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ABSTRACT

Laboratory experiments were conducted to investigate the gen-
eration of an internal solitary wave (ISW) in a two-layer free surface
fluid system in wave flume (12 m × 0.5 m × 0.7 m), which included
wave channel and compartment.  There is filled with stratified two-
layer fluid system in the channel and small compartment, respectively.
These two regions in the wave flume are separated by a movable
vertical gate at one end of the flume for generating the ISW (internal
solitary wave).  An ISW generation is thus caused by gravity collapse
upon raising the vertical gate.  Given positive potential energies, an
elevation-type ISW is followed by an anticlockwise overturning
motion at the interface; on the other hand, an ISW of depression-type
was generated by clockwise motion.  This paper presented physical
properties related to wave generation in a stratified fluid in laboratory.
In the wave flume, the stable wave propagation, either elevation-type
or depression-type ISW, is influenced by environmental condition.
An ISW of depression transferred into unstable fluctuation instead of
soliton feature whilst the upper layer thickness is greater than the
lower layer thickness.  Similarly, an ISW of elevation reduces its
wave amplitude and causes trailing oscillation followed with the
leading wave.

INTRODUCTION

Water waves play a key role in the ocean, espe-
cially those on the sea surface caused by the interaction

between the ocean and atmosphere.  When a flat surface
is displaced from an equilibrium position, it regains its
position with a restoring force affected by both surface
tension and the gravity force, respectively, with periods
up to 20 seconds, wave speeds up to tens of meters per
second, and amplitudes of up to several hundred meters
approximately.  However, waves can also occur be-
tween any two fluids or same fluid in different densities,
and oceanographers refer to these waves occurring be-
tween ocean layers of different densities as internal
waves which are more easily produced than the surface
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Fig. 1. Sketch of an internal wave propagating on the thermocline in
the coastal ocean, and structure of streamlines causing surface
streak contrast with a vertical view of SAR images. (a) A strip
of 4 frames of ERS-1 SAR images (100 × 400 km) collected south
of Taiwan in Luzon Strait on June 16, 1995, showing huge
internal soliton packet located near 120°E, and 20.5°N (from
[10]); (b) Thick solid line indicates internal wave of depression.
The soliton on the surface are produced by the convergence of
water above the wave troughs in the mixed layer (from [20]).
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waves.  The effect of an internal wave may be visible on
ocean surface, as seen in Figure 1, from the convergence
of surface particle movement above its troughs [10, 15,
20].  The interface between two superposed fluids of
different densities can similarly support gravity waves.
The restoring forces resulting from relative buoyancy
and gravity are weaker, produce typically periods with
internal waves from minutes to hours, wavelengths
from tens of meters to a few tens of kilometers, and
amplitudes from few meters to several tens of meters
[18, 19].

Opinions are widely divided for internal wave
generation.  For the internal waves in the ocean, they
may be generated by a number of external forces, such
as strong wind, tidal motion, ocean current and atmo-
spheric pressure fluctuations.  A great deal of reviews
on detailed process portraying internal wave generation
mechanisms had been presented by Garret and Munk
[9], Thorpe [23], and LeBlond and Mysak [14].  Tidal
current over a submarine topography also produces an
internal wave field at the pycnocline between upper and
lower layer fluid [1].  The mechanisms of internal wave
generation in the East and South China Seas may in-
clude the influence of the tide and the upwelling, which
is induced by the intrusion of the Kuroshio Current
across the continental shelf, ridges or sills [10, 15].
Additional, atmospheric generation may be influenced
by travelling pressure and stress fields and a variable
buoyancy flux [23].  The resonant interaction of a pair
of surface waves [8], instabilities in the mean current
[18] and geostrophic adjustment after flow instabilities
[13] are also likely sources of internal waves.  In long
narrow lakes, first baroclinic mode internal wave pack-
ets can be excited in response to strong, significant wind
events [7, 22].  Mechanical energy from travelling
strong winds is responsible for the generation of a large
fraction of internal waves in the ocean at all depths, and
interior mixing in the ocean is considered to be origi-
nally supplied at large scales by atmospheric forcing
[13].  However, it is difficult, though not impossible, to
thoroughly investigate the characteristics of wave gen-

eration in field observations.  Therefore, alternative
approach using laboratory facilities to study nonlinear
internal waves have become a viable means on long
internal gravity waves [12].  Some studies considering
wave properties in the laboratory are investigated by
Segur and Hammack [21], Kao et al. [11], Michallet and
Barthelemy [16, 17], and Chen et al. [2-4].  However,
these works did not report the process of wave generation,
except Kao et al. [11] who proposed the so-called
“collapse mechanism”.  Even so, the development of an
ISW from the wave source was not discussed in Kao et
al. [11].  In the present study, we detail the development
of an ISW, in both elevation and depression-types in the
laboratory.

EXPERIMENTAL  SETUP

Laboratory experiments were conducted in a steel-
framed wave flume of 12 m long, with a cross-section of
0.7 m high by 0.5m wide supported by a polycarbonate
bottom panel.  The experimental apparatus are given
schematically in Figure 2.  A removable sluice gate
panel for generating internal waves was mounted on the
right hand side of the flume.  No wave absorbing facili-
ties were introduced at either end of the flume; thus
incident waves were free to reflect back to the test
section between the slope and the gate.  Devices with
rigid slope and impermeable bottom plane allowed an
internal wave reflecting back and forth while propagat-
ing in the flume, hence wave attenuation by energy
damping primarily originated from bottom friction took
up more than several tens of minutes approximately.

The proposed laboratory experiments were per-
formed in the wave flume with a two-layer fluid system
of fresh and brine water.  The upper layer was fresh
water with density ρ1, to a depth H1.  The fresh water
body was allowed to stand overnight for the temperature
to equilibrate with the ambient condition.  The medium
of the lower layer was brine water with density ρ2,
which was premixed separately in a constant head tank
and filled slowly into the flume to a depth of H2 by
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Fig. 2.  A schematic view showing on experimental set-up for internal wave reflection from a uniform slope in a two-layer fluid system.
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gravity through several small openings along the bot-
tom of the flume.  Brine water had to be carefully
infused beneath the fresh water, with a thin piece of
sponge placed at every entry point to ensure uniform
diffusion into the two-layer fluid system with minimum
disturbance and mixing at the interface.  The filling time
depended on the upper and lower layer thickness.  For
example, with discharge about 600 cm3/sec for the fresh
water and 160 cm3/sec for the brine water, it would take
about two hours to produce a two layered system of H1/
H2 = 30/10 (units in centimeters).  Colouring agent was
injected afterwards through a set of injector at the
interface of the fluid system, thus producing a visible
sharp interface between limpid fluids with the brine
water beneath the fresh water.  Densities of water for the
upper layer were maintained at 999 kg/m3 and about
1030 kg/m3 approximately for the lower layer, produc-
ing stratified fluids environment of Boussinesq param-
eter σ ≅ 0.03.  The Boussinesq parameter represents the
ratio of density difference and reference density, and
the value comes to around 0.03 in the ocean.

Internal solitary waves were generated by over-
turning the interfacial water behind the movable gate.
The mechanism to generate either a single solitary wave
or a train of solitary waves could be estimated [11].
First, a mini pump was used to remove a small quantity
of fresh water from the main section of the flume to the
small compartment behind the vertical gate.  A corre-
sponding mass of the brine water then slowly moved to
the other side of the gate through a narrow gap between
the bottom of the gate and the flume bottom, such
maintaining a hydrostatic balance.  This created a pre-
scribed step difference £bo in the interface levels on
either side of the gate.  By raising the movable gate
using a pneumatic device controlled by a switch, an
initial internal wave was generated by overturning the
brine water, causing a leading solitary wave to propa-
gate in the flume.  A primary internal wave developed
into a leading solitary wave propagating ahead of a
transient dispersive wave train.  Once the thickness of

fresh water in the small compartment was greater than
that in main section of the flume, clockwise overturning
on the interface level grew while raising the gate, or vice
versa.  The evolution of a depression-type internal wave
resulted due to clockwise interface overturning; on the
contrary, elevation-type internal wave could be gener-
ated by counterclockwise interface overturning.  In
order to minimise the attenuation of pycnocline diffusion,
test runs were first carried out with small amplituded
waves to minimize mixing at the interface, then pro-
gressively with large amplituded waves.  In this way,
the interface was able to satisfactorily support about 5-
6 test runs before having to drain and refill the flume
later.

OBSERVATION  ON  ISW  GENERATION

Internal waves were generated through a collapse
mechanism from a difference in potential on either side
of the removable gate.  It has been well known that the
number of solitons generated in a wave flume can be
pre-determined by a method given by Kao et al. [11]
who experimentally investigated the evolution of the
disturbance as a function of the upper and lower layer
fluid thickness, the step length (i.e. distance from the
gate to the upstream end of the flume; L in Figure 2) and
step depth (i.e. difference in the interface levels on
either side of the removable gate; η0 in Figure 2).  The
internal waveforms were also influenced by fresh/brine
water head on either side of the gate used in this study.
Kao et al. [11] has given an empirical equation for the
number of solitons N as:

N ≤ L
π

3
2

H 1 – H 2

H 1
2H 2

2
η0 + 1 (1)

where H1 and H2 are thickness of the upper and lower
layer fluid, respectively (see Figure 2), L the step length,
η0 the step depth (see Figures 2 and 3).  The step length
L, being the width of the minor water compartment, was
kept constant at 0.3 m distance in all experiments.
Thereby, by controlling the stratification depth ratio H1/
H2 and the step depth ηo for the difference in interface
levels separated by the gate, any number of solitons
required could be generated.  According to Eq. (1) and
for the experimental configuration adopted in this study,
the number of solitons expected is summarized in Table
1.  The values given in Table 1 represent an upper
bound, i.e. the actual number of solitons generated was
less than or equal to the value given.  In reality, the
estimated values may be rounded down to give an
integer given in the brackets.

Upon lifting the vertical gate pneumatically, local

Interfaec

Interfaec

(a) (b) (c)

Fig. 3. Illustration of the sequence of a gravity collapse event following
the lifting of a gate; (a) a step depth η0 showing difference in
interface level either side of the movable gate; (b) a restoring
force by which gravity force of the LHS and buoyancy force of
the RHS were evoked following the lifting of the gate, and (c) an
overturning potential causing vortex motion.
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vortices formed immediately within the proximity of
the gate.  Consequently, ISWs developed due to an
interfacial imbalance of the head difference on either
side of the gate, i.e. the step depth ηo which limited the
maximum “potential” amplitude of the wave (Figure 3).
In order to trace the movement of the interface between
the two fluids, a patch of dye was transfused at different
depths of interface both in front of and behind the gate.
A schematic diagram showing the direction of overturn-
ing motion in the vicinity of wave source is given in
Figure 3.  The action leads to an ISW of depression-
type.  An event history of successive development in
Figure 4 shows an overturning motion, similar to a
vortex, was generated.  Fresh water in the small com-
partment produced an internal bore while raising the
vertical gate, seen in Figure 4c.  The internal bore then
evolved a depression-type wave and propagated ahead
in the main section of the flume, shown in Figure 4d, due
to potential energy supplied by beginning interface
difference.  Better depression ISW feature was apparent
with time after 2-4 seconds (Figures 4e and 4f).  Tracer
attenuation was produced, seen in Figures 4g and 4h,
due to mixing between the upper and lower fluid in the
process of wave generation.  Those indicated that the
vortex was in a clockwise rotation leading to an ISW of
depression-type, compared to an anticlockwise direc-
tion leading to an ISW of elevation-type in Figure 5
when the head of brine water behind the gate was higher
than that in the main section of the flume.

DISCUSSION  ON  EXPERIMENTAL  RESULTS

Shear instabilities in a stratified two-fluid system
caused by a relative motion in opposite direction in-
duced mixing at the source of wave motion [6].  A
developing wave form then propagated towards the
main section of the flume with a high degree of mixing
at its rear end.  The mixing was more pronounced for
large step depth ηo.  The rear end of the developing wave
sharpened with no sign of mixing once it had propagated
approximately 1.5 m from the source.   The dissipation
of energy was mainly due to turbulent mixing, frictional
losses and viscous effect, thus the amplitude of an
internal wave in the main section of constant depth in
the flume was less than the potential difference ηo.  As

discussed earlier, the process could at times lead to the
production of a second solitary wave with much smaller
amplitude than the first one and propagated at much
slower speed.  This second wave was found to interact
with the main solitary wave reflected from the slope
without causing additional mixing or breaking in the
stratified fluids.  The two progressive ISWs were ob-
served to pass each another seemingly without change
in waveform and properties.  In addition, lifting of the
gate also produced minor perturbations at the air-water
interface.  This was due to the abrupt nature of the gate
lifting plus droplets of water falling from the gate onto
the water surface.  The effect of lifting the gate was
similar to an accelerating mass on a fabric as the ripple
on a pond disturbed by a rock.  The oscillation of the
barotropic mode in a seiche-like fashion suggested that
other free surface had been agitated; however, this high
frequency signal was quickly damped within a matter of
seconds.

In the small compartment behind the gate, inter-
face level was different from the main section for wave

Table 1. Prediction of the number of solitons for each
experiment

Configuration ηo = 5 cm ηo = 10 cm ηo = 20 cm

H1 = 10 cm; H2 = 30 cm 1.37 [1] 1.53 [1] 1.75 [1]
H1 = 30 cm; H2 = 10 cm 1.37 [1] 1.53 [1] 1.75 [1]
H1 = 35 cm; H2 = 5 cm 1.79 [1] 2.12 [5] 2.58 [5]

Fig. 4. Video imagery of successive events indicating a clockwise
overturning motion leading to the generation of an ISW of
depression-type for experimental condition of H1 = 10 cm,
H2 = 30 cm, h1 = 30 cm, and h2 = 10 cm.

(a) t = 0s (b) t = 1.5s

(c) t = 3s (d) t = 5s

(e) t = 7s (f) t = 9s

(g) t = 11s (h) t = 15s
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propagation on the other side of the gate, due to a small
quantity of fresh water was removed or added to the
small compartment.  As a result, gravitational potential
energy was produced by a difference in the interface
levels separated by the vertical gate.  If the fluid system
maintained sufficient potential by the time when a step
depth reached its scheduled condition, lifting of the gate
would partially converted it to kinetic energy, thus
developing a solitary wave forward into the main section.
In the process of energy conversion, fragmental energy
losses in frictional and viscous effect were indispensable.
However, it was apparent that internal waveforms were
subjected to rotation (clockwise or anticlockwise) of
overturning of water mass associated with the genera-
tion of an ISW of depression or elevation type.  As seen
in Figure 6, a controlled condition of h1 > H1 (i.e. h1 is
the fluid thickness of the upper layer in the small
compartment) would supply fresh water with an eleva-
tion head to develop a clockwise overturning motion
causing an ISW of depression type; alternatively, for h2

> H2, a higher brine water head in the small compart-
ment would develop an ISW of elevation type.  The
phenomena described above are also illustrated in the
subsequent events of Figures 4 and 5, showing develop-
ments in consecutive time.  The brine elevation head in
the small compartment represented potential energy of
a two-layer fluid system relative to that in the main
section.  In the experiments performed, however, stable
elevation/depression wave propagation in the main sec-
tion of the flume could maintain only if depth ratio H1/
H2 was set correctly in the main compartment.  Here the
so-called environmental condition H1/H2 referred to the
relative magnitude of either H1 > H2 or H1 < H2.  Even
if a depression-type wave could be generated at wave
source, it might not maintain a stable form while propa-
gating in the main section of the flume, unless the
condition of H1/H2 was environmentally suitable.

Four classifications for successfully generating

(a) t = 0s (b) t = 1.5s

(c) t = 3s (d) t = 5s

(e) t = 7s (f) t = 9s

(g) t = 11s (h) t = 15s

Fig. 5. Video imagery of successive events indicating an anticlockwise
overturning motion leading to the generation of an ISW of
elevation-type for experimental condition of H1 = 30 cm,
H2 = 10 cm, h1 = 10 cm, and h2 = 30 cm.

Stable

(a)

(b)

(c)

(d)

H1

h1

h2

h2

h2

h2
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h1

H2H

H

H

H

H2

H2

H2

H1

H1

H1

Stable

Gate

Inversion

Inversion

Fig. 6. Laboratory arrangements for producing stable and unstable
wave form of internal waves in a two-layered fluid system.
Four combinations of water levels were arranged for fluid
thickness ratio of fresh and brine fluid on either side of a
vertically removable gate.  The variations in water levels on the
LHS of each sub-graph are configuration adopted in this study,
while the RHS gives waveform development in the main section
of the wave flume following the lifting of the gate.  Configura-
tion in part (a) stable IGW of depression-type; (b) stable IGW
of elevation-type; (c) an unstable form of depression and later
inverted into an ill-formed IGW of elevation; and (d) an
unstable IGW of elevation and later developed into an ill-
formed IGW of depression.
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internal waves in the wave flume are illustrated in
Figure 6.  For example, under the arrangement of h1 > H1

and H1 > H2, original depression-type ISW would gradu-
ally evolve into an “elevation” type internal wave.  This
unstable phenomenon of wave inversion was supported
by wave profiles as given in Figure 7, which described
the time series of the internal wave.  The wave profiles
are collected by an ultrasonic probe and processed by
control software, Multi Nodes Data Acquisition System
(MNDAS).  These manipulations were reported in de-
tails by Chen et al. [5].  As a result, the generation of
stable soliton feature in a wave flume was satisfied by a
strict configuration including the potential difference
and corresponding environmental condition, as seen in
Figure 8; otherwise, an ISW form would be inverted
later and became unstable non-periodic oscillation.

SUMMARY

Stable waveform for either elevation or depres-
sion-type ISW in the laboratory agrees well with the
field observation by Liu et al. [15] in the South China
Sea. Stable propagation is governed by an appropriate
depth factor, which is called “environmental condition”
in this study.  However, a depression-type ISW could
not inverse into elevation-type since the upper layer
thickness was greater than the lower one in the wave
flume.  Equivalently, an elevated ISW could not inverse
into a depression ISW while the lower layer thickness
was greater than the upper one.  Wave profiles obtained
by experimental results illustrated that perfect inver-

sion for soliton feature between ISWs of elevation and
depression type in the wave flume is not permitted.
Most of oceanographers speculated that perfect inver-
sion from a depression to an elevated type would appear
while an ISW over transition zone due to the change of
the environmental condition (i.e. H1 < H2 → H1 > H2);
however, the evidence have not been discovered by
field experiments.  According to the experimental re-
sults in the laboratory, we strongly suggest that a de-
pression ISW would decay on the continental shelf, in
which the upper layer is thicker than the lower layer
(i.e. environmental condition of H1 > H2), and an el-
evated ISW would be enhanced at the back of the
leading depression ISW.  Hypothetical, the maturation
of an elevated ISW resulted from energy transformation
by the decaying depression ISW.

CONCLUSION

1. According to Eq. (1), the number of solitons to be
generated for this study was kept to one in the wave
flume.  The estimated value is useful to generate a
perfect solitary waveform in a stratified two-layer
fluid system.

2. By means of video imagery of successive events
during laboratory experiments, it indicates that if the
upper layer is thinner than the lower layer (i.e. envi-
ronmental condition of H1 < H2), internal wave of
depression may be generated; conversely, internal
waves of elevation type yield when H1 > H2.

3. Generated by the mechanism of gravity collapse, a
propagating ISW in the wave flume maintain its
soliton feature if the environmental condition
permitted.  Otherwise, a train of wave oscillations
occurs following after the leading wave of the ISW.
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