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ABSTRACT 

Because of the increasing popularity worldwide of the cone 

penetration test (CPT) for site characterization, significant 

progress on the simplified CPT-based methods has been made 

for evaluation of earthquake induced liquefaction potential of 

soils. In this study, a fuzzy-neural network combined with 466 

CPT field observations is developed to evaluate liquefaction 

potential of soils. The proposed model combines fuzzy theory 

with subtractive clustering algorithm to establish a fuzzy-neural 

system. The study indicates that fuzzy-neural network can 

successfully describe the complex relationship between seismic 

parameters, soil parameters, and the liquefaction potential. The 

fuzzy-neural network model is found to have very good pre-

dictive ability and is expected to be very reliable for evaluation 

of liquefaction potential. 

I. INTRODUCTION 

The liquefaction is known as one of the most destructive 

phenomena caused by earthquake and has been widely seen in 

loose saturated soil deposit (Niigata, 1964; Alaska, 1964; 

Tangshan, 1979; Loma Prieta, 1989; Kobe, 1995; Turkey, 1998; 

Chi-Chi, Taiwan, 1999). In view of serious damages caused by 

earthquake induced liquefaction, geotechnical engineers are 

actively engaged in the study of soil liquefaction induced by 

earthquakes. As of now, they have developed many assessment 

methods for soil liquefaction. However, it is hard to choose a 

suitable empirical equation for regression analysis due to the 

high uncertainty of earthquake environment and soil charac-

teristics. Thus, many scholars and experts attempt to seek ana-

lytical models that are more reasonable, simple, easy and ac-

curate than traditional empirical equations for soil liquefaction 

analysis. 

Many of the existing assessment methods were developed 

from observations of the performance of sites during earth-

quakes. Previously, geotechnical engineers generally accepted 

the simple liquefaction analytical model developed by STP-N 
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due to computer speed and analytical ability. In recent years, 

data processing and analytical ability have greatly increased and 

CPT has the advantages in being a fast, continuous and accurate 

measurement of soil parameters. At the same time, the related 

testing data continued to accumulate, so the potential of ap-

plying CPT to liquefaction research has grown significantly. For 

example, Shibata and Teparaksa [25], Stark and Olsen [26], 

Olson [21], Robertson and Companella [23], Robertson and 

Wride [24], and Juang and Chen [11] all adopted CPT-based 

liquefaction to establish soil liquefaction models and acquired 

great achievement. 

To assess soil liquefaction induced by earthquakes, it is 

necessary to find the correlation between soil parameters and 

earthquake factors. However, the relationship between them is 

highly non-linear. Therefore, an induction cannot be made by 

pure linear regression or empirical rules. Artificial neural net-

work simulates human thinking and learning and finds corre-

sponding rules with mapping relationship between inputs and 

outputs for complicated non-linear problems. Many scholars 

approved that neural network method is a powerful and effec-

tive tool and is more accurate and reliable than conventional 

method to deal with liquefaction problem [3, 10, 12]. However, 

previous attempts at using neural networks to determine lique-

faction potential were inadequate because they can not meet 

required accuracy without increasing network layers or hidden 

neurons. Those deficiencies can be addressed by the 

fuzzy-neural system developed in this study.  Subtractive clus-

tering algorithm is used to extract hidden classification rules 

from data and analyze the system in the study with the di-

vided-and-conquer methodology. Through neural network’s 

learning and reminding ability, 466 collected CPT field obser-

vations with a wide range of parameters are incorporated in this 

fuzzy-neural network to evaluate earthquake induced liquefac-

tion potential. 

II.  ELEMENTS OF ANALYSIS 

1. Fuzzy logic 

The modeling of many systems involve the consideration of 

some uncertain variables. Besides the statistical uncertainties 

that handle variables through probability theory, there also 

exists non-statistical uncertainty that handles variables in a 

rational framework of “fuzzy set theory”. Like human brain that 

can interpret imprecise and incomplete sensory information, 
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“fuzzy logic” provides a systematic and approximate reasoning 

method to cope with the uncertainties. 

In a classic set, the set has a crisp boundary, and the mem-

bership value of an object in a class is only 0 or 1. When the 

element x belongs to A set, degree of membership µA(x) is 1; 

while x does not belong to A set, degree of membership becomes 

0. On the contrary, a fuzzy set is a set without a crisp boundary. 

The transition from” belong to a set” to “not belong to a set” is 

gradual, and this transition is characterized by membership 

functions that give fuzzy sets flexibility in modeling commonly 

used linguistic expressions, such as poor, good, and excellent, as 

shown in Fig. 1. 

Being a continuous and often ambiguous events, the occur-

rence of liquefaction may not be appropriate to describe in 

terms of either/or classification [1]. Instead, liquefaction should 

be described in terms of degree of liquefaction represented by 

fuzzy numbers [22]. 

A fuzzy variable, “A” is normally expressed as a pair of data 

[22]. 

( )( ) }{ Xxx,xA A ∈= µ                              (1) 

in which x is the element of “A” set; X is a collection of ob-

jects denoted by x, i.e. Χ  is the universe of discourse; µA(x) is 

called the membership function for the fuzzy set A, which de-

fines the degree of an element belonging to a set. The mem-

bership function maps X to the membership space M, where M= 

{0, 1}. 

Fig. 2 shows the basic framework of fuzzy set that contains 

several functions, such as fuzzification, fuzzy rule base, fuzzy 

inference engine and defuzzification. In addition to establishing 

fuzzy rule base through linguistic fuzzy rules that are trans-

formed from expert knowledge and experience, fuzzy rule base 

can also be established through special algorithmic rules that 

obtain inputs and outputs with mathematical calculation. This 

study adopts subtractive clustering algorithms and obtains 

normalization to analyze the hidden rules and establishes a 

fuzzy rule base. 

2. Subtractive clustering 

Clustering of numerical data forms the basis of many classi-

fication and system data from a large data set, producing a 

concise representation of a system’s behavior [9]. Based on the 

Mountain Method that was developed by Yager et al. [32], Chiu 

[9] proposed subtractive clustering that considers each data 

point as a potential cluster center and a measure of the potential 

of data point xi is define as: 

(2) 

(3) 

 in which ra is a positive constant, and || . || is Euclidean 

distance. Thus, the measure of potential for a data point is a 

function of its distance to all other data points. 

A data point with many neighboring data points will have a 

high potential value [9]. The constant ra is effectively the radius 

defining a neighborhood; data points outside this radius have 

little influence on the potential. 

After computing the potential of every data point, the data 

point with the highest potential is selected as the first cluster 

center xc1 with potential value Pc1. The potential of each data 

point is then revised by the following formula: 

(4) 

(5) 

in which rb is a positive constant. Thus, an amount of potential 

from each data point is subtracted as a function of its distance 

from the first cluster center. The data points near the first cluster 

center will have greatly reduced potential, and therefore are 

unlikely to be selected as the next cluster center. The constant rb

is effectively the radius defining the neighborhood that will have 

measurable reductions in potential. To avoid obtaining closely 

spaced cluster centers, rb is set to be somewhat greater than ra. 

Chiu [9] suggested  rb =1.5 ra. 

When the potential of all data points have been revised ac-

cording to (4), the data point with the highest remaining poten-
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Fig. 1.  Illustration of membership function. 

Fig. 2. Basic Frameworks for Fuzzy System. 
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tial is selected as the second cluster center xc2 with potential 

value Pc2. After the k
th
 cluster center has been obtained, the 

potential of each data point is revised by the formula: 

(6) 

in which xck is the location of the k
th

 cluster center; and Pck is 

its potential value. 

The process of acquiring new cluster center and revising 

potentials is repeated until 

(7) 

in which ε  is a small fraction and is an important factor that 

will affect the results. If ε is too small, too many cluster centers 

will be generated; if ε  is too large, too few data points will be 

accepted as cluster centers. Chiu [9] suggested ε = 0.15. 

III. FUZZY-NEURAL SYSTEM 

1. Establishment of Fuzzy Rule 

Based on subtractive clustering algorithm proposed by 

Chiu [9], a fuzzy rule base in fuzzy-neural system is established 

in this study. Fig. 3 shows the flow chart for subtractive clus-

tering. Once all cluster centers are chosen, each cluster center is 

a fuzzy rule used to describe system behavior. Depending on the 

membership function, a data point is assigned to a fuzzy rule. 

Also, membership is defined as adopting the α-cut concept, only 

when the grade of membership for data is larger than the present 

threshold α do they have the membership of the cluster. Sub-

tractive clustering is used to obtain the cluster center, then the 

membership function (8) of fuzzy c-means (FCM) clustering 

analysis and α-cut concepts are combined do the data points 

have the membership of the cluster. 

(8) 

in which uji is the grade of membership; xi is the i
th

 input data in 

input vector {x1, x2,……xn}; m is fuzzy index; and xcj is the j
th

cluster center. Though a cluster is assigned to a datum point 

depending on the distance, relationship between data and clus-

ters is not absolute. Its grade of membership is determined by 

distance. The sum of the membership values for a datum point 

with respect to all clusters is 1. Thus, every datum point is not 

only related to other clusters but also depends on its grade of 

membership. 

FCM is a common method in clustering analysis. However, it 

is a supervised algorithm, clustering should start with a prede-

fined cluster number. If the cluster number is not predefined, the 

trial and error method needs to be combined to obtain optimum 

results through iteration. Otherwise, an unsupervised algorithm 

is used as a solution. 

The cluster analysis of a subtractive clustering algorithm is 

based on the potential value in the feature space. In addition, the 

location and number of cluster centers is defined by density and 

the effective radius of space data points. As for automatic sys-

tem, subtractive clustering is hence more adequate than FCM 

and more reliable in this study. Moreover, like most nonlinear 

optimum methods, depending on selection of initial value, i.e., 

FCM needs to initialize membership matrix, through iteration, 

the cluster analysis result is judged by the convergence of ob-

jection functions. However, like most clustering analysis 

methods, objection function may converge into the local 

minimum value instead of the global minimum value. 

2. Neural Network 

An artificial neural network is a computational mechanism 

able to acquire, represent, and compute a mapping from mul-

tivariate space of information to another, given a set of data 

representing that mapping [22]. It has learning and reminding 

ability. A variety of networks can be formed with a multiple 

member of interconnected neurons. Parameters are used as 

inputs and outputs. Further, the complicated relationship among 

parameters can be found. The learning and induction process 

also helps solve complicated problems. 

The network used for assessment of liquefaction in this study 

is the multi-layer perception associated with the back propaga-
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Fig. 3.  Flow Diagram for subtractive clustering. 
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tion algorithm, which is a supervised learning algorithm. 

To minimize error function during network learning process, 

the gradient steepest descent method is used to search for op-

timum solution of error function. 

After the determination of its sub-network by membership 

function, the input vector goes to framework learning. Each 

sub-network has a hidden layer. The activation function is set to 

be a nonlinear logic function. The illustration of the 

sub-network is shown in Fig.4. The output for each sub-network 

is transformed through the weighted average formula and hy-

perbolic tangent function into a value between -1 and 1. When it 

is larger than 0, it is within the liquefaction zone. When it is 

smaller than 0, it is in the non-liquefaction zone.

Neuron output from the hidden layer in sub-network is: 

(9) 

in which yj is the neuron output value from a hidden layer in a 

sub-network; vj is a network net value for a hidden layer; n is a 

number of learning cycles; and   fj (.) is a linear activation 

function.  

Neuron output from the hidden layer in a sub-network

(10) 

in which  yk  is the neuron output value from the hidden layer 

in the sub-network; vk is the network net value of output layer; n

is the number of learning cycles; and  fk(.) is the linear activation 

function. 

The sub-network output value corresponding to each fuzzy 

rule uses a weighted average formula and the grade of mem-

bership as the weighed coefficient for defuzzy as follows: 

(11) 

in which v̂  is sub-network integrated output; p is the p
th

 fuzzy 

rule; c is the number of fuzzy rules, i.e. number of fuzzy rules to 

the sub-network; and mp is the grade of membership for the p
th

fuzzy rule. 

The final system output is: 

(12) 

in which ŷ  is the final system output. 

Focusing on learning framework for network parameters, 

least square method (LSM) and chain rule send back weight 

error for each layer. 

At first, error function is defined as:  

(13) 

in which n is number of learning cycles; y is expected output, i.e. 

actual value; and ŷ  is the final system output.  

The updated sub-network weight is as follows: 

(14) 

in which  is the learning rate; n is the number of learning cycles; 

y is the expected output ; ŷ  is the final system output.; mp is the 

grade of membership for the p
th

 fuzzy rule; yj is the neuron 

output for the sub-network hidden layer; and c is the number of 

fuzzy rules. 

The updated sub-network weight is as follows: 

(15) 

in which xi is the input of the sub-network; and wkj is the weight 

between the network output layer and the hidden layer. 

Through  rule, bonding correction is defined as follows:  

(16) 

(17) 

(18) 

(19) 

in which  is the learning rate; k and j is the area gradient 

parameter; yj is the output value for the sub-network hidden 

layer; and xi is the input value for the sub-network. 

This study uses the subtractive clustering algorithm to obtain 

hidden rules among data. Then it uses the IF-THEN rule of 

fuzzy control to link each rule established after cluster analysis 

to one artificial neural network. Because the artificial neural 

sub-network adopts parallel framework, it is possible that sev-

eral sub-networks are activated at the same time. All activated 
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sub-networks undergo learning. Finally, each sub-network 

output is through defuzzy with weighted average formulas and 

is transformed into the final output with hyperbolic tangent 

functions. 

IV. DATA SET AND PREPROCESSING 

The case records listed in Table 1 are evaluated using the 

fuzzy-neural networks. The data base includes 466 CPT-base 

field liquefaction records from more than 11 major earthquakes 

between 1964 and 1999 [2, 4-8, 13-20, 25-31].  21 case records 

were collected from Japan, 85 from China, 7 from Canada, 219 

from the USA, and 134 from Taiwan. 250 of them liquefied and 

216 sites did not liquefy. And then, 5 parameters were selected 

from 466 sites, they are: 1) earthquake magnitude, M; 2) total 

overburden pressure, σ0; 3) effective overburden pressure, σ0’ ; 

4) qc value from CPT; and 5) maximum ground acceleration, 

amax. Moreover, the liquefaction index is also listed in Table 1, it 

is 1 for liquefaction site and -1 for non-liquefaction site. In 

Table 2, the maximum and minimum values of each parameter 

are summarized, where, qc1N is defined by qc1N = 

(qc/100)/( σ0’/100) [24].  

Before using a data set to train the neural network, in order to 

avoid any inaccuracy and obtain better training results, the data 

set should be preprocessed. Data is pretreated by using (20). 

Each parameter is normalized between 0 and 10. 

( 20 ) 

in which y is normalized input parameter; x is the original 

input parameter; xmax and xmin are the maximum and minimum 

parameters, respectively. 

In this study, system output is between 1 and -1. When it is 

larger than 0, it means within the liquefaction area. When it is 

smaller than 0, it indicates in non-liquefaction area. After the 

database is processed through data collection, organization and 

preprocessing, training is done iteratively until the Root Mean 

Square Error (RMSE) over all the training patterns are mini-

mized. Training is terminated when RMSE is smaller than the 

threshold set point 0.1. Additionally, the calculation will be 

terminated when RMSE is still equal or larger than 0.1 after 

10,000 times of iteration. 

V. DETERMINATION OF NEURONS IN 

SUB-NETWORK 

It is very important to optimize the number of neurons in the 

hidden layer. Depending on the complexity of problem, one may 

increase or decrease the number of neurons. If the number of 

neurons in hidden layer is less than optimal, the training process 

cannot reach the global minimum error or the network is not 

able to learn properly. If the number of neurons in hidden layer 

is more than optimal, the possibility of over-learning or 

over-fitting becomes a problem. The back propagation algo-

rithm with a three layer neural network is commonly utilized to 

analyze the liquefaction occurrence in different sites. Though 

neural network can have more than one hidden layer, Goh [10], 

Baziar et al. [3] and Juang et al. [15] found that one hidden layer 

is good enough for modeling liquefaction problem. The 

sub-network in this study follows divided-and- conquer meth-

odology for solving liquefaction problem. Therefore, it is not 

necessary to have too many neurons in hidden layer. After trying 

different combination of hidden neurons, 5 or 6 neurons are 

used in the hidden layer of the fuzzy-neural network model. 

1. Effective Radius of Optimized Subtractive Clustering 

The criteria to choose a cluster center for subtractive clus-

tering method is based on potential value of a point and the 

density of data points nearly. Effective radius ra also plays an 

important role for the estimation of cluster center. Therefore, 

effective radius ra determines the number of fuzzy rules in this 

study, and influences the complexity of model development and 

the ability of generalization. It should be optimized and an 

optimum ra that is most suitable for this study is found. ra is a 

positive constant with value between 0 and 1. ra is determined 

by changing ra and remaining system parameters kept un-

changed, then Root Mean Square Error (RMSE) is checked if it 

is smaller than a threshold value. 466 data sets are tested to 

decide ra value, test results are illustrated in Fig. 5. The range of 

ra value tested is between 0.4 and 0.9. Dashed line in Fig. 5 

represents number of fuzzy rules (number of clusters) computed 

with effective radius ra. The smaller the radius value, the more 

the number clusters. From RMSE curve lines in training and 

testing phases, it can be seen that when ra is smaller than 0.55, 

Even RMSE has much better convergent value ( i.e. RMSE has 

smaller value) during training process, the RMSE in testing 

phase can not be reduced to a smaller value. ( i.e. RMSE value is 

always larger than minimum value of 0.42). That means too 

many fuzzy rules and sub-networks will be produced, hidden 

characteristics and classification of database is over-estimated, 

resulting in too many composite parameters for mapping 

training data. If ra value is chosen as 0.55, optimum result can be 

obtained either in training or testing phase. 
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2. Adopted -cut 

It should make sure all data points at least belong to one 

cluster and no empty cluster exists. Membership is defined as 

adopting the -cut concept, as shown in Fig.6. Only when the 

grade of membership for data is larger than the preset threshold 

 do they have the membership of the cluster. A fuzzy rule will 

be activated when the grade of membership is larger than . The 

membership function of FCM (Fuzzy c-means) is used in this 

study. The sum of the membership values for a datum point with 

respect to all clusters is 1. Through optimized effective radius ra, 

466 data sets are separated into 4 clusters. To make sure all data 

points at least belong to one sub-network, -cut value is set 0.25. 

If there exists any empty cluster, i.e., no any data point belongs 

to this cluster, rule patching will be processed until better result 

is met. 

VI. ANALYSYS RESULTS 

The 466 collected sets of CPT cases are used for analysis in 

this study. They are randomly divided into two groups, training 

group has 350 sets and testing group has 116 sets of data. De-

pending on different parameter combinations and number of 

hidden neurons, 4 kinds of neural network models are estab-

lished. Table 3 shows the results of 4 different models. In model 

C4 and C4H6, the input parameters are earthquake magnitude M, 

effective overburden pressure σ0’, cone resistance qc , and 

maximum ground acceleration amax. Model C4H6 has one more 

hidden neuron than C4. Both two models developed by this 

study have 4% error rate in training phase. Model C4H6 has one 

less error in testing phase than model C4. However, both models 

have nearly overall 96% success rate for judging liquefaction. It 

shows that very good results can be achieved in this study sys-

tem with only 5 hidden neurons. Compared with model C4, 

models C5 and C5N additionally consider the effect of total 

overburden pressure σ0 on liquefaction occurrence. In model 

C5N, normalized cone resistance qc1N is considered as input 

parameter in stead of cone resistance qc. From analysis results, 

model C5 with only overall error rate 2.58% has better accuracy 

than model C5N in training phase. Apparently, model C5 is the 

best model in this study for liquefaction assessment. Models C5 

and C5N with additional consideration of σ0 have better success 

rate than models C4 and C4H6 without consideration of σ0, 

shows that σ0 is an important factor for the assessment of liq-

uefaction. The outputs of training and testing results for model 

C5 are shown in Figs. 7 and 8. In this study, system output value 

is between 1 and -1. When it is larger than 0, it is within the 

liquefaction zone. When it is smaller than 0, it is in 

non-liquefaction zone. Solid circle points in Figs. 7 and 8 rep-

resent the cases with liquefaction, while empty circle points 

indicate the cases without liquefaction. 

Table 4 shows the relative importance for the different mod-

els and the different parameter combinations in this study. 

Model C4 and C4H6 have similar relative importance for pa-

rameters M and amax , while different for parameters σ0’ and qc. 

The trend of parameters’ relative importance for model C5 is 

generally similar to model C5N. In models C5 and C5N, the 

importance of earthquake parameters (M and amax ) is 43%, and 

38% for the in-site stress factors (σ0’ and σ0 ), 19% for the cone 

resistance factor (qc or qc1N). The fuzzy-neural system estab-

lished in this study follows divide-and–conquer methodology 

for assessment of liquefaction potential. Table 5 shows the 

Fig. 5. No. of rules and RMSE vs. different cluster radius ra.

Fig. 6.  Illustration of -cut. 

Table 4. Relative importance (%) of input parameters. 

Table 5. Relative importance (%) of parameters in each cluster of model 

C5. 
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relative importance of the four clusters in the C5 model. It can 

be seen that the main factor for liquefaction assessment in dif-

ferent cluster is different. For example, the liquefaction poten-

tial for the 1
st
 cluster is mainly affected by M and σ0. The 2

nd

cluster is mainly controlled by amax, σ0’ and qc. The 3
rd

 cluster is 

mainly controlled by amax. The 4
th
 cluster is mainly controlled by 

amax and qc. Since soil liquefaction induced by earthquake in-

volves great uncertainty and is deeply affected by local geo-

logical condition, local stress condition and local earthquake 

parameters, the model is not limited to use the same neural 

network for analysis but follows data characteristics for classi-

fication and finds hidden rules. It provides a sub-network of 

learning for similar data clusters and meets the efficiency prin-

ciple. 

Table 1. Summary of testing data. 

Site Boring Depth(m) o(kPa) 'o(kPa) qc(Mpa) amax(g) Liquefaction Reference 

1964 Niigata Earthquake  (M = 7.5)       

Kwagishi-Cho Building  2.8  52.0 35.3 3.14 0.16 1 

  4.6  85.3 51.0 1.57 0.16 1 

Shibata and Teparaksa (1988) and 

Stark et al. (1995) 

  5.2  97.1 56.9 7.06 0.16 1 

  8.0  149.1 81.4 5.49 0.16 1 

  4.8  89.2 61.8 5.34 0.16 1 

  6.7  124.5 78.5 7.80 0.16 1 

  11.1  206.9 117.1 9.51 0.16 1 

South Bank  4.5  84.3 45.1 7.85 0.16 -1 

  5.0  93.2 49.0 14.27 0.16 -1 

      

1971 San Fernando Valley Earthquake  (M = 6.4)      

Juvenile Hall, California 2-B1 8.5  167.6 166.1 6.37 0.50 1 

 2-B1 10.2  200.5 182.6 6.86 0.50 1 

Bennett (1989) and Stark et al. 

(1995) 

 2-C 13.3  260.3 212.5 11.77 0.50 -1  

 2-C 13.9  272.3 218.5 19.32 0.50 -1  

 2-C 14.8  290.3 227.5 21.57 0.50 -1  

 4-B1 6.4  125.7 119.7 3.14 0.50 1  

 4-B2 8.4  164.0 138.9 0.69 0.50 1  

 4-C 9.9  194.5 154.2 1.77 0.50 -1  

 4-C 10.7  209.5 161.7 9.81 0.50 -1  

 4-C 11.6  227.4 170.7 8.73 0.50 -1  

 4-C 12.8  251.4 182.7 5.39 0.50 -1  

 4-C 14.8  290.3 202.1 9.32 0.50 -1  

 6-B1 4.6  89.8 86.8 0.69 0.50 1  

 6-C 9.1  179.6 131.7 7.06 0.50 -1  

 6-C 10.7  209.5 146.7 10.79 0.50 -1  

 6-C 11.3  221.4 152.7 13.73 0.50 -1  

 6-C 13.9  272.3 178.2 8.83 0.50 -1  

 6-C 15.1  296.3 190.2 6.86 0.50 -1  

 10-B1 5.0  98.8 95.8 1.96 0.50 1  

 10-B1 5.8  113.7 103.3 0.69 0.50 1  

 10-B1 6.6  128.7 110.8 2.94 0.50 1  

 10-C 10.2  200.5 146.7 0.69 0.50 -1  

 10-C 11.1  218.5 155.7 1.96 0.50 -1  

 10-C 12.2  239.4 166.2 4.90 0.50 -1  

 10-C 13.1  257.4 175.2 9.81 0.50 -1  

 10-C 14.6  287.3 190.2 15.69 0.50 -1  

 11-B1 6.3  122.7 119.7 1.96 0.50 1  

 11-B1 7.3  143.6 130.2 1.96 0.50 1  

 11-C 9.8  191.5 154.2 20.60 0.50 -1  

       

1975 Haicheng Earthquake  (M = 7.3)       

Paper mill site  4.0  74.6 50.0 0.65 0.15 1 

Glass fiber site  3.0  55.9 41.2 0.53 0.15 1 

Arulanandan et al. (1986) and 

Stark et al. (1995) 

Construction building site  7.0  130.5 76.5 0.38 0.15 1  

Fishery and shipbuilding 

site 
 3.5  65.2 45.6 1.30 0.15 1  

Middle school site  10.3  191.0 105.2 0.73 0.15 -1 

Chemical fiber site  7.5  139.8 80.9 1.20 0.15 1  

       

1976 Tangshan Earthquake  (M = 7.8)       

Tanghsan area T-10 3.0  55.9 41.2 1.67 0.40 1 

  6.0  111.8 67.7 9.22 0.40 1 

Shibata and Teparaksa (1988) and 

Stark et al. (1995) 

  7.8  145.1 83.4 5.59 0.40 1  

  8.5  158.9 90.2 7.45 0.40 1  

 T-11 0.9  16.7 16.7 1.47 0.40 1  

  1.3  24.5 20.6 0.98 0.40 1  

  1.8  33.3 24.5 4.90 0.40 1  

 T-12 2.0  37.3 33.3 2.45 0.40 1  

  3.0  55.9 42.2 2.55 0.40 1  

  4.0  74.5 51.0 3.14 0.40 1  

  4.7  87.3 56.9 5.69 0.40 1  

  6.4  119.6 72.6 3.43 0.40 1  

  9.5  177.5 100.0 8.24 0.40 1  

 T-13 2.0  37.3 28.4 1.67 0.40 1  

  2.1  39.2 28.4 3.43 0.40 1  

  2.7  50.0 34.3 4.02 0.40 1  

 T-14 1.5  28.4 26.5 5.39 0.40 1  

  3.0  55.9 39.2 8.83 0.40 1  

 T-15 1.2  22.6 20.6 6.86 0.40 1  

  1.8  33.3 25.5 1.16 0.40 1  

  2.5  47.1 32.4 4.16 0.40 1  

 T-16 4.0  74.5 69.6 11.25 0.40 -1  

  8.4  156.9 108.9 15.46 0.40 -1  

 T-17 3.1  57.9 54.9 11.17 0.20 -1  

  4.1  76.5 63.7 11.89 0.20 -1  

  5.2  97.1 73.5 17.42 0.20 -1  

 T-18 4.7  87.3 76.5 1.62 0.20 1  

  5.2  97.1 81.4 3.58 0.20 1  

 T-19 1.5  28.4 24.5 1.01 0.20 1  

  2.9  53.9 36.3 4.90 0.20 1  

  4.0  74.5 46.1 2.85 0.20 1  

  5.5  103.0 59.8 5.94 0.20 1  

 T-20 1.2  22.6 21.6 12.98 0.20 -1  

  1.7  31.4 25.5 12.81 0.20 -1  

  2.1  39.2 29.4 16.27 0.20 -1  

 T-21 3.1  57.9 57.9 10.39 0.20 -1  

  3.3  61.8 59.8 8.94 0.20 -1  

  4.0  74.5 65.7 11.07 0.20 -1  

 T-22 3.7  68.6 40.2 1.90 0.20 1  

  3.9  74.5 43.1 4.90 0.20 1  

 T-23 3.7  68.6 46.1 2.20 0.20 1  

  3.9  72.6 48.1 2.60 0.20 1  

 T-24 2.8  52.0 34.3 4.31 0.20 1  

  3.2  59.8 38.2 2.94 0.20 1  

 T-25 8.2  153.0 79.4 8.83 0.20 1  

 T-26 5.2  97.1 53.9 1.96 0.10 1  

 T-27 5.0  93.2 51.0 1.08 0.20 1  

 T-28 11.0  205.0 103.9 15.20 0.10 -1  

  11.4  212.8 107.9 6.37 0.10 -1  

 T-29 4.8  89.2 52.0 8.83 0.10 -1  

  5.3  99.0 56.9 2.45 0.10 -1  

  5.9  109.8 61.8 16.18 0.10 -1  

 T-30 4.8  89.2 66.7 13.39 0.10 -1  

  6.0  111.8 77.5 13.85 0.10 -1  

  8.5  158.9 100.0 18.57 0.10 -1  

 T-31 2.3  43.1 43.1 3.35 0.20 1  

  3.1  57.9 50.0 2.68 0.20 1  

 T-32 3.0  55.9 49.0 3.23 0.20 1  

  3.2  59.8 51.0 4.04 0.20 1  

Fig. 7. Results of training phase in model C5. 

Fig. 8. Results of testing phase in model C5. 
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Site Boring Depth(m) o(kPa) 'o(kPa) qc(Mpa) amax(g) Liquefaction Reference 

Tanghsan area  3.8  70.6 55.9 2.88 0.20 1  

 T-33 3.2  59.8 51.0 2.94 0.20 1  

  5.0  93.2 66.7 5.74 0.20 1  

  5.6  103.9 77.6 8.83 0.20 1  

 T-34 2.6  48.1 47.1 1.84 0.20 1  

 T-35 3.9  72.6 62.8 2.50 0.20 1  

  4.0  74.5 63.7 4.41 0.20 1  

  5.6  103.9 77.5 4.16 0.20 1  

 T-36 6.0  111.8 75.5 7.85 0.20 -1  

 L-1 6.9  111.8 57.2 8.31 0.20 -1  

  12.0  223.6 110.6 4.46 0.20 -1  

  13.1  244.2 120.4 5.68 0.20 -1  

 L-2 5.9  111.8 54.3 2.43 0.20 1  

  6.0  118.7 55.3 1.54 0.20 1  

  11.2  208.9 101.8 1.42 0.20 1  

  11.6  215.7 104.6 2.11 0.20 1  

  12.1  225.5 109.7 2.55 0.20 1  

 L-3 11.2  208.9 101.8 2.68 0.20 1  

  11.5  214.8 104.6 1.75 0.20 1  

 L-4 11.1  206.9 106.5 7.49 0.20 -1  

       

1977 Vrancea Earthquake  (M = 7.2)       

Dimbovitza (Site 1)  4.2  78.5 47.1 5.12 0.22 1 

  5.0  93.2 53.9 3.66 0.22 1 

Shibata and Teparaksa (1988) and 

Stark et al. (1995) 

  6.0  111.8 62.8 3.05 0.22 1  

  7.0  130.4 71.6 1.29 0.22 1  

  8.0  149.1 80.4 5.12 0.22 1  

      

1979 Imperial Valley earthquake  (M = 6.6)       

Heber Road Unit A2 4.0  76.0 56.0 2.00 0.80 1 

 Unit A3 4.0  76.0 56.0 4.90 0.80 1 

River Park Unit C 5.0  95.0 45.0 6.90 0.20 -1 

Bennett et al. (1981, 1984), 

Bierschwale and Stokoe (1984) 

and Juang et al. (2000a, 2003) 

Wildlife 1Cg 4.8  90.3 51.8 2.90 0.15 -1  

 1Cp 4.8  90.3 51.8 3.90 0.15 -1  

 2Cg 4.8  90.3 51.8 5.20 0.15 -1  

 3Cg 4.8  90.3 51.8 5.90 0.15 -1  

 3Cp 4.8  90.3 51.8 3.80 0.15 -1  

 4Cg 4.8  90.3 51.8 4.80 0.15 -1  

 5Cg 4.8  90.3 59.8 4.50 0.15 -1  

 6Cg 4.8  90.3 59.8 5.10 0.15 -1  

 6Ct 4.8  90.3 59.8 4.30 0.15 -1  

 7Cg 4.8  90.3 59.8 5.10 0.15 -1  

Vail Canal V1 4.2  78.9 63.8 10.10 0.13 -1  

 V2 3.9  73.2 61.1 7.20 0.13 -1  

 V3 4.1  77.9 63.3 6.40 0.13 -1  

 V4 4.4  82.7 65.6 5.90 0.13 -1  

 V5 4.7  89.3 68.7 9.00 0.13 -1  

Kornbloom Road K1 11.0  209.0 119.0 6.40 0.08 -1  

 K3 11.0  209.0 119.0 6.40 0.08 -1  

 K4 4.0  76.0 56.0 2.30 0.08 -1  

 K4 11.0  209.0 119.0 9.10 0.08 -1  

 K5 4.0  76.0 56.0 1.90 0.08 -1  

 K5 11.0  209.0 119.0 15.50 0.08 -1  

Radio tower R1 3.0  57.0 47.0 1.40 0.18 1  

 R2 4.5  85.5 60.5 4.20 0.18 1  

 R4 2.5  47.5 42.5 5.50 0.18 -1  

McKim Ranch M1 4.8  91.2 58.2 3.20 0.55 1  

 M5 6.5  123.5 73.5 5.80 0.55 1  

 M7 3.2  59.9 43.4 3.30 0.55 1  

 M8 4.5  84.6 55.1 3.50 0.55 1  

      

1981 Imperial Valley earthquake  (M = 6.0)       

Wildlife 1Cg 4.8  90.3 51.8 2.90 0.33 1 

 1Cp 4.8  90.3 51.8 3.90 0.33 1 

 2Cg 4.8  90.3 51.8 5.20 0.33 1 

 3Cg 4.8  90.3 51.8 5.90 0.33 1 

Bennett et al. (1984), Bierschwale 

and Stokoe (1984) and Juang et al. 

(2000a, 2003) 

 3Cp 4.8  90.3 51.8 3.80 0.33 1  

 4Cg 4.8  90.3 51.8 4.80 0.33 1  

 5Cg 4.8  90.3 59.8 4.50 0.33 1  

 6Cg 4.8  90.3 59.8 5.10 0.33 1  

 6Ct 4.8  90.3 59.8 4.30 0.33 1  

 7Cg 4.8  90.3 59.8 5.10 0.33 1  

Vail Canal V1 4.2  78.9 63.8 10.10 0.37 -1  

 V2 3.9  73.2 61.1 7.20 0.37 1  

 V3 4.1  77.9 63.3 6.40 0.37 1  

 V4 4.4  82.7 65.6 5.90 0.37 1  

Kornbloom Road K1 11.0  209.0 119.0 6.40 0.37 -1  

 K3 11.0  209.0 119.0 6.40 0.37 -1  

 K4 4.0  76.0 56.0 2.30 0.37 1  

 K4 11.0  209.0 119.0 9.10 0.37 -1  

 K5 11.0  209.0 119.0 15.50 0.37 -1  

Radio tower R1 3.0  57.0 47.0 1.40 0.29 1  

 R2 4.5  85.5 60.5 4.20 0.29 1  

 R4 2.5  47.5 42.5 5.50 0.29 -1  

McKim Ranch M1 4.8  91.2 58.2 3.20 0.10 -1  

 M5 6.5  123.5 73.5 5.80 0.10 -1  

 M7 3.2  59.9 43.4 3.30 0.10 -1  

 M8 4.5  84.6 55.1 3.50 0.10 -1  

       

1983 Nihonkai-Cho Earthquake  (M = 7.7)       

Noshiro-Cho  3.1  56.9 47.1 9.81 0.23 -1 

  3.8  71.6 53.0 15.69 0.23 -1 

Shibata and Teparaksa (1988) and 

Stark et al. (1995) 

  5.0  94.1 63.7 15.08 0.23 -1  

  2.8  53.0 45.1 1.76 0.23 1  

  3.4  62.8 51.0 4.02 0.23 1  

  5.1  94.1 65.7 7.80 0.23 1  

  6.0  111.8 73.5 8.80 0.23 1  

       

1988 Sangucnay Earthquake  (M = 5.9)       

Ferland, Quebec, Canada  2.5  50.8 43.1 4.26 0.25 -1 

  3.5  70.4 53.1 4.91 0.25 -1 

Tuttle et al.(1990) and Stark et al. 

(1995) 

  4.5  90.0 63.0 2.76 0.25 1  

  5.5  109.6 72.8 5.71 0.25 -1  

  6.5  129.3 82.6 6.51 0.25 -1  

  7.5  148.9 92.4 7.77 0.25 -1  

  8.5  168.5 102.2 7.77 0.25 -1  

       

1989 Loma Prieta earthquake  (M = 7.1)       

MAR1 3.0  58.5 51.5 4.70 0.24 -1 San Francisco Marina 

district MAR1 6.6  128.7 85.7 7.70 0.24 -1 

USGS (1990) and Juang et al. 

(2000a, 2003) 

 MAR2 3.3  64.4 58.4 8.60 0.24 -1  

 MAR2 5.9  115.1 83.1 14.50 0.24 -1  

         

Site Boring Depth(m) o(kPa) 'o(kPa) qc(Mpa) amax(g) Liquefaction Reference 

 MAR3 3.1  60.5 56.5 7.20 0.24 -1  

 MAR3 5.3  103.4 77.4 15.20 0.24 -1  

 MAR4 5.9  115.1 85.1 1.30 0.24 1  

 MAR5 2.8  54.6 50.6 1.90 0.24 1  

 MAR6 8.4  172.2 143.2 5.90 0.24 -1  

Moss Landing UC-14 3.0  57.0 45.0 3.80 0.25 1 

    State Beach UC-15 3.0  57.0 45.0 3.00 0.25 1 

Boulanger et al. (1997) and Juang 

et al. (2003) 

 UC-17 4.4  83.6 65.6 5.40 0.25 1  

 UC-18 4.0  76.0 70.0 16.40 0.25 -1  

    Sandholt Road UC-4 2.5  47.5 40.5 7.70 0.25 1  

 UC-4 9.5  180.5 103.5 25.00 0.25 -1  

 UC-3 2.5  47.5 39.5 8.70 0.25 -1  

 RC-1 1.4  26.6 26.6 3.00 0.25 1  

 RC-1 3.9  74.1 53.1 11.70 0.25 -1  

 RC-1 8.0  152.0 90.0 20.00 0.25 -1  

 UC-2 1.9  36.1 34.1 10.40 0.25 -1  

 RC-4 5.0  95.0 63.0 9.00 0.25 1  

 RC-4 6.8  129.2 79.2 20.80 0.25 -1  

 UC-6 6.5  123.5 75.5 18.20 0.25 -1  

    MBARI No. 3 RC-5 3.5  66.5 49.5 15.50 0.25 -1  

 RC-6 4.1  77.9 62.9 13.00 0.25 -1  

 RC-7 4.7  89.3 79.3 9.20 0.25 -1  

    MBARI No. 4 CPT-1 3.4  64.6 49.6 8.50 0.25 -1  

 CPT-2 2.5  47.5 40.5 10.40 0.25 -1  

 CPT-3 4.1  77.9 59.9 9.40 0.25 -1  

 CPT-4 1.9  36.1 32.1 8.40 0.25 -1  

    General Fish CPT-5 2.1  39.9 33.9 2.50 0.25 1  

 CPT-6 2.6  49.4 40.4 10.00 0.25 -1  

    Harbor office UC-12 4.1  77.9 55.9 6.20 0.25 1 

 UC-13 4.1  77.9 55.9 4.30 0.25 1  

 UC-20 4.7  89.3 72.3 4.10 0.25 1  

 UC-21 4.2  79.8 64.8 4.90 0.25 1  

    Woodward Marine UC-9 2.9  55.1 38.1 6.60 0.25 1  

 UC-10 2.0  38.0 28.0 3.10 0.25 1  

 UC-11 2.2  41.8 29.8 3.10 0.25 1  

 15-A 2.9  55.1 39.1 5.10 0.25 1  

 14-A 3.6  68.4 44.4 7.80 0.25 1  

    Marine Laboratory UC-1 11.0  209.0 123.0 4.60 0.25 1  

 UC-7 8.3  157.7 88.7 4.30 0.25 1  

 UC-8 8.6  163.4 90.4 4.30 0.25 1  

 C2 9.8  186.2 110.2 3.80 0.25 1  

 C3 4.4  83.6 54.6 8.20 0.25 1  

 C4 5.5  104.5 77.5 1.90 0.25 1  

East Bay shoreline sites POR-2 6.0  114.0 79.7 2.20 0.16 1 

 POR-3 6.0  114.0 79.7 2.10 0.16 1 

Kayen et al. (1992, 1998) and 

Juang et al. (2003) 

 SFOBB-1 6.3  119.7 77.5 4.10 0.28 1  

 SFOBB-5 7.0  133.0 84.0 8.50 0.28 1  

 POO7-2 6.0  114.0 84.6 6.40 0.28 1  

 POO7-3 9.5  180.5 116.8 12.10 0.28 -1  

 ACPT7 2.5  47.5 42.6 3.40 0.27 1  

 BFI-P6 3.3  62.7 50.0 6.20 0.27 1  

Monterey County CSU-3 5.7  82.4 73.4 2.20 0.53 1 

    Clint Miller Farms CSU-8 7.3  114.7 86.4 4.50 0.53 1 

Wayne et al. (1998) and Juang et 

al. (2003) 

 CSU-9 6.0  99.8 79.0 3.90 0.53 1  

    Sea Mist-Leonardini CSU-30 2.1  28.4 22.5 1.00 0.21 1  

 CSU-31 3.3  57.5 32.5 1.00 0.21 1  

 CSU-38 2.1  32.7 27.1 1.30 0.21 1  

 CSU-39 2.7  42.1 33.1 1.00 0.21 1  

    Southern Pacific Bridge CSU-48 7.3  116.3 96.9 4.00 0.49 1  

Santa Cruze and Monterey CMF2 10.3  195.7 157.5 5.50 0.53 1 

Counties CMF3 6.8  128.3 118.0 3.70 0.53 1 

    Clint Miller Farms CMF5 6.9  131.1 109.5 7.00 0.53 1 

 CMF5 9.3  175.8 131.1 2.00 0.53 1 

Bennett and Tinsley (1995), 

Tinsley et al. (1998), Toprak et al. 

(1999) and Juang et al. (2003) 

 CMF8 5.8  109.3 100.9 7.50 0.53 1  

 CMF10 8.3  156.8 105.3 5.40 0.53 1  

 CMF12 9.8  185.3 134.7 1.10 0.53 1  

    Moss Landing ML14B 5.8  109.3 67.6 9.40 0.27 1  

    Model Airport AIR17 2.8  53.2 46.3 2.60 0.38 1 

 AIR18 3.8  71.3 58.0 4.30 0.38 1  

 AIR21 4.3  80.8 62.6 4.60 0.38 1  

    Scattini SCA23 2.3  42.8 35.4 2.80 0.23 1  

 SCA24 2.6  48.5 40.1 2.20 0.23 1  

 SCA28 3.2  59.9 40.7 4.30 0.23 1  

 SCA28 5.0  95.0 57.7 15.50 0.23 -1  

    Sea Mist SEA31 1.8  33.3 23.9 1.40 0.21 1  

    Jefferson Ranch JRR32 2.8  52.3 42.9 2.80 0.21 1  

 JRR32 10.8  204.3 116.5 9.50 0.21 -1  

 JRR33 5.8  109.3 65.6 4.10 0.21 1  

 JRR33 8.3  156.8 88.6 10.30 0.21 -1  

 JRR34 2.5  46.6 39.2 7.50 0.21 -1  

 JRR34 4.3  80.8 55.7 5.40 0.21 1  

   Jefferson Ranch JRR121 7.2  136.8 99.5 5.70 0.21 1  

 JRR141 4.6  86.5 62.4 3.50 0.21 1  

 JRR142 4.3  80.8 57.7 4.30 0.21 1  

 JRR150 5.8  109.3 79.3 6.80 0.21 1  

 JEF-121 5.8  111.0 87.4 6.80 0.21 1  

 JEF-141 3.7  70.8 55.1 1.80 0.21 1  

 JEF-148 7.3  140.7 98.5 7.70 0.21 1  

 JEF-149 5.8  111.3 83.8 4.80 0.21 1  

 JEF-32 2.4  45.6 39.7 2.20 0.21 1  

    Coyote Creek CCK-1 9.8  187.7 145.5 8.60 0.17 -1  

 CCK-23 8.2  158.8 101.9 6.90 0.17 -1  

    Leonardini LEN37 3.4  63.7 55.3 3.10 0.21 1  

 LEN39 2.8  52.3 43.9 2.40 0.21 1  

 LEN51 2.8  52.3 42.9 1.40 0.21 1  

 LEN52A 3.6  67.5 59.1 4.10 0.21 1  

 LEN53 3.0  56.1 47.7 4.30 0.21 1  

    Pajaro Dunes PAJ44 6.8  128.3 95.4 11.80 0.32 -1  

 PAJ79 2.5  47.5 37.7 10.50 0.32 -1  

 PAJ83 2.8  52.3 35.1 12.80 0.32 -1  

 PAJ85 2.0  37.1 28.7 8.30 0.32 -1  

 PAJ86 2.2  40.9 29.6 12.60 0.32 -1  

 PD43 3.7  70.4 59.7 7.90 0.22 -1  

SPR45 5.8  109.3 96.0 8.10 0.49 1  
    Southern Pacific Bridge

SPR46 4.2  79.8 70.0 5.50 0.49 1  

 SPR47 6.2  117.8 101.1 7.20 0.49 1  

 SPR48 6.2  117.8 109.0 4.50 0.49 1  

    Farris FAR58 5.8  109.3 99.9 10.50 0.54 1  

 FAR59 6.6  124.5 107.3 8.00 0.54 1  

 FAR61 6.8  128.3 103.2 3.90 0.54 1  

    Marinovich MRR65 7.3  137.8 121.6 6.70 0.59 1  

    Silliman SIL68 4.3  80.8 73.4 5.30 0.57 1  

 SIL71 5.8  109.3 100.9 4.60 0.57 1  
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Site Boring Depth(m) o(kPa) 'o(kPa) qc(Mpa) amax(g) Liquefaction Reference 

    Kett KET74 2.7  51.3 39.5 4.90 0.69 1  

    Radovich RAD95 4.4  82.7 69.4 7.70 0.56 1  

    Radovich RAD96 5.3  100.7 78.1 3.60 0.56 1  

 RAD97 9.3  175.8 117.4 5.00 0.56 1  

 RAD98 6.8  128.3 96.4 7.40 0.56 1  

 RAD99 5.4  101.7 89.4 5.00 0.56 1  

    Tome Jones Ranch TJR100 10.3  194.8 144.2 8.50 0.55 1  

 TJR101 8.8  166.3 139.3 4.20 0.55 1  

    Tanimura TAN103 5.6  105.5 98.1 4.80 0.19 1  

 TAN105 5.1  96.0 87.6 3.90 0.19 1  

    Salinas River Bridge SRB116 7.3  137.8 129.4 5.50 0.16 -1  

 SRB117 7.3  137.8 129.4 6.10 0.16 -1  

 SRB117 10.8  204.3 161.6 6.20 0.16 -1  

    Granite Construction Co. GRA123 7.3  137.8 115.7 5.70 0.50 1  

    McGowan MCG128 2.8  52.3 34.1 0.90 0.38 -1  

 MCG136 3.3  61.8 53.4 2.30 0.38 1  

       

1999 Chi-Chi earthquake  (M = 7.6)       

Wufeng WF-4 2.5  46.3 36.3 1.27 0.77 1 

 WF-c7 2.5  46.3 36.3 1.97 0.77 1 

 WF-c10 2.5  46.3 36.3 0.72 0.77 1 

MAA (2000a, 2000b), Juang et al. 

(2001) and Ku et al. (2004) 

 WF-c10 3.5  64.8 44.8 1.79 0.77 1  

 WF-c10 4.5  83.3 53.3 1.35 0.77 1  

 WF-3b 6.5  120.3 70.3 11.66 0.77 -1  

 WF-3b 7.5  138.8 78.8 13.89 0.77 -1  

 WF-4b 12.2  224.8 118.3 14.45 0.77 -1  

 WF-c8 13.8  255.3 132.3 20.05 0.77 -1  

Nantou NT-1 2.5  46.3 41.3 0.94 0.43 1  

 NT-1 3.5  64.8 49.8 1.47 0.43 1  

 NT-1 10.4  191.5 108.0 11.32 0.43 -1  

Nantou NT-5 3.5  68.5 49.8 11.56 0.43 -1  

 NT-5 9.0  170.2 96.5 12.89 0.43 -1  

 NT-C2 3.5  64.8 49.8 3.86 0.43 1  

 NT-C2 4.5  83.3 58.3 6.01 0.43 1  

 NT-C2 13.5  249.8 134.8 16.30 0.43 -1  

 NT-C7 3.1  57.4 46.4 1.41 0.43 1  

 NT-C7 4.1  75.9 54.9 0.90 0.43 1  

 NT-C7 10.0  185.0 105.0 11.96 0.43 -1  

 NT-C15 4.0  74.0 49.0 1.87 0.43 1  

 NT-C15 8.0  148.0 83.0 5.77 0.43 1  

Dachun YL-C1 12.5  231.3 121.3 8.27 0.19 -1  

 YL-C2 3.1  57.4 41.4 2.54 0.19 1  

 YL-C3 10.5  189.0 99.0 7.46 0.19 -1  

 YL-C3 11.5  207.0 107.0 7.62 0.19 -1  

 YL-C4 3.7  68.5 46.5 2.70 0.19 1  

Yuanlin YL-C5 7.5  138.8 78.8 8.03 0.19 -1  

 YL-C5 12.5  231.3 121.3 6.80 0.19 -1  

 YL-C5 13.5  249.8 129.8 7.02 0.19 -1  

 YL-C7 9.0  166.5 91.5 6.67 0.19 -1  

 YL-C9 10.1  186.9 100.9 7.72 0.19 -1  

 YL-C10 17.0  314.5 159.5 7.68 0.19 -1  

 YL-C19 5.0  92.5 57.5 2.22 0.19 1  

 YL-C21 7.5  138.8 78.8 6.23 0.19 -1  

 YL-C21 14.0  259.0 134.0 12.15 0.19 -1  

 YL-C22 2.5  46.3 36.3 2.54 0.19 1  

 YL-C22 3.5  64.8 44.8 2.62 0.19 1  

 YL-C22 11.8  218.3 115.3 8.15 0.19 -1  

 YL-C22 12.5  231.3 121.3 10.08 0.19 -1  

 YL-C22 14.0  259.0 134.0 12.43 0.19 -1  

 YL-C22 14.5  268.3 138.3 16.89 0.19 -1  

 YL-C24 2.5  46.3 36.3 1.62 0.19 1  

 YL-C24 3.5  64.8 44.8 2.45 0.19 1  

 YL-C24 11.1  205.4 109.4 6.70 0.19 -1  

 YL-C24 12.5  231.3 121.3 9.19 0.19 -1  

 YL-C24 14.0  259.0 134.0 13.65 0.19 -1  

 YL-C24 14.5  268.3 138.3 17.08 0.19 -1  

 YL-C25 3.2  59.2 42.2 2.66 0.19 1  

 YL-C25 4.5  83.3 53.3 1.82 0.19 1  

 YL-C25 10.5  194.3 104.3 8.25 0.19 -1  

 YL-C25 11.5  212.8 112.8 7.41 0.19 -1  

 YL-C31 5.0  92.5 57.5 2.54 0.19 1  

 YL-C31 12.5  231.3 121.3 8.30 0.19 -1  

 YL-C31 14.0  259.0 134.0 12.77 0.19 -1  

 YL-C32 2.6  48.1 37.1 1.18 0.19 1  

 YL-C32 5.0  92.5 57.5 2.96 0.19 1  

Shetou YL-C35 4.5  83.3 53.3 1.73 0.21 1  

Yuanlin YL-C36 13.5  249.8 129.8 8.00 0.19 -1  

 YL-C36 14.5  268.3 138.3 8.01 0.19 -1  

 YL-C36 15.5  286.8 146.8 8.74 0.19 -1  

 YL-C36 18.5  346.0 172.3 10.05 0.19 -1  

 YL-C36 19.5  364.5 180.8 11.26 0.19 -1  

Shetou YL-C42 11.5  212.8 112.8 6.83 0.21 -1  

 YL-C42 12.5  231.3 121.3 7.52 0.21 -1  

Yuanlin YL-C43 4.1  74.9 49.4 2.61 0.19 1  

 YL-C43 8.0  148.0 83.0 6.61 0.19 -1  

 YL-C43 13.5  249.8 129.8 8.30 0.19 -1  

 YL-C44 11.5  216.5 112.8 8.32 0.19 -1  

 YL-C44 13.9  257.2 133.2 11.58 0.19 -1  

 YL-2 2.5  46.3 31.3 3.00 0.19 1  

 YL-2 3.5  64.8 39.8 2.09 0.19 1  

 YL-2 4.5  96.2 48.3 2.78 0.19 1  

 YL-2 6.5  120.3 65.3 2.69 0.19 1  

 YL-2 7.5  138.8 73.8 3.05 0.19 1  

 YL-2 13.5  249.8 124.8 14.67 0.19 -1  

 YL-2 14.5  268.3 133.3 10.61 0.19 -1  

 YL-2 15.5  286.8 141.8 14.74 0.19 -1  

 YL-2 16.5  305.3 150.3 13.65 0.19 -1  

LW-A1 3.5  63.0 43.0 1.28 0.12 1  Luwei in Chang-Bin 

industrial park LW-A1 4.5  84.6 51.0 0.64 0.12 1  

 LW-A1 7.4  136.8 74.2 5.46 0.12 -1  

 LW-A1 13.0  237.6 119.0 5.16 0.12 -1  

 LW-A2 2.5  48.6 35.0 3.26 0.12 1  

 LW-A2 3.5  66.6 43.0 2.65 0.12 1  

 LW-A2 6.5  120.6 67.0 7.40 0.12 -1  

 LW-A2 7.5  138.6 75.0 7.04 0.12 -1  

 LW-A2 8.5  156.6 83.0 7.47 0.12 -1  

 LW-A2 12.5  228.6 115.0 7.68 0.12 -1  

 LW-A2 13.5  246.6 123.0 6.54 0.12 -1  

 LW-A3 6.0  111.6 63.0 6.64 0.12 -1  

 LW-A3 7.5  138.6 75.0 5.59 0.12 -1  

 LW-A3 12.5  228.6 115.0 7.58 0.12 -1  

 LW-A3 13.5  246.6 123.0 6.85 0.12 -1  

Site Boring Depth(m) o(kPa) 'o(kPa) qc(Mpa) amax(g) Liquefaction Reference 

Luwei in Chang-Bin LW-A5 6.5  124.0 70.3 6.68 0.12 -1  

industrial park LW-A5 7.5  142.5 78.8 5.21 0.12 -1  

 LW-A5 8.5  161.0 87.3 6.12 0.12 -1  

 LW-A5 9.5  179.5 95.8 7.18 0.12 -1  

 LW-A7 7.5  138.6 75.0 5.91 0.12 -1  

 LW-A7 8.5  156.6 83.0 5.38 0.12 -1  

 LW-A7 9.5  174.6 91.0 6.62 0.12 -1  

 LW-A7 11.5  210.6 107.0 7.99 0.12 -1  

 LW-A7 12.5  228.6 115.0 7.38 0.12 -1  

 LW-A7 13.5  246.6 123.0 7.41 0.12 -1  

 LW-A9 6.5  120.6 67.0 7.03 0.12 -1  

 LW-A9 8.5  156.6 83.0 6.73 0.12 -1  

 LW-A9 10.5  192.6 99.0 6.49 0.12 -1  

 LW-A9 12.5  228.6 115.0 5.47 0.12 -1  

 LW-A9 13.5  246.6 123.0 6.32 0.12 -1  

 LW-A10 2.5  48.6 35.0 0.92 0.12 1  

 LW-A10 3.5  66.6 43.0 1.50 0.12 1  

 LW-A10 4.5  84.6 51.0 0.64 0.12 1  

 LW-A10 7.9  145.8 78.2 6.05 0.12 -1  

 LW-A10 9.5  174.6 91.0 6.76 0.12 -1  

 LW-C1 3.5  68.5 44.8 2.49 0.12 1  

 LW-C1 4.5  87.0 53.3 2.01 0.12 1  

 LW-C1 5.5  105.5 61.8 1.89 0.12 1  

 LW-C1 6.5  124.0 70.3 1.54 0.12 1  

 LW-C1 9.5  179.5 95.8 7.43 0.12 -1  

 LW-C1 11.6  218.3 113.6 7.72 0.12 -1  

 LW-C2 5.0  93.6 55.0 6.61 0.12 -1  

 LW-C2 6.5  120.6 67.0 7.12 0.12 -1  

 LW-C2 10.5  192.6 99.0 6.08 0.12 -1  

 LW-C2 12.5  228.6 115.0 7.76 0.12 -1  

 LW-C2 18.5  336.6 163.0 9.48 0.12 -1  

 LW-D1 3.5  68.5 44.8 0.20 0.12 1  

 LW-D1 5.0  96.2 57.5 5.93 0.12 -1  

 LW-D1 6.5  124.0 70.3 7.94 0.12 -1  

 LW-D1 7.5  142.5 78.8 7.57 0.12 -1  

 LW-D3 2.5  50.0 36.3 0.23 0.12 1  

 LW-D3 3.5  68.5 44.8 0.18 0.12 1  

 LW-D3 6.1  116.6 66.9 7.24 0.12 -1  

 LW-D3 8.5  161.0 87.3 6.21 0.12 -1  

 LW-D3 12.5  235.0 121.3 8.83 0.12 -1  

VII.  CONCLUSION 

Fuzzy-neural network has been used to establish the as-

sessment of liquefaction potential, based on 466 CPT field 

records collected from the world. This study combines fuzzy 

theory with subtractive clustering algorithm to constitute a 

fuzzy-neural system.  

Using multiple neural networks, and subtractive clustering 

analysis to develop a fuzzy-neural network. It has the ability to 

find the relations between basic parameters and to achieve 

better results. 

In model C5, adding 0 as an input parameter could decrease 

the total error to 2.58%, and σ0 also played a more important 

role than qc in liquefaction assessment. 
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