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ABSTRACT 

This paper presents a discrete-time output feedback sliding 
mode control to stabilize a class of linear uncertain systems in 
which the state is unavailable and no estimated state is required. 
The proposed sliding mode controller is derived to guarantee 
the existence of quasi-sliding mode by using output feedback 
only and the stability of overall closed-loop system is assured. 
This scheme ensures the robustness against parametric uncer-
tainties and disturbances. Neither chattering phenomenon will 
occur nor the knowledge of upper bound of uncertainties is 
required. Simulation results demonstrate the efficacy of the 
proposed control methodology.  

I. INTRODUCTION 

The theory of sliding mode control (SMC) is often used in 
controlling of uncertain systems. The main merit of SMC is their 
fast response, good transient performance, insensitiveness to 
matching parameter uncertainties and external disturbances 
[2,3,9,17]. In practice, using computers or DSP chips to im-
plement the controller becomes more and more important 
nowadays, and discrete-time SMC has gained more and more 
attractive attention recently. Different from continuous-time 
SMC, the motion of a discrete-time SMC system can approach 
the switching surface but cannot stay on it in practice. Therefore, 
only the quasi-sliding mode is ensured [6,12,15]. 

Several design methods for discrete-time SMC have been 
proposed in the literature [1,5-7,12,13,15,16,18,19]. However, 
all these papers are always limited to systems with full-state 
feedback. In practice, full measurement of the state vector is not 
feasible. Such situations would demand the use of observers or 
dynamic compensators, which would add to the system com-
plexity. Because the direct output feedback in SMC has a de-
sirable feature as it does not add any additional dynamics and is 
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simpler to implement, several research works are available to 
deal with SMC design using static output feedback 
[4,10,11,14,20]. Wang and Fan [20], Kwan [10,11] and Ed-
wards et al. [4] have developed output feedback SMC to stabi-
lize a class of uncertain systems. Pai and Sinha [14] developed 
an output feedback SMC method for time-varying mismatched 
uncertain systems. However, these control techniques are al-
ways limited to continuous-time systems.  

In this paper, we extend the idea of Wang and Fan [20] and 
Kwan [10] from continuous-time output feedback SMC to 
discrete-time output feedback SMC. A discrete-time sliding 
mode controller using only output variable is proposed to sta-
bilize uncertain systems robustly. The scheme is very simple in 
structure and easy to implement because no observer is needed. 
By using the proposed controller, the stability of system in the 
quasi-sliding mode is assured under certain conditions. The 
robustness against parametric uncertainties and disturbances is 
ensured. Neither chattering phenomenon will occur nor the 
knowledge of upper bound of uncertainties is required. Fur-
thermore, it can be suitable for uncertain systems with both 
matched state delays and input delays. 

This paper is organized as follows. Section 2 briefly states 
problem formulation and assumptions. Section 3 provides the 
proposed discrete-time output feedback SMC scheme. The 
selection of sliding surface, the design of sliding mode con-
troller, and the stability of system in the quasi-sliding mode have 
been addressed. Section 4 presents results from numerical 
simulations. Finally, a conclusion is provided in section 5.  

II. PROBLEM FORMULATION AND ASSUMPTIONS  

Consider a discrete-time uncertain system represented by: 

kkkk fuBBxAAx +∆++∆+=+ )()(1  (1.a) 

kk xCy =  (1.b) 

where n
k Rx ∈  is the state vector, m

k Ru ∈  is the control input, 

p
k Ry ∈  is the output, A , B , and C  are system matrices of 

appropriate dimensions, A∆ , B∆ and kf  represent unknown 

parametric uncertainties and external disturbances respectively. 
For completing the description of discrete-time uncertain 
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system (1), the following assumptions are assumed to be valid: 

Assumption 1. The system ),,( CBA  is controllable and 

observable. 

Assumption 2. rank mBC =)( ; i.e. rank mB =)( . 

Assumption 3. There exist matrices of appropriate dimen-

sion aD̂ , bD̂  and kf̂  such that aDBA ˆ=∆ , bDBB ˆ=∆  and 

kk fBf ˆ= . These conditions are so-called matching conditions 

[3]. 
Using Assumption 3, discrete-time uncertain system (1) can 

be rewritten as 

kkkk dBuBxAx ++=+1  (2.a) 

kk xCy =  (2.b) 

where the generalized uncertainty kd  is constructed as 

kkbkak fuDxDd ˆˆˆ ++=  and is assumed to be bounded. 

The objective of this paper is to develop a discrete-time 
output feedback sliding mode controller such that discrete-time 
uncertain system (2) is asymptotically stable even in the pres-
ence of parametric uncertainties and external disturbances.  

In this paper, the switching function is defined as  

kk GyS =  (3) 

where pm
RG

×∈  is a constant matrix to be designed. 

III. MAIN RESULTS  

The design of discrete-time SMC consists of two steps: The 
first step is to design a switching surface such that in the 
quasi-sliding mode system response acts like the desired dy-
namics. The second step is to design the control law in order that 
quasi-sliding mode is reached and sustained for all time.  

1. Design of switching surface  

Define a state variable transformation 

kk xHx =  (4) 

where nn
RH

×∈  is an orthogonal transformation matrix such 
that 

B
B

BH =







=

2

0
 (5) 

where mmRB ×∈2  is a nonsingular matrix.  

Using (4), equations (2.a) and (2.b) can be rewritten as 

kkkk BdBuAxx ++=+1  (6.a) 

kk Cxy =  (6.b) 

where 1−= HAHA  and 1−= HCC . 

From (5), the first )( mn −  rows of B  are zero. Therefore, 

the state vector kx  is partitioned as follows: 









=

k

k
k

x

x
x

2

1  (7) 

where mn
k Rx −∈1  and m

k Rx ∈2 . Then, the dynamics of kx1

can be written from (6.a) as  

kkk xAxAx 21211111 +=+  (8) 

where 11A  and 12A  are parts of the matrix A  corresponding to 

the partition (7). Similarly, partitioning the matrix C  according 
to (7), output equation (6.b) can then be rewritten as  

kkk xCxCy 2211 +=  (9) 

where )(
1

mnp
RC

−×∈  and mp
RC

×∈2 . 

Assuming that 2GC  is nonsingular, equations (3) and (9) 

yield  

)()( 11
1

22 kkk SxGCGCx +−= −  (10) 

Substituting (10) into (8) 

kkk SGCAxGCGCAAx 1
21211

1
2121111 )(])([ −−

+ +−=  (11) 

Thus, discrete-time uncertain system (6) in the quasi-sliding 
mode can be reduced to the following n-m dimensional form  

kk xKCAAx 11121111 )( −=+  (12.a) 

where GGCK 1
2 )( −= . 

or 

kmk xAx 111 =+  (12.b) 

where 11211 KCAAAm −= . 

Equation (12) can be considered as a linear output feedback 
problem. The matrix G  can be selected to satisfy Lemma 1 of 
[20], i.e.  

mpIKCrank −≤− )( 2  (13) 

2. Design of Discrete-Time Sliding Mode Controller  

After designing the switching surface, the next phase is to 
design the control law such that quasi-sliding mode is reached 
and stayed thereafter. Before design the controllers, we first give 
a lemma proposed by Sarpturk [15]. 

Lemma 1 

A necessary and sufficient condition for a discrete-time SMC 
to assure both sliding motion and convergence onto the hyper-
plane is 

kk SS <+1  (14) 

Condition (14) can be further decomposed into the following 
two inequalities: 
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0][ 1 <−+ kk
T
k SSS  (15) 

0][ 1 >++ kk
T
k SSS  (16) 

where (15) and (16) are called sliding condition and conver-
gence condition, respectively. 

Lemma 2  

Consider the equivalent reduced-order system (12.b). Let 

1<mλ  be the maximum real part of the eigenvalues of mA . 

Then, kx1  is bounded by kw  for all k , where kw  is the so-

lution of  

))(( 1
21201 kwk SGCAww −

+ += ρλ  (17) 

, 10 <<< wm λλ , 1−= NNρ , 0100 >> xw ρ  and N  is 

a transformation matrix. 
Proof:

Since matrices K  and G  can be designed such that mA  is 

stable, all the eigenvalues of mA  lie inside the unit circle of the 

z-plane, and can be expressed as mn−λλλ ,,, 21  . The solu-

tion of (11) can be obtained as 

)])([( 1
1

212

1

0

1
10

1
1 −−

−
−

=

−− += ik

k

i

ik
k SGCANJNxNNJx

 (18) 

where ),,,( 21 mndiagJ −= λλλ   and N  is a transformation 

matrix. Then, from (18) 

))((
1

0

1
1

212101 
−

=

−−
−+≤

k

i

ik
ik

k SGCAJxJx ρρ

))((
1

0

1
1

21210 
−

=

−−
−+≤

k

i

ik
i
m

k
m SGCAx λρλρ  (19) 

where 1−= NNρ . 

The solution of (17) is given by 

))((
1

0

1
1

2120 
−

=

−−
−+≤

k

i

ik
i
w

k
wk SGCAww λρλ  (20) 

Comparing the right-hand sides of (19) and (20), and noting 
the fact that 10 <<< wm λλ , it yields 

kk xw 1≥  (21) 

for all k . The proof is completed. 
In the sequel, we consider the control law for discrete-time 

uncertain system (6) as  

1
1)( −

− −−= kkk dSGCBu α  (22) 

where the generalized disturbance kd  defined in (2) can be 

estimated through the following relation  

)()( 11
1

1 −−
−

− −−= kkkk GCBuGCAxGCxGCBd  (23) 

and 0>α  will be designed later. Since rank mCB =)( , 

1)( −GCB  exists. 

Theorem 1

Consider the discrete-time uncertain system (6) with the 
proposed control law (22) and switching function (3). If there 
exist matrices K  and G  such that eigenvalues of the matrix 

11211 KCAA −  are within the unit circle in the Z-plane, then 

(a) the quasi-sliding mode condition kk SS <+1  will be 

satisfied outside the region A, where the region A is defined 

as 




















−−−

≤=Ω
−<< 11)2( 2

max:
11 rr

SS kk

rr
kkA

α

η

α

η

α
 and 

1
21 )( −−= GCGCGCAr  and 

kkk wHGCGCA εη +−= 1  with 









−

= −
−

1
1

2
1 )( GCCG

I
H

mn , kw  satisfying (17) and 

kkk ddGCB ε≤− − )( 1 . 

(b) the quasi-sliding mode of discrete-time uncertain system (6) 
is stable. 

Proof :  

First, we prove that kk SS <+1  is satisfied. For this, the 

proof includes two parts.  
Part I. (Sliding condition). From (3), (6) and (22), the difference 
between 1+kS  and kS  can be expressed as 

kkkk GCxGCxSS −=− ++ 11   

kkkk GCxGCBdGCBuGCAx −++=

)()( 1−−+−−= kkkk ddGCBSxGCGCA α  (24) 

Pre-multiplying (24) by T
kS

k
T
kkkk

T
k xGCGCASSSSS )[(][

2
1 −+−=−+ α   

])( 1−−+ kk ddGCB

kkk xGCGCASS −+−< [
2

α ])( 1−−+ kk ddGCB

][
2

kkkk xGCGCASS εα +−+−<  (25) 

However, the state vector kx  in (25) is not available. But, the 

upper bound on its norm can be estimated as follows. From (10), 
the state vector kx  can be rewritten as  
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







+=








= −

k
k

k

k
k

SGC
xH

x

x
x 1

2
11

2

1

)(

0
 (26) 

where 







−

= −
−

1
1

2
1 )( GCCG

I
H

mn . 

Using (26) and (21), the upper bound of the state vector kx

can be expressed as 

kkk SGCxHx 1
211 )( −+≤   

kk SGCwH 1
21 )( −+≤  (27) 

Substituting (27) into (25) 

][ 1 kk
T
k SSS −+ kkk wHGCGCASS 1

2
[ −+−< α

kSGCGCGCA
1

2 )( −−+ ]kε+

)()(
1

1
r

SSr k
kk

−
−−−<

α

η
α

where 1
21 )( −−= GCGCGCAr  and 

kkk wHGCGCA εη +−= 1 . 

The sliding condition (15) will be satisfied if 
1r

S k
k

−
≥

α

η

and 01 >− rα . Therefore, with a known bound of initial state 

0w , a stable mA , 
1r

S k
k

−
≥

α

η
 and 01 >− rα , the sliding 

condition 0][ 1 <−+ kk
T
k SSS  is achieved. 

Part II. (Convergence condition). From (3), (6) and (22), the 
sum between 1+kS  and kS  can be expressed as 

kkkkkk SGCBdGCBuGCAxSS +++=++1

kkkkk SddGCBSxGCGCA 2)()( 1 +−+−−= −α  (28) 

Pre-multiplying (28) by T
kS  and using (27) 

k
T
kkkk

T
k xGCGCASSSSS )[()2(][

2
1 −+−=++ α   

])( 1−−+ kk ddGCB

][)2(
2

kkk xGCGCASS εα +−−−>   

][)2( 1
2

kkkk SrSS ηα +−−=

]
)2(

[)2(
1

1
r

SSr k
kk

−−
−−−=

α

η
α

If 
12 r

S k
k

−−
≥

α

η
 and 0)2( 1 >−− rα , then 

0][ 1 >++ kk
T
k SSS , which implies that the convergence condi-

tion is achieved. From Part I, Part II and Lemma 1, if 









−−−
≥

−<< 11)2( 2
,max

11 rr
S kk

rr
k

α

η

α

η

α
, it concludes 

kk SS <+1 , which indicates that switching function kS  is 

decreasing outside AΩ .  

Once the quasi-sliding mode condition kk SS <+1  is sat-

isfied, the system state trajectories will approach the switching 
surface in finite time. From (12), it shows that the dynamical 
equation of the quasi-sliding mode. Since matrices K  and G
can be designed such that eigenvalues of the matrix 

11211 KCAA −  are within the unit circle in the Z-plane, it is 

obvious that the quasi-sliding mode of discrete-time uncertain 
system (6) is stable. The proof is completed.  

It is noted from (22) that there is no switching action in the 
proposed controllers, which means that chattering phenomenon 
will never happen. Also, the other advantage of (22) is that 
upper bound of the uncertainty kd  needs not to be known be-

forehand when the controller is implemented. Hence, it will 
increase the applicability of the proposed control scheme. 

Remark 1 

In general, it is usually desired to have a minimum bound of 

AΩ  in order to increase the accuracy of control if the uncer-

tainty kd  exists. Hence, the designed parameter α  in the con-

trol law (22) will be selected such that that the least upper bound 

of }
2

,maxmin{min
11)2()2( 1111 







−−−
=

−<<−<< rr
S kk

rr
k

rr α

η

α

η

αα
 is 

achieved. 

Remark 2 

From remark 1, it shows that the least upper bound of 

}
2

,maxmin{min
11)2()2( 1111 







−−−
=

−<<−<< rr
S kk

rr
k

rr α

η

α

η

αα
 will 

increase the accuracy of control, which implies the kη  will 

affect the accuracy of control. From Theorem 1, it shows the kη

is related to the generalized uncertainty difference. It is obvious 
that the smaller generalized uncertainty difference will increase 
the more accuracy of control. 

IV. ILLUSTRATIVE EXAMPLES  

To illustrate the utilization of the proposed approach, we 
consider an aircraft model which is used in [10,11,20]. The 
state-space model of the aircraft is given by 
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
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


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
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
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


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
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

−

−−−

−−

=

















67.6

0

0

67.600

2.12178.01.17

0002.01277.0

δ

ϕ

δ

ϕ





























=








=

e

q
y

y
y

δ

ϕ

100

010

2

1   

where ϕ  is the attack angle, q  is the pitch rate, eδ  is the 

elevator angle, u  is the command to the elevator, and y  is the 

measurement vector. The parametric uncertainty and distur-
bance are respectively assumed to be  

[ ])3cos()2sin(1)cos()3sin()2cos()sin(1.0ˆ ttttttDa +−+=

[ ]5.000ˆ =f   

The discrete-time transformed system (2) for each sampling 
time can be easily obtained using the Matlab program function 
c2d [8] with 001.0=sT second and given as 

kkk uxx
















+
















−−=+

0066.0

0

0

9934.000

0122.09998.00171.0

0001.09997.0

1   

kd
















+

0066.0

0

0

  

Since the matrix B  is of the form in (5), we need not trans-

form the system. Define [ ]Tkkk qx ϕ=1  and ekkx δ=2 , then 









−

=
9998.00171.0

001.09997.0
11A , 








−

=
0122.0

0
12A , 








=

00

10
1C ,  









=

1

0
2C . 

According to (13), we choose [ ]14635.0−=G  to place the 

eigenvalues of the reduced-order system (12) at 
i0031.09969.0 ± . The initial state vector is chosen as 

[ ]Tx 0020 = . Also, wλ  , ρ  and 0w  in (17) are taken to be 

0.998, 5.7333 and 11.5, respectively. Then, the controller (22) 
with 1=α  can be designed as 

1150 −−−= kkk dSu   

where kS  and 1−kd  are given in (3) and (23), respectively. 

With the designed parameter setting and initial condition 

[ ]Ty 020 = , the results of simulation are shown in Figs. 1-4.

Fig. 1 shows that output trajectories of the system, which con-

firm the stability and robustness of the closed-loop system to 
parametric uncertainties and disturbances. Fig. 2 shows the 
switching surface variable. Fig. 3 shows that the control input 
with reasonable magnitudes. It can be seen that the chattering 
phenomenon is eliminated. Fig. 4 shows the performance of kw

and kx1 . It can be seen that the kx1  is smaller than kw  for 

all k .  

V. CONCLUSION  

In this paper, a discrete-time output feedback SMC scheme 
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Fig. 1. Output trajectories kq  and ekδ .
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Fig. 2. Switching surface variable kS . 
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Fig. 3. Control input ku . 
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has been proposed to stabilize a class of uncertain systems. The 
design technique is simple and efficient. The proposed con-
troller use only output variable and no observer is required. The 
selection of switching surface and the existence of the 
quasi-sliding mode are two important issues, which have been 
addressed. It has been shown that the stability of the closed-loop 
system is guaranteed. Neither chattering phenomenon will occur 
nor the knowledge of upper bound of uncertainties is required 
beforehand. Furthermore, it can be suitable for uncertain sys-
tems with both matched state delays and input delays. Simula-
tion studies have confirmed the validity of this proposed control 
system. 
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