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ABSTRACT

The stochastic chaotic motion and the threshold intensity of the
external excitation force for onset of chaos of the ships in random
beam waves are studied by the nonlinear stochastic dynamics theory.
The random differential equation of ships’ rolling motion is estab-
lished with considering the nonlinear damping, nonlinear restoring
moment and the white noise wave excitation.  The random Melnikov
mean-square criterion is used to determine the threshold intensity for
onset of chaos.  The probability density function of the rolling
response is calculated through solving the stochastic differential
equations by applying the path integral method in the chaotic region.
It is found that the ships undergo stochastic chaotic motion when the
real intensity of the white noise exceeds the threshold intensity, the
stable probability density function of the roll response has two peaks
and the random jump happens in the response of the system for high
intensity of the white noise excitation.  The chaotic response is further
investigated via numerical results of the system.

INTRODUCTION

Ships will undergo chaotic motion before capsizing.
Identifying the chaotic motion and the critical condition
of it are very important for both predicting ships’ cap-
sizing and studying the capsize mechanism.  People
have done much work about the ships dynamics in
regular waves and found the nonlinear phenomena of
amplitude jumping, superharmonic and subharmonic
response, period and chaotic motion of the ships [8, 9].
There are some initial researches on the dynamic char-
acteristics of ships in random waves, for example, Yim
and Huan [11] analyzed the roll chaotic motion of ships
under periodic excitation perturbed by random noise via
the probability density function, Francescutto [2] stud-
ied the bifurcation and chaos of ships’ rolling motion in
narrow banded waves via the perturbation method of
multiple time scale method and Hsieh and Troesch [3]

studied the ships’ chaotic motion by Melnikov function.
There is no standard method that can be used to identify
the ships chaotic motion in random waves.

The rolling chaotic motion of ships subjected to
random beam waves is studied by the probability den-
sity function and the numerical method.  The random
Melnikov mean-square criterion is used to determine
the threshold intensity of the external excitation force
for onset of chaos.  The joint probability density func-
tion of the roll response is calculated by solving the
differential equation via the path integral method in the
chaotic region.  The chaotic characteristic is investi-
gated via the shape of the probability density function
and numerical results of the system when the real inten-
sity of the white noise exceeds the threshold intensity.

1. The stochastic nonlinear roll model of ships

The governing equation can be expressed in the
following form for ships in the beam wave

(I44 + A44 (ω)) ϕ⋅⋅ + B44 (ω) ϕ⋅  + B44q (ω) ϕ⋅ 3

+ ∆GZm (ϕ) = Fsea (τ) (1)

Where I44 is the moment of inertia of the ships about the
roll axis, A44 is the linear roll hydrodynamic added mass
coefficient, B44 is the linear roll damping coefficient,
B44q is the cubic damping coefficient, Fsea (τ) is the
wave excitation force, ∆ is the displacement, GZm (ϕ)
including the static effects of water-on-deck is a poly-
nomial approximation to the designed roll righting arm
curve GZ (ϕ).  For a special ship the details of how the
modified roll restoring arm curve GZm (ϕ) is determined
are contained in the work of Falzarano [1].

The realistic wave is colored noise, for a special
condition the wave excitation is treated as white noise in
order to simplify the computation.  The motion of ships
with water-on-deck considered is divided into two dy-
namical regions-homoclinic and heteroclinic and the
modified roll righting arm curve is approximated as
GZm (ϕ) = –C1ϕ + C3ϕ

3 in the homoclinic region [1], Eq.
(1) can be rewritten in the following non-dimensional
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form

ϕ⋅⋅ (t) + d '1ϕ⋅ (t) + d3ϕ⋅
3 (t) – ϕ (t) + k3ϕ (t)3 = ξ (t) (2)

Where t = ω0τ; ω0 =
∆C1

I44 + A44 (ω)
; d1

' =
B44

∆C1
ω0 and

d3 =
B44q

I44 + A44 (ω)
ω0 denote the linear and nonlinear damp-

ing coefficient respectively; k3 =
C3

C1
 is the nonlinear

restoring moment coefficient; ξ (t) =
Fsea

∆C1
= DN (t) de-

notes the white noise with intensity of D; N (t) = dW (t)/
dt, where W (t)is standard Wiener process.  By perform-
ing equivalent linearization on the nonlinear damping
force and replacing roll angle ϕ and roll angular veloc-
ity ϕ⋅  with x (t) and y (t) respectively, Eq. (2) can be
rewritten as

x (t) = y (t)

y (t) = x (t) – k3x (t)3 – d1y (t) + ξ (t)
(3)

Here d1 is the equivalent linearization damping
coefficient.  Eq. (3) can be rewritten as

dx = ydt

dy = ( – d1y + x – k3x
3) dt + DdW (t)

(4)

The Wong-Zakai correction terms [12] of Eq. (4) is
equal to zero and Eq. (4) can be approximated by  Itô
differential Eqs. as following

dx = a1 (x, y, t) dt + b1 (x, y, t) dW (t)

dy = a2 (x, y, t) dt + b2 (x, y, t) dW (t)
(5)

Where, 
a1 = y, b1 = 0

a2 = ( – d1y + x – k3x
3), b2 = D

.

2. The random melnikov mean-square criteria

If the Melnikov function has a simple zero, it is
known that the stable and unstable manifolds of the
Poincare map have at least one transversal intersection
and the system is chaotic in the Smale meaning [12].  As

for the stochastic process, the Melnikov process should
be studied in the probability perspective that is the
random Melnikov mean-square criteria [5, 12].  Consid-
ering a single degree of freedom Hamiltonian system
subjected to noise excitation

Q =
∂H
∂P

P = –
∂H
∂Q

– εc (Q, P)
∂H
∂P

+ ε f (Q, P) ζ (t)
(6)

Where H = p2/2 + U (q), ζ (t) is the white noise external
excitation with zero mean, c (Q, P) denotes the coeffi-
cient of damping, ε is a small positive parameter.  It is
assumed that the Hamilton system associated with Eq.
(6) possesses a hyperbolic fixed point connected by
homoclinic orbits (q0 (t), p0 (t).  The random Melnikov
process for system (6) is

M (t0) =
∂H
∂P– ∞

+ ∞

[ – c (Q, P)
∂H
∂P

 + f (Q, P) ζ (t + t0)] dt

= Md + Z (t0) (7)

Where Md = [ – c (Q, P) (
∂H
∂P

)2] dt, Z (t0)
– ∞

+ ∞

=
∂H
∂P– ∞

+ ∞

[f (Q, P) ζ (t + t0)] dt,

Q = q0 (t) and P = p0 (t).  The mean value of random
Melnikov process (7) is

E [M (t0)] = E [ – c (Q, P) (
∂H
∂P

)2] dt
– ∞

+ ∞

+
∂H
∂P

⋅ f (Q, p) ⋅ E [ζ (t + t0)] dt
– ∞

+ ∞

= – c (Q, P) (
∂H
∂P

)2 dt
– ∞

+ ∞

(8)

For c (Q, p) > 0, Eq. (8) is negative, which indicates the
system (6) can not be chaotic in the mean sense.  The
mean-square value of the random Melnikov process (7)
is

E [M2 (t0)] = –σ2
Md

 + σ2
z (9)

Where

σMd

2 = ( c (Q, P) (
∂H
∂P

)2 dt )2

– ∞

+ ∞

(10)
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σ2
z = E [Z2 (t0)]

= E [( f (Q, P) (
∂H
∂P

) ζ (t + t0) dt )2]
– ∞

+ ∞

(11)

In Eq. (11), the integral f (Q, P) (
∂H
∂P

)
– ∞

+ ∞

ζ (t + t0) dt =

h (t)*ζ (t) is convolution integral and h (t) = f (Q, P)

(
∂H
∂P

)
Q = q0 (t), P = p0 (t) can be regarded as the impulse

response function of a time-variant linear system.  Thus,
we have

σz
2 = H (ω)

2
Sζ (ω) dω

– ∞

+ ∞

(12)

Where H (ω) is the frequency response function, which
is the Fourier transformation of the impulse response
function h (t), Sζ (ω) is the spectral density function of
ζ (t).  The condition for the random process (7) to have
a simple zero in the mean-square sense is

σ
2
z = σ 2

Md
(13)

Eq. (13) is the criterion of judging the threshold condi-
tion for onset of chaos of system (6).

For the ships’ large roll in the random waves, the
joint response process (φ, φ⋅ ) can be looked as two degree
of freedom Markov process, the probability transition
process of the roll response can be computed via the
path integral method [6, 7, 10].

3. Numerical examples

Taking a barge with bilge keel designed as an
example, the dimensionless parameters of it [4] are: d1

= 0.185 and k3 = 1.  Substituting the ship’s parameters
into Eq. (4), the threshold intensity for onset of chaos
can be calculated by the stochastic Melnikov criteria
(13) and the numerical result is obtained in Figure 1.

Figure 1 shows the threshold intensity of white
noise for onset of chaos with the different k3 and d1.
Simple zero of Melnikov function is only the necessary
condition for onset of chaos.  The chaotic characteristic
of the ship is studied by the probability density function
and roll response of the system.

According to Figure 1, the threshold intensity of
the white noise for the barge’s chaotic motion is D =
0.0045.  The barge’s probability density function for D
= 0.087 is calculated.  Assuming the initial probability

density function obeys the Gaussian distributing, Itô
stochastic differential Eq. (5) is solved by the path
integral method within the domain of x ∈ [–1.8, 1.8] and
y ∈ [–1.8, 1.8].  The evolution of three-dimensional
figures for the joint probability density function and the
corresponding contour plots in the time domain are
obtained in Figure 2 and Figure 3.

Figure 2 and Figure 3 show the evolution of the
joint probability density function and the corresponding
contour plots in the time domain, where Jpdf(x,y) de-
notes the joint probability density function.  The value
of probability density function for roll response of the
barge in each state can be obtained from Figure 2,
therefore the probability that the barge system stays in
the desired phase space region can be calculated
conveniently.  It is found that the initial probability
density function has a single peak and one attraction
region, here the attraction region is the state space
around the peak whose probability density function is
more than zero, after 15.15 seconds the maximal value
of the probability density function holds 0.35 and the
shape of it is invariable.  So, the stable probability
density function of the system is obtained and it has two
connected peaks.  That means the system has two high
probability states and the response may jump from one
state to another.  The responses of the system are
obtained in Figure 4 and Figure 5.

The roll response is shown in Figure 4 and Figure
5.  It is found that the response of the system is
restricted in one attraction region for the low intensity
of white noise and the system undergoes stable chaotic
motion, while it jumps randomly from one high prob-
ability state to another for the high intensity of white
noise.  That will lead ships to instability and even to
capsizing.

CONCLUSIONS

The stochastic roll chaotic motion of the ships
subjected to white noise waves is analyzed.  The random
Melnikov mean-square criterion is used to identify the

Fig. 1.  The threshold intensity of white noise for onset of chaos.
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threshold intensity of the white noise for onset of chaos
analytically.  The joint probability density function of
ships’ roll angle and the roll angular velocity is calcu-
lated by solving the Itô stochastic differential equation

via the path integral method in the chaotic region.  The
stochastic chaotic response characteristic is further in-
vestigated via the probability density function and the
numerical results of the system.  It is found that the ships
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Fig. 2.  Contour plots of the joint probability density function with (d1, k3, D) = (0.185, 1.0, 0.087).
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Fig. 3.  Evolution of the joint probability density function with (d1, k3, D) = (0.185, 1.0, 0.087).
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undergo stochastic chaotic motion when the real inten-
sity of the white noise exceeds the threshold intensity
and the stable probability density function has two
peaks.  The response of the system has two high
probability states and it may jump from one state to
another for high intensity of the white noise excitation.
This is the unstable roll motion of ships and that will
lead ships to capsizing.  In real ship capsizing
evaluation, the realistic wave such as the PM spec-
trum should be adopted.  The realistic sea spectrum is
produced by means of linear filter acting on white
noise.  Then four dimensions Itô differential equa-
tions should be solved.
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