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ABSTRACT

In this paper, a neural network (NN) based on internal model
control (IMC) is developed to adjust control parameters for roll
motions of a container ship.  Controller architecture, which combines
neural network with internal model control, has been outlined and its
effectiveness demonstrated on the container ship roll stabilizer.  The
control signal error is used with back-propagation algorithm to update
the weights of the neural controller. In conclusion, the neural network
based on internal model control systems are analyzed, and compared
to classical PID control results.  As can be seen from numerical
results, the NN based on IMC is implemented successfully to reduce
roll amplitude.

INTRODUCTION

The roll motion of ships in large amplitudes is very
difficult to control due to nonlinear dynamics.  For these
reasons during the last decades many researchers have
been making a study about roll motion control.  The
background to the problem of designing roll stabiliza-
tion controls for ships was reviewed [10] and an over-
view has been presented [13].  Fin stabilizers are attrac-
tive for roll reduction since they are highly effective,
work on a large number of ships, and are much easier to
control, even for varying load conditions and actuator
configurations.  Therefore, fin stabilizers can be used in
order to provide satisfactory roll damping performance.

Various control strategies have been presented for
the roll motion control of ships.  Proportional-Integra-
tive-Derivative (PID), which is control classical control
system, is proposed for roll motion control [6].  The
performance of classical PID optimized PID given, and

H-infinity controllers are compared in [2, 5, 9].  Be-
cause of the unpredictable operating environment of
ships, conventional control methods such as the PID
controller may not be able to give good damping
performance.  Hence, researchers developed internal
model control (IMC) systems in order to provide satis-
factory performances.  IMC concept have found accep-
tance in industrial applications due to high performance
and robustness [16, 17].  A detailed analysis has been
given by [11].

For the implementation of IMC algorithm, neural
network control method is able to adapt on order to
improve the IMC performance.  The idea of using neural
network for IMC has been considered by [1].  As cited
earlier as powerful computational tools neural network
techniques have been utilized in many disciplines as
well as in marine fields [4, 14, 19].  Efficiency of the
proposed NN adaptive control is studied by back-propa-
gation algorithm to update weights of the controller.
The back-propagation algorithm introduced two main
advantages in accelerating both the speed of the learn-
ing process and the speed of the evaluation [7, 8].

In this paper, neural network is adopted in IMC
design and shows good advantages.  Applicability of a
neural network controller based on model reference
adaptive control is investigated for designing roll stabi-
lizer control for a container ship.

EQUATION  OF  MOTION

The equation of motions for a container ship has
been obtained from Newton’s second law.  The dynamic
model of the ship is shown Figure 1 [3].

In literature a ship’s six degrees of freedom dy-
namic equations are expressed as:

Mυ + B (υ)υ + C (η) = M f + M w (1)

with
η: position and orientation of the ship



Journal of Marine Science and Technology, Vol. 15, No. 2 (2007)142

υ: linear and angular velocity of the ship
M: inertia matrix including added mass
B: matrix consisting of damping terms
C: vector of restoring forces and moments due to

gravity and buoyancy
Mf: vector of fin control inputs
Mw: vector of wave inputs
The mathematical model of a container ship used

in this study is described in reference [3].  Three degrees
of freedom model of the container ship was developed
to design a roll controller that uses the fins as a control
input.

(m – Y v)v = Y v + Y φφ + Y pp + Y rr + Y αα + Y ws

(I x – K P )p = K pp + K vv + K rr – mgGMφ + K αα + K ws

(I z – N r)r = N rr + N φφ + N pp + N vv + N αα + N ws

(2)

The above described mathematical model gives a
good approximation of the maneuvering behavior of a
container ship.  Where v is the sway velocity; p, r
respectively are the roll and yaw rates.  Yv, Kp and Nr

indicates the hydrodynamic coefficients of sway, roll
and yaw moments, respectively; m is the mass of the
ship; g is the gravity constant; Ix and Iz respectively are
the moment of inertia about the X-Z axis; and GM is the
ship metacentric height, which indicates the restoring
capability of a ship in roll motion.  The fin angle is
represented by α.  The wave slope is s.  The fin and wave
forces and moments are represented by the terms Yα, Kα,
Nα and Yw, Kw, Nw,  respectively.  The ship inertia matrix
for 3 DOF,

M =
m – Y v 0 0

0 I x – N p 0

0 0 I z – N r

(3)

the Coriolis matrix,

B =

– Y v – Y p – Y r

– K v – K p – K r

– N v – N p – N r

(4)

the restoring matrix,

C =
0 – Y φ 0
0 mgGM 0
0 – N φ 0

(5)

fin and wave forces and moments are given.

M f =
Y α
K α
N α

(6)

M w =
Y w

K w

N w

(7)

1. Fin-wave forces and moments

The force and moments derivatives for the pair of
fins are as follows:

Yα = ρV2Sf Clα cos38°

Kα = ρV2Sf ClαRf

Nα = ρV2Sf ClαLf  cos38° (8)

The total ship’s velocity is V and Rf is the vertical
distance from the fin center of pressure to the roll center
of the ship.  Lever arm Lf is the distance from the fin
center of pressure to midships.  The fin angle which is
expressed by cos38° shows the location of the fins from
the roll center.  The effects of the fins are added into the
coefficient matrices depending on the location angle.

The wave disturbance was modeled by an input
disturbance.  The forces and moments generated by the
wave acting upon the ship’s hull have been established
using the results of JONSWAP spectrum.  The wave
forces and moments are given by Yw, Kw, Nw and they
should be added to the right-hand side of the Eq. (2) as
[15].

Y w = m a 1 S (t )

K w = mL a 2 S (t )

N w = mL a 3 S (t ) (9)

where Yw is the sway force, Kw is the roll moment and Nw

is the yaw wave moment.  a 1, a 2 and a 3 are filter
parameters.  S(t) is a spectrum for each exciting force

ZY
θ

φ

ψ

δ X

Fig. 1.  Ship coordinate system.
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and moments.

STRUCTURE  OF  ROLL  STABILIZATION
CONTROL  SYSTEM

The previous section about mathematical models
is described.  In this section, the controller is designed
to stabilize roll motion of the container ship.  Figure 2
shows a block diagram of an actual roll stabilization
system.  In this diagram, φ is the ship rolling angle and
is the angle of the fin.  φd is represent and desired roll
angle.

The stabilizing force will reduce the roll of the
containership.  The designed system has three degrees
of freedom structure using a IMC and neural network
control methods.  In this study, it is considered neural
network based on IMC system designed to make the
output of the plant track a desired angle.

1. PID control for the container ship

In the following, the design of conventional con-
trollers will be discussed.  In general the PID control
method is employed in the roll control.  The control is
made by proportioning the fin angle to the rolling angle.
First PID controller is considered.  The control signal  of
the PID controller is given by Eq. (10).  The closed loop
diagram of the feedback system is shown in Figure 3.

Here, α(t) is the control signal, φd, φe and φ are the
desired roll angle, the rolling error and the actual rolling,
respectively.  PID control has been used in industry
widely and successfully.  The control input α(t) and the
roll error are obtained as follows:

α(t ) = k pφe(t ) + k d
d φe(t )

dt
+ k i φe(t ) dt (10)

φe(t) = φd(t) − φ(t) (11)

kp, ki, kd are proportional, integrative and derivative
constants.  For the PID controllers, parameters have to
be tuned.  These values are obtained by use of Ziegler-
Nichols method [12].

2. The internal model controller design

In order to control the roll motion of the container
ship, an internal model controller is considered.  A basic
internal model control is shown in Figure 4.  Where G
is the process model of the roll motion and Q(s) is a
regulator.  α(s) denotes fin control input, φc represents
commanded roll angle, G(s) is the roll motion transfer
function as follows.

G (s ) =
φ(s )
α(s )

= 2.4s + 13.5
s 3 + 5.4s + 3085.5s + 12085

(12)

The IMC and classical feedback structures are
equivalent under the following transformations [16].

C =
Q

1 – C G
(12)

Q = C
1 + C G

(13)

Where C represents the controller.  The main
feature of this control system is the way in which it
checks difference between the outputs of the process
and of the internal models.  This difference is fed back
into the controller to reject error effects.  In order to
obtain the internal stability, the mismatch effect be-
tween the roll motion and the model of the roll motion
should be minimized.  Hence, the controller can include
a filter to increase robustness to model mismatch and
disturbances.

Ship roll

controller

Ship roll

dynamic

αφ ed
+

−

φ

Fig. 2.  Containership roll control system.

PID Ship dynamics

Mux
αe

φd φ

Fig. 3.  Feedback control system with PD controller.
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Fig. 4.  Schematic of the IMC scheme.
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Q = F G inv (14)

Where G inv  is an approximation to the inverse of
the vehicle model G .  F(s) is a low pass function of
appropriate order.

F (s ) = 1
(1 + τf s )n (15)

Where τf is the filter parameter and n is the order
of the filter.  Orders of the filter are chosen in such away
so that the controllers transfer functions are proper.

3. Back-propagation neural network

The back-propagation algorithm is the most im-
portant algorithm for the supervised training of NN it
derives its name from the fact that error signals are
propagated backward through the network on a layer-
by-layer basis.  The neural network is three layers in this
study.  The network consists of input, hidden and output
layers.  The network converts the inputs according to
the connection weights.  These weights are adjusted
during the learning process.  To minimize the sum of the
squared errors between the desired output and the net-
work output.  A simple neural network represents in
Figure 5.

The output layer is given by

net j =Σ
j

i

w ji o i + θj (16)

where wji represents the weight between hidden node j
and input node i.  The output of unit   in the hidden and
input layers are represented by oi.  The back-propaga-
tion algorithm adjusts the network parameters in order
to minimize the mean square error.

E p = 1
2 Σ

j – output
(t pj – o pj )

2 (17)

where tpj is the desired output and opj actual output.  If
a sigmoid transfer function is used in the operation
element

o pj = 1
Σ
j

1 + e
– w ji opj + θj

(18)

Using Eq. (16) and (18), the activity of each unit is
propagated forward through each layer of the network.
Error for each unit is calculated.

δpj = opj(tpj − opj)(1 − opj) (19)

A hidden layer error is back propagated as follow,

δpj = o pj (1 – o pj )Σ
k
δpk w kj (20)

The change in each weight is calculated.  This rule
for the adaptation of the weights is known as the gener-
alized delta rule.

∆pwji(t + 1) = αδpjopi + ε∆pwji(t) (21)

where α is constant that determines the learning rate of
the back propagation algorithm, ε determines the effect
of previous weight changes on the current direction of
movement in weight space.  The learning rate has used
between 0.01 to 10.

SIMULATIONS

The controller design objectives are to reduce roll
amplitude and to evaluate any differences in perfor-
mance between the PID and the NN based on IMC
design.  To demonstrate effectiveness of this proposed
controllers a series of simulations are performed on the
container vessel.

Using the process input α and previous output φ
the neural network calculates φm which is used to calcu-
late the error of the neural model e = φ − φm used to adapt
the neural mode with back propagation method and to
produce feedback signal.

The Neural Network input and output functions for
the container ship roll stabilizer system are given in
Figure 6.  The figure shows the NN plant model and the
NN controller.  The Neural Network is constituted by an
input layer of two neurons, a hidden layer of thirteen
neurons and an output layer one neuron.  The controller
inputs are the desired roll angle and the actual roll angle.

The output is the fin angle, which should drive the
containership roll to the desired roll angle.  In order to
upgrade the NN based on IMC, the actual error is
calculated by back propagation algorithm.  A container
ship and fin stabilizer whose main particulars are given

Y1

Y2

Yn

X1

Wji
1 Wkj

2

X2

Xn

Fig. 5.  Neural network diagram.
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Plant

Filter

NNC

1/1 + e-x

1/1 + e-x

1/1 + e-x

e(t)

Σ

Σ

α (t) φ (t)

NN model

+

φ (t)m

−

φd

Fig. 6.  Neural network as a controller in the IMC approach.

in Table 1.  Due to safety reasons, the fin angle is limited
in the range of ±30°.

The wave disturbance may be modeled as an input
disturbance, which is generated by Fossen [3] in Figure
7.  The damping ratio ζ  is set to between from
0.05 to 0.1, the encounter frequency is set to between
0.3 to 1.3 rad/sec and the wave strength factor is Kω set
to 10.

In order to obtain damping ratio, the formula sug-
gested by reference [18] can be used.  Roll reduction
ratio

Roll reductionratio (%) = 100 ⋅
AP – RCS

AP
(22)

where AP is the standard deviation (RMS) of roll ampli-
tude when the fin stabilizer off.  RCS is the standard
deviation of roll amplitude while the fin stabilizer is
open.

Figures 8 and 9 show control performance for PID
and neural network based on internal model controllers.
The results in figures show that the scheme proposed in
this paper has good response speediness and robustness.
It is observed that the roll control system is capable of
attaining the NN based on internal model controller
result.  The roll angle has been reduced from 8.6° to
0.5°, which corresponds to a 94% roll angle reduction
with NN based on IMC.  Table 2 summarizes the roll
reduction results.  Figure 10 shows the fin angle when
the surge speed is set equal to 12.7 m/sec.

Very good roll reduction is achieved with minimal
control effort required with NNIMC.

CONCLUSION

In this paper an internal model controller of a roll
motion stabilizer system was designed.  Controller ar-
chitecture combines neural network based on internal
model control.  Simulation studies are included to illus-
trate the effectiveness of a neural network control
algorithm.  This leads to the conclusion that the NN
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Table 1.  Container ship main data

Container ship Roll fins

Length between perpendiculars L 230.66 (m) Profil area sf 3.6 m2

Maximum beam B 32 (m) Lift coeff. slope CLα 2.464 1/rad
Design draft T 10.7 (m) Mean span sp 3 m
Design displacement volume ∇ 46070 (m3) Mean chord −c 1.2 m
Metacenter height GM 0.83 (m) Section shape NACA 0015

No control
PID
NNIMC
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Fig. 8.  Neural network based IMC of roll motion.
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based on internal model controller approach is a good
alternative to classical controller design.
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