two different values of
initial speed of the mass, ξ

·
(0) = 0.25π and 0.5π.  This

figure clearly indicates that the maximum control per-
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Fig. 3. The Deflection at mass vs. position of mass along the beam due
to the influence of single actuator and three actuators.
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Fig. 4.  Control performance (Deflection at midspan) vs. the values of
matrix Q for two different values of initial speed of the mass,
ξ· (0) = 0.25π and 0.5π.

Fig. 5. Deflection at mass vs. the position of mass along the beam due to the influence geometric imperfection of beam for two different values of initial
speed of the mass, ξ· (0) = 0.25π (top plot) and π.

formance is reached when Q ≥ 106.  Hence, the value of
Q is set to be 106.

For numerical integration of the system, Eqs. (9)
and (13), the Runge-Kutta method with sixth order
accuracy is used.  The accuracy of the model is checked
with the results of Ting, et al. (1974).  The dimension N
of the state vector z is set to be 30 to retain sufficient
convergence.

Figures 5 and 6 describe the response of the system
due to the motion of the moving mass without and with
control under different conditions.  Figure 5 shows the
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deflection at mass (trajectory) vs.  the position of mass
along the beam due to the influence of geometric imper-
fection of beam for M̂ = 0.5, ξ

·
(0) = 0.25π (top plot), and

0.5π (bottom plot).  Three different values of initial
curvature are selected; they are v0 = 0.0 (dot line), v0 =
0.025  (dash-dot line), and v0 = 0.05  (solid line).  This
figure clearly indicates that the initial curvature of a
beam plays an important role to the response of a beam-
mass system.  In general, the initial imperfection ampli-
fies the amplitude of deflection at mass even if the
initial deviation is small.

Figure 6 presents the response of the system with
and without control for v0 = 0.05 and M̂ = 0.5.  Two
different values of initial speed of the moving mass are
used, ξ

·
(0) = 0.25π (top plot) and 0.5π (bottom plot).  It

clearly shows that the vibration of the system can be
efficiently suppressed by the proposed linear quadratic
regulator control method even if a beam with initial
geometric imperfection is considered.

CONCLUSIONS

The dynamics and control of a moving mass rolling
on an initially curved beam are studied.  The optimal
active control theory with feedback closed-loop is applied
to suppress the oscillation of the system.  In order to
provide necessary control forces, three actuators are at-
tached on the beam.  Results of present study show that the
vibrations of the system can be suppressed significantly
even if the applied control system is a simple model.
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APPENDIX

M = [Mjn], Mjn = δjn + 2M̂Ŝ jn.

K1 = [K1jn], K1jn = 4M̂ξ
·
Rjn.

K2 = [K2jn],

K2jn = ω2
jδjn + 2M̂(ζ

·
Sjn – µĝRjnv0).

h– = (h
–

j), h
–

j = 2M̂(ĝ Ŝ j + ξ
· 2Sj1v0).

B
–

 = [B
–

jk], B
–

jk = –Ŝ j (ηk).

u– = (ûk).

Fig. 6. The Deflection at mass vs. position of mass along the beam due to the influence of two different values of initial speed of the mass,
ζ· (0) = 0.25π (upper plot) and (below plot); other parameters used are M̂ = 0.5 and ν0 = 0.05.
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