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ABSTRACT

In this paper, an innovative hybrid recursive particle swarm
optimization (HRPSO) learning algorithm with normalized fuzzy c-
mean (NFCM) clustering, particle swarm optimization (PSO) and
recursive least-squares (RLS) is proposed to generate radial basis
function networks (RBFNs) modeling system with small numbers of
descriptive radial basis functions (RBFs) for fast approximating two
complex and nonlinear functions.  Simulation results demonstrate that
the generated NFCM-based learning schemes approach the desired
modeling systems within the smaller population sizes.

INTRODUCTION

The RBFNs is a simple but efficient type of feed-
forward neural network, which has been designed to
approximate nonlinear functions and solve complex
problems[1, 2, 4, 6, 15, 16].  In this paper, HRPSO
learning algorithm is proposed to select proper param-
eters of radial basis functions (RBFs) to build the RBFNs
modeling system (RBFNMS).  The aim of RBFNMS is
to efficiently build a common and adaptable mechanism
which is applicable to fast approach the desired result
and to represent various modeling systems.  It is clear
that the general initial architecture of the RBFNs is only
extracted by examples, this way is seldom approaching
to an optimal result.  Therefore, it is better to tune
associated parameters of RBFNs by the learning algo-
rithm [2, 5, 6].  The determination of the initial RBFs is

developed in the process of structure configuration.
The purpose of structure configuration is to construct
the initial architecture of the RBFNMS which repre-
sents the behavior of the given input-output pairs.  In the
literature on fuzzy clustering, the fuzzy c-means (FCM)
clustering algorithm defined by Dunn [8] and generated
by Bezdek [3] is the well-known and most powerful
method in the application of cluster analysis.  Due to the
adaptation in the configuring data structure, the normal-
ized FCM (NFCM) clustering algorithm based on the
new metric is applied to yield the features over input-
output training data.  The proposed NFCM algorithm
will first cluster the given data set into several groups
and then select the cluster centers of the individual
group, which will make up initial definition of the
RBFNMS, such as the number of cluster centers equal to
the number of the RBFs; each location of cluster centers
are sequentially assigned to present the initial value of
the proposed RBFs and weights between the hidden and
output layers.  In our research, such collection of avail-
able features is becoming useful information to create
initial PSO that can speed up convergences of approxi-
mation functions.  Depending on the support of NFCM
to generate initial configuration, PSO and RLS learning
algorithm will be applied to optimize the proposed
RBFNMS as soon as possible.

Particle swarm optimization (PSO) first introduced
by Eberhart and Kennedy in 1995 [12], employs the
natural animal’s behavior such as bird flocking, fish
schooling, and swarm theory to yield the best of the
characters among comprehensive old populations.  The
natural creatures accomplish the heuristic exchange of
their own and other creature’s best knowledge which
has been discovered so far among entire swarm.  The
proposed PSO algorithm simulates such heuristic learn-
ing behavior of natural creatures to discover proper
parameters of the discussed system.  In PSO learning
algorithm, all particles have fitness values which are
evaluated by the fitness function to be optimized, and
have velocities which direct the flying of particles.
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Then, the position (i. e. solution) of every individual
particle will be attracted stochastically toward their
associated best positions (i. e. best solutions) in multi-
dimensional solution space.  In a word, the computation
of PSO learning algorithm is dependent on two kinds of
important information to achieve its learning goal.  The
first one is every particle’s best experience, which has
been better so far.  The other one is other neighbor’s best
experiences (i.e., the best solution found so far).  PSO
has been demonstrated to resolve some wide range of
optimization problems through a metaphor of social
interaction [7, 9-11, 14].  However, the training speed of
population-based optimization algorithm such as ge-
netic algorithms [19], PSO [12] and so on, are actually
dependent on the population sizes.

To speed up the training rate, the collected sym-
bolizations of training data pairs are used to minimize
the initial population size (i. e. swarm size) of the PSO.
In this article, small available particles which implies
information of the RBFNMS is extracted by the NFCM
algorithm, then the optimization solution will be con-
tiguously extracted by both PSO and recursive least-
squares (RLS) [18, 21] learning algorithm.  That is,
when the initial structure of RBFNMS is originated, the
PSO and RLS learning algorithm will be applied to fast
approach desired results.  In a word, a small numbers of
RBFs and a fewer particles are enough to create the
proper RBFNMS.  Therefore, the proposed design of the
RBFNMS will be efficiently generated within a lower
calculation load.

The rest of this paper is organized as the following
sections.  The constructed RBFNs architecture is pre-
sented in Section 2.  To generate an appropriate
RBFNMS, an efficient HRPSO learning algorithm is
discussed in Section 3.  In Section 4, two nonlinear
approximation problems are utilized to illustrate the
effectiveness of the proposed HRPSO learning algorithm.
Finally, Section 5 concludes the paper.

RBFNS  ARCHITECTURE

In this paper, the normal n-inputs and single-
output RBFNs architecture is developed as shown in
Figure 1.  RBFNs generally consists of three layers,
which are input, hidden, and output layers. In this paper,
a typical Gaussian function is proposed and described
by

HE (x, ci , δ i ) = exp ( – (
x – ci

2

2δ i
2

)) (1)

where x – ci  is the Euclidean distance between an
input vector x and a center ci, and δi represent the
deviation of the ith RBFs.  In this study, the output of the

RBFNs is calculated by the weighed average of the
output associated with each hidden unit:

y =
HEi (x) ⋅ wiΣ

i = 1

m

HEi (x)Σ
i = 1

m (2)

where wi is the ith weight between the hidden and output
layers, m is the number of hidden nodes, and HEi(x) is
the output of the ith hidden unit.

According to the above respect, parameters of the
HEi(x) {ci1, ci2, ... , cin, δi} combining with the connec-
tion weights (wi) will determine the RBFNMS.  Thus,
different parameters set R = {ci1, ci2, ... , cin, δi, wi, 1 ≤
i ≤ m} determine the different RBFNMS with different
performance setting.  If there are m initial RBFs needed
to be constructed, total m* (n + 2) parameters will be
needed to be chosen for designing the best RBFNMS.  In
this article, the parameter selection problem is formu-
lated as a searching problem and a method based on
HRPSO learning algorithm is applied to choosing a
proper parameter set R in the solution space.  The other
detailed explanation will be described in the following
section.

PARAMETERS  SELECTION  BY  THE  HRPSO
LEARNING  ALGORITHM

In this section, the HRPSO learning algorithm
containing NFCM, PSO, and RLS will be proposed to
efficiently generate proper RBFNMS.

At first, the traditional Euclidean norm typed mea-
sure is replaced with the proposed robust evaluated
distance function, and then the improved FCM learning
algorithm, i. e., NFCM, is generated.  Finally, input-
output training data is partitioned into several catego-
ries by the effect of NFCM clustering algorithm.  When
training samples are available, the NFCM clustering
algorithm will consciously derive the information from
the analysis of the input-output training data pairs.

Fig. 1.  The proposed architecture of the RBFNs.
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When the cluster number is humanly selected as ϕ, the
objective is to cluster the given data set into ϕ set such
that similar points are grouped into the same cluster.  In
this article, the architecture of RBFNs is generated with
the procedure of NFCM and its default value of the
clustering number (ϕ) will determine the hidden-layer
number of the RBFs.  It is clear that the proposed
configuration in RBFNs system is based on the condi-
tion m = ϕ and the selected ith cluster center decide the
respective ci and wi for the ith RBFs.  Let X = { xj, j = 1,
2, ..., M} denotes the training data set and each possible
data point xj = (xj1, xj2, ..., xjv) in X ⊂ Rv is the v-
dimensional vector.  If U = {µij, i = 1, 2, ..., m, j = 1, 2,
..., M} is an initial fuzzy partition matrix, satisfied

following conditions: µij = 1,Σ
i = 1

m
 j = 1, 2, ..., M and 0 <

µij < M,Σ
j = 1

M

 i = 1, 2, ..., m.  The definition of the objec-

tive function (J) is described by

J (U, z1, z2, ..., zm)

= ( µij )λΣ
j = 1

M

Σ
i = 1

m

⋅ (1 – exp (
– (xj, t – zi, t )

2

2σ t
2

)Π
t = 1

v

), λ > 1

(3)

where, the coefficient parameter λ > 1 regulates the
partition fuzziness degree and Z = {zi, i = 1, 2, ..., m} is
the prototype of the cluster which represents the initial
structure of the RBFNs.  The purpose of the NFCM is to
determine the proper Z which minimizes the objective
function (J), and the necessary conditions for Eq. (3) to
reach its minimum are

zi =

(µij )
λΣ

j = 1

M

⋅ exp (
– (xj, t – zi, t )

2

2σ t
2

)Π
t = 1

v

⋅ xj

(µij )
λΣ

j = 1

M

⋅ exp (
– (xj, t – zi, t )

2

2σ t
2

)Π
t = 1

v
, (4)

and

µij =

[1 / (1 – exp (
– (xj, t – zi, t )

2

2σ t
2

))]1 / ( λ – 1)Π
t = 1

v

[1 / (1 –Σ
i = 1

m

exp (
– (xj, t – zi, t )

2

2σ t
2

))]1 / ( λ – 1)Π
t = 1

v
,

j = 1, 2, ..., M (5)

where σt =
(xj, t – xtΣ

j = 1

M

)2

(N – 1)
, and xt =

1
M

xj, t ,Σ
j = 1

M

t = 1, 2, ..., v. (6)

It notes that Eqs. (3)- (5) can be considered the new
evaluated function to overcome the traditional FCM
Euclidean norm type.  The new distance function is
described as follows:

d2 (xj, zi) = 1 – exp (
– (xj, t – zi, t )

2

2σ t
2

), ∀x, z ∈ Rv.Π
t = 1

v

(7)

Two given training data set distributed around
spherical and ellipsoidal region in 2-dimensional space
are considered to explain the effect of two different
distance function.  For the spherical type data set,
contours of the Euclidean norm type, i.e., d (xj, zi) =

xj – zi  and the proposed new measured function are

described in Figure 2(a) and Figure 2(b), respectively.
From previous views of two measured profiles, it is easy
to understand that Euclidean norm and the proposed
measure functions can match the discussed data set to
let them have the estimating ability for such spherical-
like data set.  In next case, the ellipsoidal-like data set
is used to test separating abilities of traditional Euclid-
ean norm and new functions.  Their simulation results
are respectively shown in Figure 2(c) and Figure 2(d).
Obvious circumstances for their differences are that the
Euclidean norm function gets a circle mapping but the
new evaluated function makes an ellipsoidal-like one.
The reasonable point from this experiment is that the
proposed new distance function can adapt to measure
the different type data set based on the exponent type
measured function (Eq. (7)) and the calculation of the
proposed factor σt (Eq. (6)).

The original data set shown in Figure 3(a) is intu-
itively partitioned into two unequal size clusters, which
is applied to demonstrate robust analyses for FCM and
NFCM.  Figure 3(b) shows the clustering result of FCM
whose clustering center is [(0.4744, 0.4399), (0.9356,
0.9738)].  Let us add one outlier point whose position is
(6, 6) to the original data set, then the clustering center
via FCM shown in Figure 3(d), becomes [(0.5781,
0.5594), (0.9870, 1.0190)].  Same experiment for NFCM
is shown in Figure 3(c) and Figure 3(e), respectively.
From Figure 3(c) and Figure 3(e), the detected cluster-
ing centers with NFCM are [(0.4564, 0.4219), (0.9203,
0.9540)] and [(0.4747, 0.4313), (0.9473, 0.9850)] with
respect to no outlier and one outlier conditions.  Simu-
lation results show that the FCM learning algorithm is
very sensitive to the outliers, but the suggested NFCM
can adapt to the additional noise.  In addition to previous
example, we give some changes in original data set,
whose value for one dimension is proportionally scaled
with 5 and the other one is keeping in the same scale, to
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demonstrate the efficiency of the proposed NFCM clus-
tering method.  Figure 3(f) and Figure 3(g) illustrate the
clustering result of the FCM and NFCM, respectively.
From Figure 3(f), it is clear that the final clustering
center position is wrong. The other simulation with
NFCM is shown in Figure 3(g), which demonstrates that
the proposed NFCM can deter the mistake.  Detailed
information is described in Table 1.  Based on the

previous experiment, the NFCM has a powerful ability
to reduce the effect of the scale and adapt the outlier.  In
a word, the NFCM shows a better adaptability than the
popular FCM clustering method.

In this article, these derived clusters by the NFCM
would be assigned to the center of the radial basis
function ci (i. e., ci = (zi1, zi2, ..., ziv–1)) and the connec-
tion weights wi (i. e., wi = ziv) for the initial RBFNs.  But
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Fig. 2. Examples of distance functions, (a) Euclidean distance (for spherical cluster); (b) the proposed distance (for spherical cluster); (c) Euclidean
distance (for ellipsoidal cluster); (d) the proposed distance (for ellipsoidal cluster).

Table 1.  Clustering results for FCM and NFCM

Center coordinates Center coordinates Center coordinates
(no outlier) (added outlier) (1st  dimension is scaled with 5)

FCM [(0.4744, 0.4399), [(0.5781, 0.5594), [(2.2818, 0.4219),
(0.9356, 0.9738)] (0.9870, 1.0190)] (4.6014, 0.9540)]

NFCM [(0.4564, 0.4219), [(0.4747, 0.4313), [(2.7829, 0.6659),
(0.9203, 0.9540)] (0.9473, 0.9850)] (5.0910, 0.9518)]
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Fig. 3.  Simulations comparison for FCM and NFCM methods.
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δi are determined by a random operation.  Every particle’s
position (i. e. solution) is made up of parameter set {ci1,
ci2, ..., cin, wi, δi, 1 ≤ i ≤ m}, but its velocity is initiated
by a random process.

The initial structure of the RBFNMS is obtained
by the NFCM algorithm, and the final solution will be
refined by PSO and RLS learning algorithm.  At the PSO
learning cycle, each particle’s position and velocity are
updated by two best values.  The first best one called
Lbest is every particle’s best solution that it has achieved
so far.  Another best one called Gbest is obtained by
choosing the overall best value from all particles.  It
reveals that all particles share the best knowledge of
optimal solutions.  At each iteration step, the velocity of
the particle is modified according to the relative data of
Lbest and Gbest.  The new velocity for each particle is
updated by the following Eq.:

Vp, d (t +1 ) = τ × Vp, d (t) + γ1α1 (Lbestp, d (t)
– Φp, d (t)) + γ2α2 (Gbestd (t)
– Φp, d (t)) (8)

where Vp, d is the responding velocity of the pth particle
in the dth dimension space and Φp, d is the responding
solution of  pth particle in the dth dimension space.
Here, p is the index of particles; t represents current
state, t + 1 represents the next time step; α1 and α2 are
acceleration constant; γ1 and γ2 are random number
between 0 and 1, and τ is the scaling factor to regulate
the learning rate.

Since every particle’s velocity is determined, the
particle’s position (i. e. solution) will be modified at the
next time step by

Φp, d (t + 1) = Φp, d (t) + Vp, d (t + 1) (9)

Based on Eqs. (8) and (9), the direction of every
particle will update its original flying path and go
gradually toward the direction of the best solution
(Gbest), and it also learns the experience by their previ-
ous best solution (Lbest).  In the previous description of
the PSO learning way, it is shown that the computation
of PSO is a slight load and the implementation is simple
to execute.

The RLS learning algorithm has been performed
an efficient way to approach an optimization [18, 20].
In the RLS learning cycle, it is acquired to modify the
connection weights of the RBFNs.  The main idea of this
RLS learning algorithm is that the outputs of the con-
structed RBFNs are all approximate to those of the
identified nonlinear functions (or call it desired outputs
(yd)).  In this paper, this output of the RBFNs can be
described from Eq. (2) as follows:

y = qi ⋅ wiΣ
i = 1

m

(10)

where qi is the normalized activation of the ith RBFs
corresponding to the input vector x and is defined by

qi =
HEi (x)

HEi (x)Σ
i = 1

m (11)

The Eq. (10) can be represented into matrix form, it is

y = Qω
(12)

where

ω = [w1, w2, ..., wm]T ⊂ Rm × 1 (13)

Q = [q1, q2, ..., qm] ⊂ R1 × m (14)

In order to fastly adjust the connection weights of
the RBFNs for approximating to the desired output (yd),
we use the RLS to determine the conncetion weights in
the form of ω.  The algorithm empowers to calculate the
new ω (k + 1) value on the base of training data pairs and
the known parameter ω (k).  Let initial time step be k =
0, and then ω (k + 1) is modified by the following
recursive iterations:

ℑ (k + 1) = ℑ (k)

–
ℑ (k) ⋅ QT(k + 1) ⋅ Q (k + 1) ⋅ ℑ (k)

1 + Q (k + 1) ⋅ ℑ (k) ⋅ QT(k + 1)
,

k = 0, 1, ..., M – 1, (15)

ω (k + 1) = ω (k) + ℑ (k + 1) ⋅ QT (k +1) ⋅ (yd (k + 1)
– Q (k +1) ⋅ ω (k)),

k = 0, 1, ..., M – 1. (16)

In this paper, the initial value Q(0) = zero (zero
represent the zero vector) and ℑ (0) = ηI, where η is a
positive large number (= 100), M is the number of the
training data and I is an m × m identity matrix.  After M
patterns calculation by Eqs. (15) and (16), those con-
nection weights (ω) of the RBFNs are estimated recur-
sively by the RLS algorithm.

The block diagram of the RBFNMS by the pro-
posed HRPSO learning algorithm is plotted in Figure 4,
which is summarized by following steps:

Step 1: Set the number of RBFs (m), and generate initial
RBFs from the training data set to configure the
initial structure of the RBFNs by the NFCM
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clustering algorithm.
Step 2: Set the number of iterations (G), the value of the

scaling factor (τ), the constant value (α1, α2),
and the number of particles (P).

Step 3: Calculate the fitness value of each particle, and
select the next personal best solution (Lbestp)
with the valuation of the fitness function.  If the
fitness value of particle Φp is better than the
current fitness value of the personal best
solution, then we set Φp to be the next personal
best solution, otherwise the Lbestp remains the
same.

Step 4: Compare each personal best value (Lbestp) with
the best global particle value (Gbest).  If the
fitness value of personal best solution is better
than the current value of the global best solu-
tion (Gbest), then the evaluated R will be set to
Gbest, otherwise the Gbest is not changed.

Step 5: Find the parameter set (R) by the PSO learning
algorithm.  For every particle, update its own
velocity and position value according to Eqs.
(8) and (9).

Step 6: Refine the conncetion weights (ω) by the pro-
posed RLS learning algorithm to derive the
final RBFNMS.

Step 7: If the termination conditions are satisfied, then
go to exit, otherwise repeat step 3 to step 6.

Step 8: The best solution will be selected to build the
desired RBFNMS.

ILLUSTRATED  EXAMPLES

In order to verify the efficiency of the proposed
HRPSO learning algorithm, two non-linear identifica-
tion functions are presented in this section.  The root-
mean-square error (RMSE) of the training data is deter-
mined to measure the performance of the RBFNMS.
The RMSE is calculated by

RMSE =
1
M

( yj
d –

HEi (xj ) ⋅ wiΣ
i = 1

m

HEi (xj )Σ
i = 1

m
)2Σ

j = 1

M

1 / 2

(17)

After above structure configuration is performed,
the proposed HRPSO learning algorithm will be applied
to tune the finial parameter set to minimize the RMSE.
In this study, the fitness function is defined as
exp (– RMSE), and so the goal of HRPSO is to maximize
the fitness function vale (i. e., to minimize the RMSE).

Example 1: Modeling a  Function

In this case, the RBFNMS is determined to ap-
proximate the nonlinear function, which is defined by
[13, 20]

F1 = sin (πx1) ⋅ sin (πx2) (18)

225 pieces of training data are uniformly distrib-
uted in the range of x1 ∈ [-1, 1] and x2 ∈ [0, 1].  The
required parameter setting is as follows: the partition
fuzziness degree parameter λ = 2, the scaling factor τ =
0.75, the α1 = 1.5 and α2 = 1.5, the number of particles
(P) is 5, the number of iterations (G) is 50, and the
number of clusters (i. e. the number of RBFs) m = 5.  In
the first NFCM step, 5 cluster centers are selected as the
initial structure of the RBFNs.  Following the proposed
PSO and RLS learning procedure, which is described in
Section 3, the final parameters are shown in Table 2.
Figure 5 demonstrates computer simulation results,
where (a), (b), and (c) show the output of training data,
the output of the RBFNMS by only the PSO method, and
the output of RBFNMS by the proposed HRPSO
algorithm, respectively; (d) shows the best (highest)
fitness value against the iteration number for HRPSO
(solid curve) and PSO (dash curve).  Simulation results
show that the fitness value of the HRPSO quickly raises
to the higher fitness value (i. e., HRPSO can fastly
approach the desired output).  The performance com-
parison for different modeling learning methods with
MSE (mean-square error) is listed in Table 3.  From
Table 3, it is shown that best MSE by HRPSO is obvi-
ously smaller than that of PSO.  The proposed HRPSO
method can approximate the unknown function with
much better accuracy than other previous study [13, 20].
It is clear that the constructed HRPSO learning algo-

Fig. 4.  Learning diagram of the RBFNMS.
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RBFNs

Finial
RBFNs 

Training
Data 

 

HRPSO Table 2.  Parameter selection by HRPSO for Example 1

ci1 ci2 δi wi

i = 1 -0.4981 0.5033 0.2518 -3.6631
i = 2 0.5047 0.5001 0.2556 4.0534
i = 3 2.9487 0.5432 14.0083 0.1553
i = 4 1.0325 0.4255 1.4030 -0.6170
i = 5 -2.8289 0.4992 5.6896 0.3045
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rithm with small RBFNs and small swarm size is enough
to efficiently generate the desired RBFNMS.

Example 2: Modeling a discrete dynamic system

In order to illustrate the efficiency of the HRPSO,
the objective of the RFFNMS is to approximate the
nonlinear function [17] described as

F2 = (1 + x1
–2 + x2

–1.5)2, x1, x2 ∈ [1, 5] (19)

In this example, training data is uniformly distributed in

Table 3. Performance comparisons with different
methods.

Model No. of RBFs/ MSE RMSE
No. of rules

PSO 5 0.1786 0.4226
HRPSO 5 0.0020 0.0447
Wong’s System [12] 6 0.0042 0.0648
Lee’s System [13] 6 0.0027 0.0520

Note: The last two rows are from [14].

the range of x1 ∈ [1, 5] and x2 ∈ [1, 5].  To train the
RBFNMS by the proposed HRPSO learning algorithm,
x1 and x2 are uniformly distributed in the range of x1 ∈
[1, 5] and x2 ∈ [1, 5] and then use Eq. (19) to generate
400 training data pairs.  The required parameter setting
is as follows: the partition fuzziness degree parameter λ
= 2, the scaling factor τ = 0.75, the α1 = 1. 5 and α2 =
1.5, the number of particles (P) is 5, the number of
iterations (G) is 100, and the number of clusters (i. e. the
number of RBFs) m = 5.  After 100 training epochs, The
RBFNs with 5 RBFs are enough to modeling the nonlin-
ear function by the HRPSO learning algorithm.  The
simulation result for training data, PSO, and HRPSO are
shown in Figure 6(a), Figure 6(b), and Figure 6(c),
respectively.  The best fitness value against the iteration
for HRPSO (solid curve) and PSO (dash curve) are
shown in Figure 6(d).  The simulation results show that
the HRPSO-based RBFNMS can efficiently rebuild the
nonlinear function.  Final parameter values which are
derived by HRPSO are shown in Table 4.  Performance
comparisons for PSO, HRPSO, and Sugeno’s System
are listed in Table 5.  From Table 5, it is clear that the
result obtained by HRPSO has greater improvement
than those of standard PSO and Sugeno’s method.

Fig. 5. sin(πx1) ⋅ sin(πx2) function approximation, (a) training data output; (b) output of RBFNMS by PSO; (c) output of RBFNMS by HRPSO; (d)
fitness value against iteration by PSO and HRPSO.
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CONCLUSIONS

In this study, we use a set of Gaussian function to
define RBFs.  A small number of RBFs can be clustered
by the NFCM to develop initial structure of RBFNMS,
which generate a preliminary definition of RBFNs.
Furthermore, the proposed HRPSO learning algorithm
is performed to fastly train the desired RBFNMS.  The
HRPSO can simultaneously tune the parameter set {ci1,
ci2, ..., cin, wi, δi, 1 ≤ i ≤ m}, of RBFNs for the design of
RBFNMS.  Two nonlinear approximation problems are
applied to illustrate the efficiency of the proposed

HRPSO learning algorithm.  In those illustrated exam-
ples, demonstrations show that only a fewer particles
with small number of RBFs are enough to perform the
better task for identifying nonlinear modeling problems
than other previous study.
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