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CPT-BASED LIQUEFACTION ASSESSMENT
BY USING FUZZY-NEURAL NETWORK

Shuh-Gi Chern*, Ching-Yinn Lee*, and Chin-Chen Wang*
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ABSTRACT

Because of the increasing popularity worldwide of the cone
penetration test (CPT) for site characterization, significant
progress on the simplified CPT-based methods has been made
for evaluation of earthquake induced liquefaction potential of
soils. In this study, a fuzzy-neural network combined with 466
CPT field observations is developed to evaluate liquefaction
potential of soils. The proposed model combines fuzzy theory
with subtractive clustering algorithm to establish a fuzzy-neural
system. The study indicates that fuzzy-neural network can
successfully describe the complex relationship between seismic
parameters, soil parameters, and the liquefaction potential. The
fuzzy-neural network model is found to have very good pre-
dictive ability and is expected to be very reliable for evaluation
of liquefaction potential.

I. INTRODUCTION

The liquefaction is known as one of the most destructive
phenomena caused by earthquake and has been widely seen in
loose saturated soil deposit (Niigata, 1964; Alaska, 1964;
Tangshan, 1979; Loma Prieta, 1989; Kobe, 1995; Turkey, 1998;
Chi-Chi, Taiwan, 1999). In view of serious damages caused by
earthquake induced liquefaction, geotechnical engineers are
actively engaged in the study of soil liquefaction induced by
earthquakes. As of now, they have developed many assessment
methods for soil liquefaction. However, it is hard to choose a
suitable empirical equation for regression analysis due to the
high uncertainty of earthquake environment and soil charac-
teristics. Thus, many scholars and experts attempt to seek ana-
Iytical models that are more reasonable, simple, easy and ac-
curate than traditional empirical equations for soil liquefaction
analysis.

Many of the existing assessment methods were developed
from observations of the performance of sites during earth-
quakes. Previously, geotechnical engineers generally accepted
the simple liquefaction analytical model developed by STP-N
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due to computer speed and analytical ability. In recent years,
data processing and analytical ability have greatly increased and
CPT has the advantages in being a fast, continuous and accurate
measurement of soil parameters. At the same time, the related
testing data continued to accumulate, so the potential of ap-
plying CPT to liquefaction research has grown significantly. For
example, Shibata and Teparaksa [25], Stark and Olsen [26],
Olson [21], Robertson and Companella [23], Robertson and
Wride [24], and Juang and Chen [11] all adopted CPT-based
liquefaction to establish soil liquefaction models and acquired
great achievement.

To assess soil liquefaction induced by earthquakes, it is
necessary to find the correlation between soil parameters and
earthquake factors. However, the relationship between them is
highly non-linear. Therefore, an induction cannot be made by
pure linear regression or empirical rules. Artificial neural net-
work simulates human thinking and learning and finds corre-
sponding rules with mapping relationship between inputs and
outputs for complicated non-linear problems. Many scholars
approved that neural network method is a powerful and effec-
tive tool and is more accurate and reliable than conventional
method to deal with liquefaction problem [3, 10, 12]. However,
previous attempts at using neural networks to determine lique-
faction potential were inadequate because they can not meet
required accuracy without increasing network layers or hidden
neurons. Those deficiencies can be addressed by the
fuzzy-neural system developed in this study. Subtractive clus-
tering algorithm is used to extract hidden classification rules
from data and analyze the system in the study with the di-
vided-and-conquer methodology. Through neural network’s
learning and reminding ability, 466 collected CPT field obser-
vations with a wide range of parameters are incorporated in this
fuzzy-neural network to evaluate earthquake induced liquefac-
tion potential.

II. ELEMENTS OF ANALYSIS

1. Fuzzy logic

The modeling of many systems involve the consideration of
some uncertain variables. Besides the statistical uncertainties
that handle variables through probability theory, there also
exists non-statistical uncertainty that handles variables in a
rational framework of “fuzzy set theory”. Like human brain that
can interpret imprecise and incomplete sensory information,
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Fig. 1. Illustration of membership function.

“fuzzy logic” provides a systematic and approximate reasoning
method to cope with the uncertainties.

In a classic set, the set has a crisp boundary, and the mem-
bership value of an object in a class is only 0 or 1. When the
element x belongs to A set, degree of membership fA(x) is 1;
while x does not belong to A set, degree of membership becomes
0. On the contrary, a fuzzy set is a set without a crisp boundary.
The transition from” belong to a set” to “not belong to a set” is
gradual, and this transition is characterized by membership
functions that give fuzzy sets flexibility in modeling commonly
used linguistic expressions, such as poor, good, and excellent, as
shown in Fig. 1.

Being a continuous and often ambiguous events, the occur-
rence of liquefaction may not be appropriate to describe in
terms of either/or classification [1]. Instead, liquefaction should
be described in terms of degree of liquefaction represented by
fuzzy numbers [22].

A fuzzy variable, “A” is normally expressed as a pair of data
[22].

A={(vu,(x)|xex } (1)

in which x is the element of “A” set; X is a collection of ob-
jects denoted by x, i.e. X is the universe of discourse; LA(x) is
called the membership function for the fuzzy set A, which de-
fines the degree of an element belonging to a set. The mem-
bership function maps X to the membership space M, where M=
{0, 1}.

Fig. 2 shows the basic framework of fuzzy set that contains
several functions, such as fuzzification, fuzzy rule base, fuzzy
inference engine and defuzzification. In addition to establishing
fuzzy rule base through linguistic fuzzy rules that are trans-
formed from expert knowledge and experience, fuzzy rule base
can also be established through special algorithmic rules that
obtain inputs and outputs with mathematical calculation. This
study adopts subtractive clustering algorithms and obtains
normalization to analyze the hidden rules and establishes a
fuzzy rule base.
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Fig. 2. Basic Frameworks for Fuzzy System.
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2. Subtractive clustering

Clustering of numerical data forms the basis of many classi-
fication and system data from a large data set, producing a
concise representation of a system’s behavior [9]. Based on the
Mountain Method that was developed by Yager et al. [32], Chiu
[9] proposed subtractive clustering that considers each data
point as a potential cluster center and a measure of the potential
of data point xi is define as:

p =3 el 2)
2
4
a=— 3)
rﬂ
in which r, is a positive constant, and Il . Il is Euclidean

distance. Thus, the measure of potential for a data point is a
function of its distance to all other data points.

A data point with many neighboring data points will have a
high potential value [9]. The constant r, is effectively the radius
defining a neighborhood; data points outside this radius have
little influence on the potential.

After computing the potential of every data point, the data
point with the highest potential is selected as the first cluster
center x.; with potential value P ;. The potential of each data
point is then revised by the following formula:

})’ = R P-] Xe*ﬁHerHZ (4)
=2 5)
7

in which r, is a positive constant. Thus, an amount of potential
from each data point is subtracted as a function of its distance
from the first cluster center. The data points near the first cluster
center will have greatly reduced potential, and therefore are
unlikely to be selected as the next cluster center. The constant 7,
is effectively the radius defining the neighborhood that will have
measurable reductions in potential. To avoid obtaining closely
spaced cluster centers, 7, is set to be somewhat greater than r,.
Chiu [9] suggested r, =1.5 7.

When the potential of all data points have been revised ac-
cording to (4), the data point with the highest remaining poten-
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tial is selected as the second cluster center x., with potential
value P.,. After the k™ cluster center has been obtained, the
potential of each data point is revised by the formula:

P P—P xe Ml (©)

in which x,; is the location of the k" cluster center; and P, is
its potential value.
The process of acquiring new cluster center and revising
potentials is repeated until

P, <€k, (7

in which g is a small fraction and is an important factor that
will affect the results. If £ is too small, too many cluster centers
will be generated; if £ is too large, too few data points will be

accepted as cluster centers. Chiu [9] suggested £ =0.15.

III. FUZZY-NEURAL SYSTEM

1. Establishment of Fuzzy Rule

Based on subtractive clustering algorithm proposed by
Chiu [9], a fuzzy rule base in fuzzy-neural system is established
in this study. Fig. 3 shows the flow chart for subtractive clus-
tering. Once all cluster centers are chosen, each cluster center is
a fuzzy rule used to describe system behavior. Depending on the
membership function, a data point is assigned to a fuzzy rule.
Also, membership is defined as adopting the oi-cut concept, only
when the grade of membership for data is larger than the present
threshold o do they have the membership of the cluster. Sub-
tractive clustering is used to obtain the cluster center, then the
membership function (8) of fuzzy c-means (FCM) clustering
analysis and a-cut concepts are combined do the data points
have the membership of the cluster.

2
in which u;; is the grade of membership; x; is the i" input data in
input vector {x;, x,...... X,}; m is fuzzy index; and x; is the j’h
cluster center. Though a cluster is assigned to a datum point
depending on the distance, relationship between data and clus-
ters is not absolute. Its grade of membership is determined by
distance. The sum of the membership values for a datum point
with respect to all clusters is 1. Thus, every datum point is not
only related to other clusters but also depends on its grade of
membership.

FCM is a common method in clustering analysis. However, it
is a supervised algorithm, clustering should start with a prede-
fined cluster number. If the cluster number is not predefined, the
trial and error method needs to be combined to obtain optimum
results through iteration. Otherwise, an unsupervised algorithm
is used as a solution.

1
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The cluster analysis of a subtractive clustering algorithm is
based on the potential value in the feature space. In addition, the
location and number of cluster centers is defined by density and
the effective radius of space data points. As for automatic sys-
tem, subtractive clustering is hence more adequate than FCM
and more reliable in this study. Moreover, like most nonlinear
optimum methods, depending on selection of initial value, i.e.,
FCM needs to initialize membership matrix, through iteration,
the cluster analysis result is judged by the convergence of ob-
jection functions. However, like most clustering analysis
methods, objection function may converge into the local
minimum value instead of the global minimum value.

2. Neural Network

An artificial neural network is a computational mechanism
able to acquire, represent, and compute a mapping from mul-
tivariate space of information to another, given a set of data
representing that mapping [22]. It has learning and reminding
ability. A variety of networks can be formed with a multiple
member of interconnected neurons. Parameters are used as
inputs and outputs. Further, the complicated relationship among
parameters can be found. The learning and induction process
also helps solve complicated problems.

The network used for assessment of liquefaction in this study
is the multi-layer perception associated with the back propaga-
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Fig. 4. Illustration of Sub-Network.

tion algorithm, which is a supervised learning algorithm.

To minimize error function during network learning process,
the gradient steepest descent method is used to search for op-
timum solution of error function.

After the determination of its sub-network by membership
function, the input vector goes to framework learning. Each
sub-network has a hidden layer. The activation function is set to
be a nonlinear logic function. The illustration of the
sub-network is shown in Fig.4. The output for each sub-network
is transformed through the weighted average formula and hy-
perbolic tangent function into a value between -1 and 1. When it
is larger than 0, it is within the liquefaction zone. When it is
smaller than 0, it is in the non-liquefaction zone.

Neuron output from the hidden layer in sub-network is:

1

v :f,(vj(n))=m 9)

in which y; is the neuron output value from a hidden layer in a
sub-network; v; is a network net value for a hidden layer; 7 is a
number of learning cycles; and  f; (.) is a linear activation
function.

Neuron output from the hidden layer in a sub-network :

)’k(n): fk(vk(n)): Vk(n) (10)

in which y, is the neuron output value from the hidden layer
in the sub-network; vy is the network net value of output layer; n
is the number of learning cycles; and fi(.) is the linear activation
function.

The sub-network output value corresponding to each fuzzy
rule uses a weighted average formula and the grade of mem-
bership as the weighed coefficient for defuzzy as follows:

S, -y, ()
bn)=21— -
2m,

p=1

an

in which ¥ is sub-network integrated output; p is the p” fuzzy
rule; c is the number of fuzzy rules, i.e. number of fuzzy rules to

the sub-network; and m,, is the grade of membership for the "
fuzzy rule.
The final system output is:

3(0) = 7(6(m) = 22tn))= expl= )

exp(9(n)) + exp(= ¥(n))

G 12
p (12)
in which 3 is the final system output.

Focusing on learning framework for network parameters,
least square method (LSM) and chain rule send back weight
error for each layer.

At first, error function is defined as:

— 1 5 2

E(n)—;[y(n)— 5 ()] (13)

in which n is number of learning cycles; y is expected output, i.e.
actual value; and 3 is the final system output.

The updated sub-network weight is as follows:

Aw,; () = =17 [=(y(m) = $(m)]- (1= §7 (n))

m
. i 1.y, (n) (14)
m+m,+--+m,

in which # is the learning rate; n is the number of learning cycles;
v is the expected output ; § is the final system output.; m,, is the
grade of membership for the p™ fuzzy rule; y; is the neuron
output for the sub-network hidden layer; and c is the number of
fuzzy rules.

The updated sub-network weight is as follows:

Aw (1) = =77+ [=(y(n) = )] - (1 = $2(n)) - ——— 2

mo+m,+-+m

1WA/(”)[}’/(”)(1— y,("))] ‘X’»(}’l)

c

5)

in which x; is the input of the sub-network; and w; is the weight
between the network output layer and the hidden layer.
Through ¢ rule, bonding correction is defined as follows:

Awkj(n):”'5k(n)'yj(n) (16)

Awﬁ(n):ﬂ'é,'(n)'x,’(n) (17)

&)=l 5 1=y —— P (18)
-+, -+,

in which # is the learning rate; J; and J; is the area gradient
parameter; y; is the output value for the sub-network hidden
layer; and x; is the input value for the sub-network.

This study uses the subtractive clustering algorithm to obtain
hidden rules among data. Then it uses the IF-THEN rule of
fuzzy control to link each rule established after cluster analysis
to one artificial neural network. Because the artificial neural
sub-network adopts parallel framework, it is possible that sev-
eral sub-networks are activated at the same time. All activated
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Table 2. The maximum and minimum values of the reference data set.

M a,(kPal

Max, 7.8

Min. 39 16,7 16,7 0% 008 2.6

akPa) 4 M) -y e

645 275 25 00 080 300,06

sub-networks undergo learning. Finally, each sub-network
output is through defuzzy with weighted average formulas and
is transformed into the final output with hyperbolic tangent
functions.

IV. DATA SET AND PREPROCESSING

The case records listed in Table 1 are evaluated using the
fuzzy-neural networks. The data base includes 466 CPT-base
field liquefaction records from more than 11 major earthquakes
between 1964 and 1999 [2, 4-8, 13-20, 25-31]. 21 case records
were collected from Japan, 85 from China, 7 from Canada, 219
from the USA, and 134 from Taiwan. 250 of them liquefied and
216 sites did not liquefy. And then, 5 parameters were selected
from 466 sites, they are: 1) earthquake magnitude, M; 2) total
overburden pressure, op; 3) effective overburden pressure, oy’ ;
4) gq. value from CPT; and 5) maximum ground acceleration,
amax- Moreover, the liquefaction index is also listed in Table 1, it
is 1 for liquefaction site and -1 for non-liquefaction site. In
Table 2, the maximum and minimum values of each parameter
are summarized, where, g¢.y is defined by ¢g.y =
(g/100)/( 6,’/100) [24].

Before using a data set to train the neural network, in order to
avoid any inaccuracy and obtain better training results, the data
set should be preprocessed. Data is pretreated by using (20).
Each parameter is normalized between 0 and 10.

y= 10xx  _ 10Xx,;, _ X=X, % 10

X - X X - X, X

max min max min max min

(20)

in which y is normalized input parameter; x is the original
input parameter; X,,,, and x,,;, are the maximum and minimum
parameters, respectively.

In this study, system output is between 1 and -1. When it is
larger than 0, it means within the liquefaction area. When it is
smaller than 0, it indicates in non-liquefaction area. After the
database is processed through data collection, organization and
preprocessing, training is done iteratively until the Root Mean
Square Error (RMSE) over all the training patterns are mini-
mized. Training is terminated when RMSE is smaller than the
threshold set point 0.1. Additionally, the calculation will be
terminated when RMSE is still equal or larger than 0.1 after
10,000 times of iteration.

V. DETERMINATION OF NEURONS IN
SUB-NETWORK

It is very important to optimize the number of neurons in the

hidden layer. Depending on the complexity of problem, one may
increase or decrease the number of neurons. If the number of

Table 3. Results and details of designed fuzzy-neural networks models.
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neurons in hidden layer is less than optimal, the training process
cannot reach the global minimum error or the network is not
able to learn properly. If the number of neurons in hidden layer
is more than optimal, the possibility of over-learning or
over-fitting becomes a problem. The back propagation algo-
rithm with a three layer neural network is commonly utilized to
analyze the liquefaction occurrence in different sites. Though
neural network can have more than one hidden layer, Goh [10],
Baziar et al. [3] and Juang et al. [15] found that one hidden layer
is good enough for modeling liquefaction problem. The
sub-network in this study follows divided-and- conquer meth-
odology for solving liquefaction problem. Therefore, it is not
necessary to have too many neurons in hidden layer. After trying
different combination of hidden neurons, 5 or 6 neurons are
used in the hidden layer of the fuzzy-neural network model.

1. Effective Radius of Optimized Subtractive Clustering

The criteria to choose a cluster center for subtractive clus-
tering method is based on potential value of a point and the
density of data points nearly. Effective radius r, also plays an
important role for the estimation of cluster center. Therefore,
effective radius r, determines the number of fuzzy rules in this
study, and influences the complexity of model development and
the ability of generalization. It should be optimized and an
optimum r, that is most suitable for this study is found. 7, is a
positive constant with value between 0 and 1. r, is determined
by changing r, and remaining system parameters kept un-
changed, then Root Mean Square Error (RMSE) is checked if it
is smaller than a threshold value. 466 data sets are tested to
decide r, value, test results are illustrated in Fig. 5. The range of
r, value tested is between 0.4 and 0.9. Dashed line in Fig. 5
represents number of fuzzy rules (number of clusters) computed
with effective radius r,. The smaller the radius value, the more
the number clusters. From RMSE curve lines in training and
testing phases, it can be seen that when r, is smaller than 0.55,
Even RMSE has much better convergent value ( i.e. RMSE has
smaller value) during training process, the RMSE in testing
phase can not be reduced to a smaller value. (i.e. RMSE value is
always larger than minimum value of 0.42). That means too
many fuzzy rules and sub-networks will be produced, hidden
characteristics and classification of database is over-estimated,
resulting in too many composite parameters for mapping
training data. If r, value is chosen as 0.55, optimum result can be
obtained either in training or testing phase.
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2. Adopted a-cut

It should make sure all data points at least belong to one
cluster and no empty cluster exists. Membership is defined as
adopting the a-cut concept, as shown in Fig.6. Only when the
grade of membership for data is larger than the preset threshold
o do they have the membership of the cluster. A fuzzy rule will
be activated when the grade of membership is larger than a. The
membership function of FCM (Fuzzy c-means) is used in this
study. The sum of the membership values for a datum point with
respect to all clusters is 1. Through optimized effective radius r,,
466 data sets are separated into 4 clusters. To make sure all data
points at least belong to one sub-network, a-cut value is set 0.25.
If there exists any empty cluster, i.e., no any data point belongs
to this cluster, rule patching will be processed until better result
is met.

VI. ANALYSYS RESULTS

The 466 collected sets of CPT cases are used for analysis in
this study. They are randomly divided into two groups, training
group has 350 sets and testing group has 116 sets of data. De-
pending on different parameter combinations and number of
hidden neurons, 4 kinds of neural network models are estab-
lished. Table 3 shows the results of 4 different models. In model
C4 and C4H6, the input parameters are earthquake magnitude M,
effective overburden pressure op’, cone resistance ¢. , and
maximum ground acceleration a,,,,. Model C4H6 has one more
hidden neuron than C4. Both two models developed by this

Journal of Marine Science and Technology, Vol. 16, No. 2 (2008)

Table 4. Relative importance (%) of input parameters.

Relative importance(%a)

Muodel
M g a'n . i Feln
L 255 222 1) = 0.7 -
C4HG 24 252 18.% - 9.5 -
] 179 249 17 20.7 1.5 -
CHN 184 4.5 17.8 i} - 103

Table 5. Relative importance (%) of parameters in each cluster of model

Cs.
Relative importance(®a)
Cluster

M gy o i T re
I 218 18,7 16,1 28.2 11,3
I 17.1 26.5 226 7.3 6.3
1l 10,0 285 I15.8 21.5 205
IV 16,5 ilA4 .7 17.5 219

study have 4% error rate in training phase. Model C4H6 has one
less error in testing phase than model C4. However, both models
have nearly overall 96% success rate for judging liquefaction. It
shows that very good results can be achieved in this study sys-
tem with only 5 hidden neurons. Compared with model C4,
models C5 and C5N additionally consider the effect of total
overburden pressure ¢ on liquefaction occurrence. In model
C5N, normalized cone resistance g.;y is considered as input
parameter in stead of cone resistance g.. From analysis results,
model C5 with only overall error rate 2.58% has better accuracy
than model C5N in training phase. Apparently, model C5 is the
best model in this study for liquefaction assessment. Models C5
and C5N with additional consideration of oy have better success
rate than models C4 and C4H6 without consideration of oy,
shows that oy is an important factor for the assessment of liq-
uefaction. The outputs of training and testing results for model
C5 are shown in Figs. 7 and 8. In this study, system output value
is between 1 and -1. When it is larger than O, it is within the
liquefaction zone. When it is smaller than 0, it is in
non-liquefaction zone. Solid circle points in Figs. 7 and 8 rep-
resent the cases with liquefaction, while empty circle points
indicate the cases without liquefaction.

Table 4 shows the relative importance for the different mod-
els and the different parameter combinations in this study.
Model C4 and C4H6 have similar relative importance for pa-
rameters M and a,,,, , while different for parameters o,” and q..
The trend of parameters’ relative importance for model C5 is
generally similar to model C5N. In models C5 and C5N, the
importance of earthquake parameters (M and a,,, ) is 43%, and
38% for the in-site stress factors (o0p’ and oy ), 19% for the cone
resistance factor (g. or g.;y). The fuzzy-neural system estab-
lished in this study follows divide-and—conquer methodology
for assessment of liquefaction potential. Table 5 shows the
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Table 1. Summary of testing data.
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Fig. 8. Results of testing phase in model C5.

relative importance of the four clusters in the C5 model. It can
be seen that the main factor for liquefaction assessment in dif-
ferent cluster is different. For example, the liquefaction poten-
tial for the /*' cluster is mainly affected by M and oy. The 2™
cluster is mainly controlled by a,,.,, 0y’ and g.. The 3" cluster is
mainly controlled by a,,... The 4" cluster is mainly controlled by
amax and ¢q.. Since soil liquefaction induced by earthquake in-
volves great uncertainty and is deeply affected by local geo-
logical condition, local stress condition and local earthquake
parameters, the model is not limited to use the same neural
network for analysis but follows data characteristics for classi-
fication and finds hidden rules. It provides a sub-network of
learning for similar data clusters and meets the efficiency prin-
ciple.

1964 Niigata Earthquake (M =7.5)

Kwagishi-Cho Building

South Bank

1971 San Fernando Valley Earthquake (M = 6.4)

Juvenile Hall, California

1975 Haicheng Earthquake (M =7.3)

Paper mill site
Glass fiber site
Construction building site
Fishery and shipbuilding
site

Middle school site
Chemical fiber site

1976 Tangshan Earthquake (M =7.8)

Tanghsan area

2-B1
2Bl

T-10

28
4.6
52
8.0
48
6.7
11
45
50

85

520
853
97.1
149.1
892
124.5
206.9
843
932

353
51.0
56.9
814
61.8
78.5
17.1

490

314
157

0.16
0.16
0.16
0.16
0.16

Shibata and Teparaksa (1988) and
Stark et al. (1995)

Bennett (1989) and Stark et al
(1995)

Arulanandan et al. (1986) and
Stark et al. (1995)

Shibata and Teparaksa (1988) and
Stark et al. (1995)
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Site

Tanghsan area

Boring

T-33

T-34
T-35

T-36
L1

L4

1977 Vrancea Earthquake (M =7.2)

Dimbovitza (Site 1)

Depth(m)
38
32
50
56
26
39
40
56
60
6.9
120
13.1
59
60
11.2
116
12,1
11.2
115
111

4.2
50
6.0
70
80

1979 Imperial Valley earthquake (M = 6.6)

Heber Road

River Park
Wildlife

Vail Canal

Kornbloom Road

Radio tower

McKim Ranch

Unit A2
Unit A3
UnitC
1Ce
1cp

1981 Imperial Valley earthquake (M =6.0)

Wildlife

Vail Canal

Kornbloom Road

Radio tower

McKim Ranch

1Ce
1cp

4.8
48
4.8
4.8
48
4.8
4.8
48
4.8
4.8
42
39
4.1
44
110
110
40
110
110
30
4.5
25
48

1983 Nihonkai-Cho Earthquake (M =7.7)

Noshiro-Cho

3l
38
50
28
34
5.1
6.0

1988 Sangucnay Earthquake (M =5.9)

Ferland. Quebec, Canada

1989 Loma Prieta earthquake (M =7.1)

San Francisco Marina
district

MARI
MARI
MAR2
MAR2

30
6.6
33
59

Oo(kPa)
706
59.8
932
103.9
48.1
72.6
745
103.9
118
1118
223.6
2442
1118
118.7
208.9
2157
2255
208.9
2148
206.9

785
93.2
1118
130.4
149.1

76.0

719

89.3
209.0
209.0

76.0
209.0

209.0
570
855
475
91.2
123.5
599
84.6

90.3
903
90.3
90.3
903
90.3
90.3

90.3
90.3
789
732

209.0
57.0
85.5

50.8
70.4
90.0

129.3
148.9
168.5

585
128.7
64.4
115.1

o'u(kPa)
559
51.0
66.7
716
471
62.8
637

471
53.9
628
716
804

56.0

45.0
51.8
518
51.8
51.8
518
51.8
59.8
598
59.8
59.8
638
61.1
63.3
65.6
68.7
119.0
119.0
56.0
119.0
560
119.0
47.0
605
425
582
735

55.1

51.8
518
51.8
51.8
518
51.8
59.8
598
59.8
59.8
638
61.1
63.3

471
53.0
63.7
451
51.0
65.7
735

431
53.1
63.0
728
826
924
102.2

515
85.7
584
83.1

a(Mpa)
288
294
574
8.83
184
250
441

5.2
3.66
3.05
1.29
5.2

3.50

5.20

10.10

15.50

3.50

9.81
15.69
15.08

4.02
7.80
8.80

426
491
2.76
571
6.51
777
1.7

4.70
7.70

1450

(@)
020
020
020
020
020
020
020
020
020
020
020
020
020
020
020
020
020
020
020
020

0.22
0.22

0.22
0.22

0.80

0.20
0.15
0.15
0.15
0.15
0.15
0.15
0.15
0.15
0.15
0.15
0.13
0.13
0.13
0.13
0.13
0.08
0.08
0.08
0.08
0.08
0.08
0.18
0.18
0.18
0.55
0.55
0.55
0.55

0.33
033
0.33
0.33
033
0.33
0.33

0.33
0.33
0.37
0.37
037
0.37
0.37
0.37

0.37
037
0.29
0.29
0.29
0.10
0.10
0.10
0.10

0.23
0.23
0.23
0.23
0.23
0.23
0.23

025
0.25
0.25
025
0.25
0.25
025

0.24
0.24
0.24
0.24

Liquefaction

Reference Site Boring_Depih(m) _ou(kPa) _o'u(kPa) _qu(Mpa) ama(z) __Liquefaction Reference
MAR3 31 605 565 720 024 1
MAR3 53 1034 774 1520 024 1
MAR4 59 1Is1 8s1 130 024 1
MARS 28 546 506 190 024 1
MAR6 84 1722 1432 590 024 1
Moss Landing ucls 30 570 450 380 025 1 Boulanger et al. (1997) and Juang
State Beach ucls 30 570 450 300 025 1 etal. (2003)
ucl? a4 836 656 540 025 1
ucls 40 760 700 1640 025 1
Sandholt Road ucs 25 415 405 770 025 1
uc4 95 1805 1035 2500 025 1
ues 25 415 395 870 025 1
RC-1 L4 26 266 300 025 1
RC1 39 741 S31 1170 025 1
RC1 80 1520 900 2000 025 1
uc2 19 361 340 1040 025 1
RC4 50 950 630 900 025 1
RC4 68 1292 792 2080 025 1
ucs 65 1235 1820 025 1
MBARI No. 3 RCS 35 66.5 1550 025 1
RC6 4l 779 1300 025 1
RCT 47 893 920 025 Bl
Shibata and Teparaksa (1988) and MBARI No. 4 cPTl 34 646 850 025 1
Stark etal. (1995) cPr2 25 415 1040 025 1
P34l 779 940 025 1
cPr4 19 36.1 840 025 1
General Fish cprs 21 309 250 025 1
CPT6 26 494 1000 025 1
Harbor office ez a4l 779 620 025 1
Bennett et al. (1981, 1984), ucls 4l 779 430 025 1
Bierschwale and Stokoe (1984) uc20 47 893 410 025 1
and Juang et al. (2000a, 2003) ue2t 42 798 490 025 1
Woodward Marine uco 29 s5.1 660 025 1
ucio 20 380 310 025 1
el 22 418 310 025 1
15-A 29 s5.1 510 025 1
14-A 36 684 780 025 1
Marine Laboratory ucl 110 2090 460 025 1
uer 83 1577 430 025 1
ues 86 1634 430 025 1
e 98 1862 380 025 1
c 44 836 820 025 1
[ 55 1045 190 025 1
EastBay shoreline sites.~ POR2 60 1140 220 016 1 Kayen etal. (1992, 1998) and
POR3 60 1140 210 016 1 Juang etal. (2003)
SFOBB-1 63 1197 410 028 1
SFOBBS 70 1330 850 028 1
POO72 60 1140 640 028 1
POOT3 95 1805 028 Bl
ACPTT 25 415 027 1
BFLP6 33 627 : 027 1
Monterey County U3 57 824 220 053 1 Wayne et al. (1998) and Juang et
Clint Miller Farms csus 73 1147 450 053 1 al. (2003)
csu9 60 998 39 053 1
SeaMistLeonardini  CSU30 2.1 284 100 021 1
csu3l 33 575 100 021 1
csu3s 2l 327 130 o021 1
csu39 27 a1 100 021 1
Southern Pacific Bridge  CSU48 73 1163 400 049 1
Sunta Cruze and Monterey  CMF2 103 195.7 550 053 1 )
Counties CMF3 68 1283 370 053 1 Bennettand Tinsley (1995).
Clint Miller Farms CMF5 6.9 1311 700 053 1 Tinsley etal. (1998), Toprak et al
(1999) and Juang et al. (2003)
CMFs 93 1758 200 053 1
Bennett et al. (1984), Bierschwale oMrs ss 1093 250 05 A
(“:‘;';)‘:kjgéi?m and Juang et al. CMFI0 83 156.8 540 053 1
2000, 2003 CMFI2 98 1853 Lo 053 1
Moss Landing MLI4B 58 1093 940 027 1
Model Airport ARI7T 28 532 260 038 1
ARIS 38 713 430 038 1
AIR2L 43 808 460 038 1
Scattini scas 23 428 280 023 1
sca 26 485 023 1
scas 32 599 430 023 1
scas 50 950 1550 023 1
Sea Mist SEA3L 18 333 140 021 1
Jefferson Ranch JRR32 28 523 280 021 1
JRR32 108 2043 950 021 1
JRR33 58 1093 410 021 1
JRR33 83 1568 1030 021 1
JRR34 25 466 750 021 1
JRR34 43 808 540 021 1
Jefferson Ranch JRRIZL 72 1368 570 021 1
JRRI4L 46 865 350 021 1
JRRI42 43 808 430 021 1
JRRISO 58 1093 680 021 1
JEFI121 58 1110 680 021 1
JEF-141 37 708 180 021 1
JEF148 73 1407 770 021 1
JEF149 58 1113 480 021 1
JEF32 24 456 220 021 1
Shibata and Teparaksa (1988) and Coyote Creek CCK-l 98 1877 860 017 1
Stark etal. (1995) CCK23 82 1588 690 017 1
Leonardini LEN37 34 637 30 021 1
LEN39 28 523 240 021 1
LENsI 28 523 140 021 1
LENS2A 36 675 410 021 1
LENS3 30 s6.1 430 021 1
Pajaro Dunes PAI44 68 1283 1180 032 1
PAITY 25 415 1050 032 1
Tuttle etal(1990) and Stark etal PAIS3 28 523 1280 032 1
(1995) PAISS 20 371 830 032 1
PAISS 22 409 1260 032 1
PD43 37 704 79 022 1
PR4S 58 1093 810 049 1
Southern Pacific Bridge
SPR46 42 798 550 049 1
SPR47 62 1178 720 049 1
SPR4S 62 1178 450 049 1
Farris FARSS 58 1093 1050 054 1
USGS (1990) and Juang et al. FARS9 66 1245 800 054 1
(20008, 2003) FAR6L 68 1283 390 054 1
Marinovich MRR6S 73 1378 670 059 1
Silliman SIL6S 43 808 530 057 1
SIL7I 58 1093 1009 460 _ 057 1
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LW-C2 125 2286 1150 776 0.2
LW-C2 185 3366 1630 948 012

Luwei in Chang-Bin LW-AS 65 124.0 703 668  0.12 -1
industrial park LW-AS 75 1425 788 521 012 -1
LW-AS 85 161.0 873 612 0.2 -1
LW-AS 95 179.5 95.8 708 0.2 -1
LW-A7 75 138.6 75.0 591 012 -1
LW-A7 85 156.6 83.0 538 0.2 -1
LW-A7 95 174.6 91.0 662 0.2 -1
LW-A7 115 2106 1070 799 012 -1
LW-A7 125 2286 1150 738 0.2 -1
LW-A7 135 2466 1230 741 012 -1
LW-A9 65 120.6 67.0 703 012 -1
LW-A9 85 156.6 83.0 673 0.2 -1
LW-A9 105 192.6 99.0 649 0.2 -1
LW-A9 125 286 1150 547 012 -1
LW-A9 135 2466 1230 632 0.12 -1
LW-AI0 25 486 350 092 0.2 1
LW-AI0 35 66.6 43.0 150 0.2 1
LW-AI0 45 846 51.0 064 012 1
LW-AI0 79 145.8 782 605 0.2 -1
LW-AI0 95 174.6 91.0 676 0.12 -1
LW-Cl 35 685 448 249 0.2 1
LW-C1 45 87.0 533 201 042 1
LW-C1 55 105.5 61.8 189 012 1
LW-Cl 6.5 1240 703 154 012 1
LW-C1 95 179.5 95.8 743 012 -1
LW-C1 116 2183 1136 772 012 -1
LW-C2 50 936 55.0 661 0.12 -1
LW-C2 65 120.6 67.0 702 042 -1
LW-C2 105 192.6 99.0 608 0.12 -1
-1

-1

LW-DI 35 685 4.8 020 0.2 1
LW-DI 50 962 575 593 0.2 -1
LW-DI 65 124.0 703 794 012 -1
LW-DI 75 1425 788 757 012 -1
LW-D3 25 50.0 363 023 012 1
LW-D3 35 685 4.8 018 0.2 1
LW-D3 6.1 116.6 66.9 724 012 -1
LW-D3 85 161.0 873 621 0.2 -1
LW-D3 125 2350 1213 883 012 -1

Sitc Boring _Depth(m) _o(kP) _'u(kPa)_q(Mpa) _apeu(s) __Liquefaction Reference
Kett KET74 27 513 395 4.90 0.69 1
Radovich RADOS 44 827 694 170 056 1
Radovich RADOG 53 1007 781 360 056 1
RAD97 93 1758 117.4 5.00 0.56 1
RADSS 68 1283 964 740 056 1
RAD9S 54 1017 894 500 056 1
Tome Jones Ranch TIR100 10.3 1948 1442 8.50 0.55 1
TIRIOI 88 1663 1393 420 055 1
Tanimura TANIOS 56 1055 981 480 019 1
TANIOS 51 960 876 390 019 1
Salinas River Bridgee ~~ SRBI16 73 1378 1204 550 0.6 )
SRBIIT 73 1378 1294 610 016 )
SRB117 10.8 2043 161.6 6.20 0.16 -1
Granite Construction Co. GRAI23 73 1378 1157 570 050 1
McGowan MCGI2S 28 523 341 090 038 )
MCGI36 33 618 534 230 038 1
1999 Chi-Chi earthquake (M = 7.6)

Wufeng WE-4 25 463 363 127077 ! MAA (20002, 2000b), Juang et al

WEeT 25 463 363 197 077 1
(2001) and Ku etal. (2004)
WFelo 25 463 363 072 077 1
WE<l0 35 648 448 179 077 1
WFelo 45 833 533 135 077 1
WF3b 65 1203 703 1166 077 )
WE3b 75 1388 788 1389 077 Bl
WF4b 122 2248 1183 1445 077 )
WEes 138 2553 1323 2005 077 )
Nantou NT-1 25 46.3 413 0.94 043 1
N 35 648 498 147 043 1
NT-L 104 1915 1080 1132 043 )
Nantou NTS 35 685 498 1156 043 Bl
NTS 90 1702 965 1289 043 )
NTC2 35 648 498 386 043 1
NTC2 45 833 583 601 043 1
NT-C2 135 2498 1343 1630 043 )
NTCT 31 S74 464 14l 043 1
NT-C7 4.1 759 549 0.90 043 1
NTCT 100 1850 1050 1196 043 )
NTCIS 40 740 490 187 043 1
NT-CIS 80 1480 830 577 043 1
Dachun YLCI 125 2313 1213 827 019 )
L2 31 S74 0 414 254 019 1
YL-C3 10.5 189.0 99.0 7.46 0.19 -1
YLC3  1Ls 200 1070 762 019 )
YLC4 37 685 465 270 019 1
Yuanlin YLCS 75 1388 788 803 019 El
YLCS 125 2313 1213 680 019 )
YLCS 135 2498 1298 702 019 )
YLCT 90 1665 9L5 667 019 a
YLCO 100 1869 1009 772 019 )
YLCIO 170 3145 1595 768 019 )
YLCl9 50 925 515 222 019 1
YLC2 75 1388 788 623 019 )
YLC21 140 2590 1340 1215 019 )
YLC2 25 463 363 254 019 1
YLC2 35 648 448 262 019 1
YLC2 118 2183 1153 815 019 )
YLC2 125 2313 1213 1008 0.9 Bl
YLC2 140 2590 1340 1243 019 )
YLC2 145 2683 1383 1689 019 )
YL-C24 25 46.3 36.3 1.62 0.19 1
YLC24 35 648 448 245 019 1
YLC24 111 2054 194 670 019 )
YL-C24 12,5 2313 121.3 9.19 0.19 -1
YLC24 140 2590 1340 1365 019 )
YLC24 145 2683 1383 1708 019 )
YL-C25 32 59.2 422 2.66 0.19 1
YLC2s 45 833 33 182 019 1
YLC25 105 1943 1043 825 0.9 )
YL-C25 115 2128 1128 741 0.19 -1
YLC3 50 925 575 254 019 1
YLC3 125 2313 1213 830 019 )
YL-C31 14.0 259.0 134.0 1277 0.19 -1
YLCR2 26 481 3.1 LIS 019 1
YLCR 50 925 575 296 019 1
Shetou YLC35 45 833 533 173 021 1
Yuanlin YLC36 135 2498 1298 800 019 )
YLC36 145 2683 1383 801 019 )
YLC36 155 2868 1468 874 019 El
YLC36 185 3460 1723 1005 0.19 )
YLC36 195 3645 1508 1126 0.9 )
Shetou YLCR2 115 2128 1128 683 021 a
YLce 125 2313 213 72 021 )
Yuanlin YL 4l 749 494 261 019 1
YL-C43 8.0 148.0 83.0 6.61 0.19 -1
YLC43 135 2498 1298 830 019 )
YLC#4 115 2165 1128 832 019 )
YL-C44 139 2572 1332 11.58 0.19 -1
YL2 25 463 313 300 019 1
YL2 35 648 398 209 019 1
YL2 45 962 483 278 019 1
YL2 65 1203 653 269 019 1
YL2 75 1388 738 305 019 1
YL-2 135 2498 1248 14.67 0.19 -1
YL2 145 2683 133 1061 019 )
YL2 155 2868 1418 1474 019 )
YL2 165 3053 1503 1365 019 Bl
Luwei in Chang-Bin LW-AL 35 630 430 128 oL 1
industrial park LW-AL 45 846 S5L0 064 012 1
LW-Al1 74 136.8 742 5.46 0.12 -1
LW-AL 130 2376 1190 516 012 )
LW-A2 25 486 350 326 012 1
LW-A2 35 66.6 430 2.65 0.12 1
LW-A2 65 1206 670 740 012 )
LW-A2 75 1386 750 704 012 )
LW-A2 85 156.6 83.0 747 0.12 -1
LW-A2 125 2286 1150 768 012 )
LW-A2 135 2466 1230 654 012 )
LW-A3 6.0 111.6 63.0 6.64 0.12 -1
LW-A3 75 1386 750 559 012 )
LW-A3 125 2286 1150 758 012 )
LW-A3 13.5 246.6 123.0 6.85 0.12 -1
Sitc Boring_Depth(m) _o,(kPw) _ou(kPa) _q.(Mpa) _ap(e) _Liquefact Reference

VII. CONCLUSION

Fuzzy-neural network has been used to establish the as-
sessment of liquefaction potential, based on 466 CPT field
records collected from the world. This study combines fuzzy
theory with subtractive clustering algorithm to constitute a
fuzzy-neural system.

Using multiple neural networks, and subtractive clustering
analysis to develop a fuzzy-neural network. It has the ability to
find the relations between basic parameters and to achieve
better results.

In model C5, adding O as an input parameter could decrease
the total error to 2.58%, and o, also played a more important
role than ¢, in liquefaction assessment.
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