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ABSTRACT

Choosing buffer materials with the required engineering and
sorption characteristics for radwaste disposal is very important.  This
work investigates the relationships between engineering characteris-
tics (plastic index; PI) and sorption properties (distribution ratio; Rd)
for two mixed buffer materials that are composed of bentonite/quartz
sand and bentonite/laterite, to provide an overall functional evalua-
tion of buffer materials.  Se is the nuclide of interest, and both
synthetic groundwater (GW) and seawater (SW) were employed in
batch sorption experiments.  Deionized water (DIW) was used in
engineering property tests.  SW and GW were also used to evaluate the
effects on PI.  The results indicate that PI was proportional to the
bentonite content of the tested buffer materials, independently of the
solution used.  The coagulation and flocculation effects lead to the
ordering PIDIW > PIGW > PISW.  The sorption of Se increased with the
bentonite content in bentonite/quartz sand mixtures, and the sorption
fraction increased with the laterite content in bentonite/laterite
mixtures.  These findings demonstrate that the sorption of Se on soil
follows the order, laterite soil > bentonite > quartz sand, regardless of
whether GW or SW was used.  Hence, adding laterite to the mixture
improved the sorption of the anionic form of Se.  A mixed material
with a PI value of approximately 50 to 70 in GW and SW effectively
balances the engineering needs with the desired chemical properties.
A bentonite content of 50% and the addition of both laterite and quartz
sand may be optimal for buffer materials, and is thus worthy of further
study.  This work further indicates that the PI values of both mixtures
followed the additivity rule in SW and GW, but not in DIW.  The Rds
value of Se indicated the good additivity of the bentonite/laterite
mixtures in both SW and GW and of the bentonite/quartz sand
mixtures in SW, but not of the bentonite/quartz sand mixtures in

GW.  These results provide useful information on the choice of the
composition of the buffer material, and for use in the evaluation of
the overall Rd and PI of the mixture from the Rd and PI of each buffer
component.

INTRODUCTION

Buffer materials for high-level radwaste disposal
must exhibit particular engineering (hydraulic conduc-
tivity, thermal conductivity, mechanics, swelling and
other properties) and chemical (sorption, diffusion,
migration transport, and others) characteristics [10, 23].
Recent studies of buffer materials focused on physical
properties [2, 13, 19]; others focused on chemical prop-
erties [3, 14, 22], and a few addressed both engineering
and sorption properties [9].  Learning about both the
engineering and the sorption properties of potential
buffer-backfill materials, mixed with various soil
materials, is important.

Bentonite clay and quartz sand have been selected
as potential buffer and backfill materials [11].  Bento-
nite is associated with a high cation exchange capacity,
a high swelling potential  and a low hydraulic
conductivity, while quartz sand is associated with high
thermal conductivity and strong mechanical properties.
However, radioactive anionic species in the buffer ma-
terials mentioned above are not expected to exhibit high
sorption capacity.  Accordingly, composite materials
that have a high capacity for absorbing both radioactive
cation and anionic species in groundwater must be
developed.

Some investigations have pointed out that the sorp-
tion characteristics, Rd values, of the radionuclides
(RN) with respect to particular mineral components of
the mixtures can be used to evaluate the Rd values of the
mixtures, providing additional benefits in choosing ef-
fective composite materials [8, 15].  Many studies on
the additivity sorption behavior of radionuclides on
mixtures have been conducted.  Some studies have
demonstrated that actinides such as Np and Am exhibit
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quite similar additivity, but the Rd values of Cs and Sr on
mixtures tend to be overestimated [15].  The additivity
rule for the sorption of Eu on red earth, bentonite and
alumina mixtures is not generally applicable [6].
Furthermore, sorption of Se and Cs exhibited a good
additivity on goethite, smectite and calcite mixtures,
but Am did not [8].  Other studies for the additivity
behavior of nuclides on different compositions of min-
erals focused on soil and their components [16, 17, 18].
Recently, the additivity rule and its applicability to soil
were analyzed [21].  They pointed out that the additivity
rule was formally valid based on the following
assumptions; (a) sorption reaction is reversible and
independent; (b) sorption reaction is in equilibrium; (c)
surfaces are homogeneous; (d) ion exchangers or sor-
bents are insoluble; (e) no new phase is formed, and (f)
no interactions occur among individual minerals of the
mixture.  Mixed buffer materials and complex solutions,
such as seawater, are a few concerns in the cited studies.

A distribution ratio, Rd, was used to characterize
materials to retard the transport of nuclides.  If sorption
is a surface process, then a proportional relationship
must exist between sorption sites and RN.  Additionally
the Rd of a mixture can be written as

Rd (mL/g) = Σ(mi/M) × Rdi (1)

where mi is the mass of mineral i in the mixture; M
is the total mass of the mixture, and Rdi is the distribu-
tion ratio of RN on mineral i.

Plastic index (PI) values are typically applied to
classify soil and evaluate various engineering proper-
ties such as compressive and swelling characteristics
[4].  Plastic index (PI) was calculated by the Atterberg
liquid limit (LL) and also by the plastic limit (PL) of soil
as follows:

PI = LL – PL (2)

However, investigation on the additivity of the plastic
index of mixtures will be contributive to predict the
engineering properties of mixtures.

Laterite, a progressively weathered soil, exhibited
better anion sorption capability as the aluminum and
iron oxide content increased [5,12].  Various mass
ratios of bentonite/quartz sand and bentonite/laterite
mixtures were selected in this work as potential buffer
materials.  Batch experiments were conducted to mea-
sure the Rd values of 75Se on mixtures.  Atterberg limit
tests were conducted to measure LL and PL, to evaluate
PI and analyze its additivity, yielding information about
the elementary engineering properties of mixtures.  Syn-
thetic seawater (SW) and groundwater (GW) were used
as the liquid phases to simulate the possible conditions

that may be encountered during geologic disposal in an
island.  This study aimed primarily at establishing the
relationship between sorption and the engineering prop-
erties in composite materials should, however, be ben-
eficial in selecting an optimal composite material
mixture.  Additionally, the additivity of PI and Kd can
also be considered to improve the performance assess-
ment of mixed buffer/backfill materials.

MATERIALS  AND  METHODS

1. Liquid phase

The solutions used in the batch sorption tests were
synthetic compositions of GW and SW (Table 1) in
which a trace amount of 75Se added (Table 3), to simu-
late the possible geochemical conditions of a deep geo-
logical repository.  Deionized water (DIW) was used as
the solution in the Atterberg limit test to simulate the
conditions for the in-situ buffer materials during the
construction phase.  GW and SW were also used to
evaluate the effects on PI as they intrude into buffer/
backfill materials.

2. Solid phase

The solid phase material used for both the Atterberg
limit tests and the batch sorption tests were composed of
varying proportions of bentonite/quartz sand and bento-
nite/laterite mixtures.  The composite ratios of bento-
nite to quartz sand and bentonite to laterite used for the
Atterberg limit tests were as follows; 10:0, 9:1, 7:3, 5:
5, 3:7, 1:9 and 0:10 (by dry weight).  The ratios of
bentonite to quartz sand and bentonite to laterite in the

Table 1. The compositions of groundwater (GW) and
seawater (SW)

Compositions GW SW

CaCl2 ⋅ 2H2O [g] 138.6634 30.3008
MgCl2 ⋅ 6H2O [g] 7.0260 215.8030
Na2SO4 [g] 16.5704 79.8975
NaHCO3 [g] 0.2756 ---
KCl [g] 0.3086 15.2157
NaBr [g] 1.0311 1.7267
SrCl2 ⋅ 6H2O [g] 2.1330 0.4639
LiCl [g] 0.1221 0.0212
NaF [g] 0.0672 0.0571
NaCl [g] 92.2581 482.2667
H3BO3 [g] --- 0.5145
Total solution volume [L] 20 20

pH ~ 7.5 ~ 7.02
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batch sorption tests were 10:0, 7:3, 5:5, 3:7 and 0:10.
The laterite, progressively weathered soils, was

taken from 3m to 4m below the surface in the Jungli area
of northern Taiwan.  The laterite soil sample was air-
dried and ground to pass through a 0.074 mm sieve, and
then heated for 3 hours by 800°C ± 50°C for removing
organic matter.  The MX-80 bentonite and quartz sand
were commercial products.  Table 2 lists the character-
istics of MX-80 bentonite, laterite and quartz sand.
Specific area was analyzed using N2-BET (Mircromer-
itics ASAP 2000), the sodium acetate method was used
to determine cation exchange capacity, and XRD (CuKα
radiation, MAC Sci., model MXP-18) and ICP-MS were
used to identify the major elemental constituents in the
solid phase.

3. Batch sorption tests

Batch sorption tests were conducted using a solid/
liquid ratio of 1g/30mL.  The liquid-phase solutions
(SW and GW) were individually added to the solid
phase materials with various composition ratios; they
were placed in the centrifugal tubes in triplicate and
shaken at 120 rpm.  Samples were collected on the 14th

day following  centrifugalization at 10380 g, and the

residual radioactivity of 75Se in the liquid phase was
measured using an NaI (Tl) γ counter.  The pH values
were measured using a glass electrode.  The distribution
ratio (Rd) of RN can be calculated from the following
formulae;

Rd (mL / g) =
S
C (3)

where S is the concentration of RN sorbed on the solid
phase (Bq/g), and C is the concentration of RN in
solution (Bq/mL).

4. Atterberg limit tests

The Atterberg liquid limit test and the plastic limit
test were performed on the solid-phase mixtures de-
scribed above, using DIW, SW and GW.  These tests
were performed following the method of ASTM D4318,
[1] and the PI value was calculated using Eq. 2.

RESULTS  AND  DISCUSSION

1. Sorption of Se on Mixtures

Table 3 lists the pH values after 14 days of batch
sorption reactions.  The buffer capacity of bentonite

Table 3.  pH values of GW and SW in Se sorption on mixtures

Mixture Solution
Radioactivity Initial Mixed Ratio

(Bq/mL)  pH 10/0 7/33 5/5 3/7 0/10

B/Q1 GW 15,537 ± 145 6.65 7.75 7.67 7.65 7.56 7.19
SW 12,776 ± 227 6.66 7.68 7.73 7.65 7.65 7.1

B/L2 GW 15,537 ± 145 6.53 7.75 7.16 7.08 6.71 6.11
SW 12,776 ± 227 6.51 7.68 7.35 7.17 7.11 6.05

Note: 1. Bentonite mix with quartz sand.
2. Bentonite mix with laterite.
3. 7/3 means bentonite 70% mixed with quartz 30% by dry weight.

Table 2.  The characteristics of solid phase

Characteristics Bentonite Laterite Quartz sand

Particle size (mm) < 0.074 < 0.074 0.297~0.84
Specific area (m2/g) 27.96 32.25 1.98
CEC (meq/100g) 68.5 14.3
Specific gravity 2.75 2.57 2.62
Major minerals Quartz Quartz, hemattite Quartz

Montmorillonite Kaolinite, goethite
Major chemical SiO2 (60.53%) SiO2 (63.82%) SiO2 (99.5%)
composition Al2O3 (20.12%) Al2O3 (23.12%)

Fe2O3 (3.14%) Fe2O3 (10.9%)
MgO (2.65)
Na2O (2.13%)
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caused the samples with bentonite contents from 30% to
100% to have pH values of between 7 and 8.  The laterite
is an acidic soil [7] with a pH of as low as approximately
6 in both SW and GW.

Figures 1 and 2 indicate that the sorption increased
with the bentonite content in the bentonite/quartz sand
mixtures.  Additionally, the sorption fraction increased
with the laterite content in the bentonite/laterite mixtures.
The evidence suggests: that the sorption of Se on soils
followed the order laterite soil > bentonite > quartz,
independently of whether GW or SW was used, perhaps
because the Se (SeO3

2– and HSeO3
– in aerobic aqueous

solution) was sorbed primarily on the mineral surface
by inner-complexation and outer-complexation; thus,
the early sorption of cations on the surface of the soil is
followed by an increase in positive charge, which in-
creases the attraction for SeO3

2– and HSeO3
–.  The

specific surface area of laterite exceeded that of bento-
nite (Table 2) might lead to the sorption results.  The
ionic radius (1.84 Å) of Se does not allow it to replace
the smaller ion in the lattice but to be sorbed only on the
edges of clay minerals, the surface of oxides or the
surface of hydroxides.  On the other hand, the lower pH
value the higher sorption of Se might lead to the higher
sorption on laterite soil [20].  The pHs of the mixed
bentonite/laterite solutions, especially that in only lat-
erite soil, is lower than those of mixed bentonite/ quartz
sand solutions.  Hence, adding laterite to the mixture
could promot the sorption of the anionic form of Se and
slightly decrease the pH buffer capacity.

2. Plastic Index of Mixtures

DIW was used to simulate the liquid phase under
construction; while SW and GW were used to simulate
the intrusion of water after the construction had been
completed.  These three solutions were independently
used to determine the liquid limit and the plastic limit
for bentonite/quartz sand and bentonite/laterite mixtures,
and the PI values were calculated.  The PI values,
regardless of using the three liquid phases, were propor-
tional to the bentonite content (Figures 3 and 4).  As Das
[4] pointed out, the high swelling potentials were re-
sponsible for high PI values of over 35.  A higher PI
value corresponds to lower water permeability.  The
experimental results demonstrated that the PI values for
GW were lower than those for DIW, and those for SW
were lower than those for GW (PIDIW > PIGW > PISW) in
individual soil and bentonite/quartz sand mixtures.  In
bentonite/laterite mixtures, the PI values for GW and
SW were lower than those for DIW.  For all the mixtures,
the PI increased significantly with the bentonite content.
The bentonite content strongly affected the PI value.
The relatively high cation concentrations in GW and

Fig. 1. Sorption percentage of Se in relation to bentonite content on
bentonite/laterite mixtures.

Fig. 2. Sorption percentage of Se in relation to bentonite content on
bentonite/quartz sand mixtures.

Fig. 3. Plastic index (PI) in relation to bentonite content on bentonite
/laterite mixtures.
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SW, and the coagulation and flocculation that might be
caused by them probably were responsible for the com-
pression for surface electrical double layer of the bento-
nite particle.  This fact also reveals that the swelling
potential decreased when GW or SW was used, and
water permeability increased.  However, neither GW
nor SW significantly affected the PI values of quartz
sand (PI = 0) and laterite (PI = 20 to 30).

3. Relationship between PI and Rd

The sorption measurements described in section
3.1 can be used to evaluate the sorption characteristics
of mixtures.  Likewise, the PI measurements made
using SW and GW, and provided in section 3.2, can be
used to evaluate the engineering properties such as
water permeability, swelling potential and compression
properties, among others.  Therefore, establishing the
relationship between Rd and PI provides an advantage in
choosing and evaluating the possible compositions of
mixture materials.  Figures 5 and 6 plot the relationships
between Rds of Se and the PI values of mixtures in SW
and GW, respectively.  Figure 5 demonstrates that the
Rd values decreased linearly as PI increased in both GW
and SW, on bentonite/laterite mixtures.  Figure 6 showed
the opposite trend: the Rd values varied linearly with PI
in both GW and SW on bentonite/quartz sand mixtures.
The results indicate that adding either quartz sand or
laterite to bentonite reduced PI (decreasing the swelling
force and the difficulty of construction and compress-
ibility, but increasing the permeability).  Adding quartz
sand might improve the mechanical and thermal con-
ductivities of mixtures, but it reduces the capacity to
absorb Se.  Adding only laterite increased the sorption
of Se.  Consequently, a material with a PI of approxi-
mately 50 to 70 is preferred for balancing the engineer-
ing needs against desirable chemical properties.  A
bentonite content of 50% and the addition of both
laterite and quartz sand may be optimal for buffer
materials.

4. Additivity of PI and Rd

The following equation was used to analyze the
additivity of PI from as a weighted average among the
various soils;

PI (overall) =  Σ (mi/M) × PIi (4)

where mi is the mass of soil i in the mixture; M is
the total mass of the mixture, and PIi is the plastic index
of soil i.

The physical parameter, PI, is generally highly
consistent with the additivity.  Figures 7 and 8 indicate

Fig. 4. Plastic index (PI) in relation to bentonite content on bentonite/
quartz sand mixtures.

Fig. 5.  Relation of Rd of Se and PI on bentonite/laterite mixtures.

Fig. 6.  Relation of Rd of Se and PI on bentonite/quartz sand mixtures.
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that the PI values for the bentonite/laterite and bento-
nite/quartz mixtures followed the additivity rule in SW
and GW but not in DIW.  The results may have followed
from the fact that the PI of bentonite in DIW greatly
exceeded those of the mixtures, in which neither coagu-
lation nor flocculation occurred.

Another issue was whether the Rd value at various
composition ratios could be predicted from the Rd value
of the individual materials could.  Such prediction is
useful in evaluating and choosing buffer-backfill
materials.  Figures 9 and 10 compare the experimental
and calculated Rds (Eq.1) for Se in GW and SW, for the
various tested mixtures.  The results of this investiga-
tion showed that the Rd value of Se exhibited good
additivity for the bentonite/laterite mixtures in both SW
and GW and for bentonite/quartz sand mixtures in SW,
whereas similar results were not obtained for bentonite/
quartz sand mixtures in GW.  Not only did the calculated
and experimental Rd values of Se for bentonite/quartz

sand mixtures in GW not show high additivity, but also,
they did not tend to be conservative.

CONCLUSION

Under the experimental conditions herein, the sorp-
tion percentage increased with the bentonite content in
bentonite/quartz sand mixtures.  Additionally, the sorp-
tion percentage increased with the laterite content in
bentonite/laterite mixtures.  The evidence indicated that
the sorption of Se by soils followed the order laterite
soil > bentonite > quartz, regardless of whether GW or
SW was used.  Hence, adding laterite to the mixture
promoted the sorption of the anionic form of Se.  PI was
proportional to the bentonite content of the tested buffer
material that included bentonite/quartz sand and bento-
nite/laterite, independently of the solution used (SW,
GW, or DIW).  The results also indicated PIDIW > PIGW

> PISW, because of coagulation and flocculation effects.

Fig. 7. Additivity of PI on bentonite/laterite mixtures (CR: correlation).

Fig. 8. Additivity of PI on bentonite/quartz sand mixtures (CR:
correlation).

Fig. 10. Additivity of Rd on bentonite/quartz sand mixtures (CR:
correlation).

Fig. 9. Additivity of Rd on bentonite/laterite mixtures (CR: correlation).
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A material with a PI of approximately 50 to 70 (in GW
and SW) is preferred to balance engineering needs with
desired chemical properties.  A bentonite content of
50% and the addition of both laterite and quartz sand
may be optimal for buffer materials and should be
studied further.  This work further indicates that the PI
values of both mixtures followed the additivity rule in
SW and GW, but not in DIW.  The Rd value of Se
exhibited good additivity on the bentonite/laterite mix-
tures in both SW and GW and on bentonite/quartz sand
mixtures in SW, but similar results were not obtained on
bentonite/quartz sand mixtures in GW.  These results
provide useful information concerning the choice of
buffer material composition, and for evaluating the
overall Rd and PI of the mixture, from the Rd and PI of
its components.
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