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ABSTRACT 

In this paper, a controller )(tui  is designed for stochastic 

large-scale systems to achieve the following three objectives 

simultaneously: the pole placement constraint,  ∞H  norm con-

straint and individual state variance constraint. In terms of the 

invariance property of sliding mode control, both the uncertain 

interconnection terms and an unknown nonlinear function will 

disappear on the sliding mode. Then, with the aid of upper 

bound covariance control theory, pole placement skill and ∞H   

norm control theory, a controller, in which the control feedback 

gain matrix iG  is synthesized using linear matrix inequality 

approach, is derived to achieve the above multiple objectives. 

Finally, a simulation example is presented to illustrate the 

proposed method. 

I. INTRODUCTION 

It is known that some control objectives, such as the robust 

stability and noise attenuation, can be achieved if certain ∞H

bounds are maintained [17]. Hence, there have been lots of 

papers studying the feedback controller design with ∞H  norm 

constraints (see [1], [16] and [36]). In practice, we are always 

required to develop some ways for designing controllers to 

achieve multi-objective performance. [2] and [34] have dis-

cussed the ∞H  norm and variance constrained problem simul-

taneously. However, a Riccati equation approach applied to 

minimize a scalar cost index does not ensure satisfaction of 

individual variance constraints. A more straightforward method 

for designing controllers to achieve variance constraints of 
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individual states is developed in [10], [13], [14], [19] and [32]. 

However, the approach described in [14] and [19] does not 

consider the presence of system perturbations; the closed-loop 

system may be unstable when it suffers from perturbations. An 

improved control method, called upper bound covariance con-

trol (UBCC), which satisfies variance constraints with pertur-

bations is proposed in [10], [13], and [32]. Nevertheless, the 

drawback of the direct UBCC approach is that the state feed-

back gain designed in [10], [13], and [32] will become very 

large when the systems suffer from large perturbations. If a 

system is large-scale and the interconnections of the systems are 

uncertain then it is hard to design the state feedback control by 

using UBCC method directly. Based on the concept of sliding 

mode control (SMC) and with the aid of UBCC, a new control 

method is developed for the problems of local state upper bound 

covariance control (LSUBCC) in stochastic uncertain 

large-scale systems [6]. In [6], the aim of the so-called LSUBCC 

is to achieve the upper bound covariance control for each sub-

system in the large-scale systems. 

Pole location is directly associated with performance speci-

fications, such as the settling time and rise time of a control 

system. The system poles are, in fact, not necessarily specified 

at exact locations, but assigned to a region (see [18], [21], [23] 

and [33]). For the regional pole constraint, a typical rule for 

evaluating the relative stability of closed-loop systems is to 

judge whether all of the poles are located within a prescribed 

circular region (Fig. 1). This specified circular region with 

center at )0(  0 >+− ii qjq  and radius ρ ρi i iq,  ( )<  is de-

noted by  ( , ).
i i

q ρ− This constraint is one of the most fre-

quently employed performance requirements in system control 

design problems.

Owing to the advantages of simple design, easy implemen-

tation and insensitivity to system perturbations, the technique of 

SMC has become a successful synthesis method for a system 

control design and has been applied to many complex systems 

such as [15], [20], [22], [24], [27], [28] and [31]. The main 

characteristic of a SMC system is that the system dynamics in 

the sliding mode is made to be invariant if parameter uncer-

tainties and/or perturbations satisfy a certain matching condi-

tion. However, the SMC for stochastic systems has been re-

ceiving relatively little attention until recently [5-9, 30]. Based 

on the concept of SMC design, [7] and [30] addressed the co-
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variance control problems in the case of stochastic model ref-

erence systems. In [8] and [9], the authors successfully extended 

the above approach to linear perturbed systems. Also, the au-

thors applied this combined technique to deal with the covari-

ance controller design problems for stochastic large-scale sys-

tems [5] and [6]. As an extension of the results in [5] and [6] and 

using the linear matrix inequality (LMI) method, this paper will 

deal with the same systems but involves a perturbations with 

nonlinear unknown function. Then, a useful controller is design 

which can force the systems to simultaneously achieve specified 

pole location constraints, ∞H  norm constraints, and individual 

variance constraints. Therefore, this proposed controller design 

will enable a quick and accurate response, noise attenuation, 

and robust stability. Here, we would like to point out that, ac-

cording to recent research, some authors [25] are interested to 

follow our approach [7] to deal with the problems of uncertain 

stochastic systems with time-varying delay. Because LMI’s 

intrinsically reflect constraints rather than optimality, many 

papers tend to offer more flexibility by combining several con-

straints on the system [4], [11] and [12]. Moreover, software 

like MatLab LMI Control Toolbox is now available to solve 

such LMI’s in a fast and user-friendly manner. 

This paper is organized as follows. Section 2 describes the 

system structure, formulates the design problems and also dis-

cusses on the issues related to the sliding phase and hitting phase 

of the system. In Section 3, the control feedback gain matrix Gi

is constructed by using LMI method to satisfy multi-objective 

constraints. Also, a numerical example for the problem of sto-

chastic large-scale systems is demonstrated in Section 4 to 

verify the proposed approach. Finally, a conclusion is made in 

Section 5. Here, we pre-define some notations which will be 

used in the consequent sections: z t( )  and M  are 2-norm 

and induced 2-norm of the vector z t( )  and the matrix M  re-

spectively. z t( )
1

 is 1-norm of the vector z t( ) , ( )T⋅  is the 

transposition; ( )∗⋅  is the conjugate transpose and ( )λ ⋅  is the 

eigenvalues. Moreover, a sign function S tiq ( )  is defined as 

sgn( ( ))

( )

( )

( )

S t

S t

S t

S t

iq

iq

iq

iq

=

>

=

− <









      

      

   

1 0

0 0

1 0

 (see [35]). 

II. SYSTEM DESCRIPTION AND PROBLEM 

FORMULATION 

1. System Description 

Consider a linear time-invariant large-scale system consisting 

of n  uncertain interconnected stochastic subsystems estab-

lished on a filtered probability space ( )( )    Ω, , ,t t R+∈
 and 

each subsystem is described as 


≠
=

•

++++=
n

ij
j

iijijiiiiiii twDtxAtxftuBxAtx
1

),()()))(()(()( ni ,,2,1 =   (1a) 

)()( txFty iii =                                 (1b) 

where x t Ri

ni( )∈ ×1 , u t Ri

mi( )∈ ×1 , and w t Ri

mi( )∈ ×1  are the 

state variable, control and white noise of the i − th  subsystem, 

respectively. Ai  and A Rij

n ni i∈ ×
; Bi  and D Ri

n mi i∈ × ; 

F Ri

m ni i∈ × , where Aij  is a bounded uncertainty satisfying 

Aij ij≤ η . Here, 
1

( ( )) im

i i
f x t R

×∈  is unknown nonlinear func-

tion satisfying 

( ( )) ( )i i i if x t x tβ≤                             (2) 

with 0iβ >  a known constant. Moreover, we suppose that 

n mi i>  is satisfied and the white noise w ti ( )  of (1) satisfies (3) 

( ) ( ) ( )E w t E x w t E w t w t W Ii i i

T

i i

T

i i( ) , ( ) ( ) , ( ) ( ) ,= = =0 0 0    ∆  (3) 

where xi ( )0  denotes the initial state and Ii  denotes the identity 

matrix. Assume that ( )A Bi i,   is a stabilizable pair and Aij

satisfies the matching condition (4) 

rank B A rank Bi ij i  [ : ] [ ]= .                      (4) 

2. Problem Formulation of the Controller Design 

Now, the goal of this paper is to design the control  )(tui  for 

each subsystem to satisfy the following objectives.

Objective (i): Constraints on pole placement region

The issue of transient response of the designed closed-loop 

system is addressed by properly specifying the locations of its 

poles. In this paper, the pole placement region in the complex 

plane
i
z −  is described by the LMI condition [12] 

{ }: ( ) 0T

i i i i i i iz f z U z N z N= ∈ = + + <           (5) 

where   denotes the set of complex number; 
T

i iU U=  and i
N

are real matrix parameters for choosing a suitable convex region 

by defining the characteristic function ( )
i

f z . Specifically, we 

Im(λ i )

0 Re(λ i )

q i

ρi

Fig. 1.  Pole location region ( , ).i iq ρ−
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consider the region of the disk  ( , )
i i
q ρ−  with center at 

( , 0)iq−  and radius 0 i iqρ <  for the closed-loop pole of 

the system. The disk region ( , )
i i
q ρ−  in the complex plane 

ˆ ˆ
i i iz x jy= +  can be described as 

( ) ( )( )
2 2 2ˆ ˆ

i i i i i i i iq x y q z q z ρ+ + = + + < .            (6) 

By the property of Schur’s complement [4], we have the char-

acteristic function ( )
i

f z  of (6) within the disk region 

( , )
i i
q ρ−  as follows: 

( ) 0
i i i

i

i i i

q z
f z

q z

ρ

ρ

− + 
= < + − 

 .                     (7) 

In comparison with the definition of LMI condition in (5), the 

matrix parameters for the disk region ( , )i iq ρ−  are 

0 1
,   .

0 0

i i

i i

i i

q
U N

q

ρ

ρ

−   
= =   −   

                   (8) 

The considered system (1) is called -stable  if the eigenval-

ues of the system are located in the disk region as shown in Fig. 

1, i.e., 

( ) ( , )i i i i iA B G qλ ρ+ ∈ − .                     (9) 

That is, the closed-loop poles of the system are specified in 

terms of the system matrix i i iA B G+  and required to lie within 

the disk region ( , )
i i
q ρ−  with suitable chosen parameters 

0i iq ρ> > . 

Objective (ii): Constraints on ∞H  norm 

In the system (1), the effect of the noise input w ti ( )  on the 

output y ti ( )  should be kept small for the system. Under the 

assumption, the system (1) is controlled to be stable, let 

( ) iH s denote the closed-loop transfer function from w ti ( )  to 

( )iy t . The desired ∞H  performance level is described as (10) 

( )
( )

1/ 2

0

1/ 2

0

( ) ( )

( ) sup  

( ) ( )

T

i i

i i
T

i i

E y t y t dt

H s

E w t w t dt

γ

∞

∞ ∞
= <




         (10) 

where the performance level upper bound i
γ  can be imple-

mented as a constraint to be met or a parameter to be minimized 

during the controller construction. 

Objective (iii): Constraints on upper bound of local state 

covariance 

Besides the signal amplitude considered in the output chan-

nel, we are also interested in the state covariance of the system 

(1) induced by the external disturbance inputw ti ( ) . The indi-

vidual steady state variance of each subsystem satisfies the 

following constraint: 

[ ] ( ( )) [
~

] ( ) , , ,X Var x t X k nkk i ik kk i k i i            ∆ ≤ ≤ =σ 2 1 2   (11) 

where Var x tik( ( ))  and ( )σ k i , respectively, denote the k − th

variance value and root mean square (RMS) constraints for 

variance of the i − th  subsystem, [
~

]Xkk i denotes the k − th

diagonal element of local state upper bound covariance matrix 
~
Xi , [ ]Xkk i denotes the k − th  diagonal element of the matrix 

Xi . Here, Xi  denotes the local state covariance matrix of the 

i − th  subsystem within the definition of following 

X E x t x ti
t

i i

T=
→∞

lim ( ( ) ( )) .                       (12) 

Remark 1: The objective (iii) is called the LSUBCC problem 

[6]. 

It is seen from (1a), the presence of the uncertain intercon-

nected term
A x tij

j
j i

n

j

=
≠


1

( ) 
and unknown nonlinear func-

tion ( ( ))
i i
f x t not only will make the LSUBCC problem with 

state feedback control be much more difficult but also let the 

multiple objectives for system requirement design become 

harder. In order to overcome these difficulties, the invariance 

property of SMC may be a good way to handle the problems. 

From our previous work [6], the following subsections 2.3 and 

2.4 are reviewed briefly. The details, contained lemmas and 

proofs of lemma, can be found in [6]. 

3. Sliding Phase of the System 

First, we define the switching function S ti ( )  corresponding 

to the i − th  subsystem as follows 

0
( ) ( ) ( ) ( )

t

i i i i i i i i iS t C x t C A C BG x dτ τ= − +         (13) 

where [ ]S t S t S t S t Ri i iq im

T
m

i

i( ) ( ) ( ) ( )= ∈ ×

1

1  ; Ci

and G Ri

m ni i∈ ×  are constant matrices to be designed. Ci  is 

chosen such that C Bi i ≠ 0  and C Di i = 0 , and Gi  is the control 

feedback gain matrix to be determined so that the local state 

covariance can fit the requirement in the sliding mode. The 

switching function S ti ( )  in (13) is well defined for the solution 

x ti ( )  of the system (1). 

Differentiating the equation (13) with respect to time, 

choosing C Di i = 0  and using equation (1), we obtain 

).())(()()()(
1

txGBCtxfBCtuBCtxACtS iiiiiiii

n

ij
j

iiijijii −++= 
≠
=

•

In the 

sliding mode,  ( )S ti = 0 holds, then we get the equivalent con-

trol as follows 

1

1

( ) ( ) ( ) ( ) ( ( ))
n

ieq i i i i i ij j i i

j
j i

u t G x t C B C A x t f x t
−

=
≠

= − − .      (14) 

Substituting u tieq ( )  into (1), the sliding mode dynamic equation 

is 
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 ( ) ( ) ( ) ( ( ) ) ( ) ( )x t A BG x t I B C B C A x t Dw ti i i i i i i i i i ij

j
j i

n

j i i= + + − +−

=
≠

1

1
   (15a) 

y t F x ti i i( ) ( )= .                           (15b) 

If A x tij

j
j i

n

j

=
≠


1

( ) is regarded as a disturbance and (4) holds, by the 

invariance property of SMC, the dynamics (15) is insensitive to 

the disturbance. Thus (15) is reduced to 

 ( ) ( ) ( ) ( )x t A B G x t D w ti i i i i i i= + +              (16a) 

y t F x ti i i( ) ( )= .                           (16b) 

4. Hitting Phase of the System 

This subsection tries to find the controller u ti ( )  on the i − th

subsystem such that the states of the system (1) can be forced to 

the sliding surface. Let us define a Lyapunov function for each 

subsystem as 

V S t S t S t S t S t S ti i i

T

i i iq imi
( ( )) ( ) ( ) ( ) ( ) ( )= = + + + +1

2 2 2     .   (17) 

From our previous work [6], one has the following results. 

Lemma 2.1 [6] 

Consider the system (1) with the solution x ti ( ) . If a 

Lyapunov function V S ti i( ( ))  is given as (17), (3) holds and 

C Di i = 0  is chosen, then we have 

d

dt
V S t S t S ti i i

T

i( ( )) ( )  ( )= 2 .                     (18) 

Lemma 2.2 [6] 

Consider the system (1), if C Di i = 0  and let the controller 

u ti ( )  be 

)),(sgn(])()([)()()(
1

1
tStxBCtxCkBCtxGtu i

n

ij
j

iiiiijiiiiiii 
≠
=

− +⋅⋅+⋅−= αβ

ni ,,2,1 = (19)

where ki
j n

ij>
≤ ≤

max
1

η , αi  is an arbitrary positive number and 

1
sgn( ( )) sgn( ( ))  sgn( ( ))  sgn( ( ))  .

i

T

i i iq im
S t S t S t S t =    Then the 

state x ti ( )  will be forced to the sliding surface. 

Proof: 

Differentiating (13) and choosing C Di i = 0  and multiplying 

it by ( )iS t , we get 

1

( ) ( )

( ) ( ) ( ) ( ( )) ( )

T

i i

n
T

i i i i i ij j i i i i i i i i

j
j i

S t S t

S t C Bu t C A x t C B f x t C BG x t
=
≠

=

 
 + + − 
  





. (20) 

Substituting (19) into (20), then (20) becomes 

( )

1

1

( ) ( ) ( )[ ( )

( ( ) ( ) ) sgn ( ) ( ( ))].

n
T T

i i i i ij j

j
j i

n

i i j i i i i i i i i i i

j
j i

S t S t S t C A x t

k C x t C B x t S t CB f x tβ α

=
≠

=
≠

= −

⋅ + ⋅ ⋅ + ⋅ +







(21) 

Therefore, (18) becomes 

1 1
1 1

( ( )) 2 ( ) ( ) 2 ( ) ( ) 2 ( ) ( )
n n

T

i i i i ij j i i j i i i i i i

j j
j i j i

d
V S t S t C A x t k C x t S t C B x t S t

dt
β

= =
≠ ≠

= − ⋅ ⋅ − ⋅ ⋅ ⋅ 

1
2 ( ) 2 ( ) ( ( ))T

i i i i i i i
S t S t C B f x tα− +  (22) 

1 1
1 1

2 ( ) ( ) 2 ( ) ( ) 2 ( ) ( )
n n

T

i i ij j i i j i i i i i i

j j
j i j i

S t C A x t k C x t S t C B x t S tβ
= =
≠ ≠

≤ − ⋅ ⋅ − ⋅ ⋅ 

1
2 ( ) ( ( )) 2 ( )T

i i i i i i iS t C B f x t S tα+ −

1 1
1 1

2 ( ) ( ) 2 ( ) ( ) 2 ( ) ( )
n n

i ij j i i i j i i i i i i

j j
j i j i

C A x t S t k C x t S t C B x t S tβ
= =
≠ ≠

≤ − ⋅ ⋅ − ⋅ ⋅ ⋅ 

1
2 ( ( )) ( ) 2 ( )

i i i i i i i
C B f x t S t S tα+ ⋅ ⋅ ⋅ −

( ) 1 11
1 1

2 max ( ) ( ) 2 ( ) ( ) 2 ( ) ( )
n n

i ij j i i i j i i i i i i
j n

j j
j i j i

C x t S t k C x t S t C B x t S tη β
≤ ≤

= =
≠ ≠

≤ ⋅ − ⋅ ⋅ − ⋅ ⋅ 

1
2 ( ( )) ( ) 2 ( )

i i i i i i i
C B f x t S t S tα+ ⋅ ⋅ ⋅ −

2 ( ) 0
i i
S tα≤ − < (23) 

where 
1

( ) ( )i iS t S t≤  , ki
j n

ij>
≤ ≤

max
1

η  and equation (2) are 

used. That means the state x ti ( )  will be forced to reach the 

sliding surface. The proof is completed. 

Remark 2: Lemma 2.2 can be derived from the Theorem 4.1 of 

[6] with suitable modification. 

III. DESIGN OF CONTROL FEEDBACK GAIN 

MATRIX i
G  TO SATISFY THE MULTIPLE 

OBJECTIVES 

In this section, the design of control feedback gain matrix i
G

is constructed for the system (16) to achieve the multi-objective 

performance constraints in terms of suitable LMI conditions. It 

was known that local state covariance Xi  defined in (12) sat-

isfies the following Lyapunov equation 

0)()( =++++ T

ii

T

iiiiiiii DDGBAXXGBA .        (24) 

Equation (24) was proposed for a system’s stability design [1] 

and served as the starting point of the derivation in this paper. 

1. Constraints on Pole Placement Region 

This subsection will derive a constraint, which can be found 

in Lemma 3.2, for pole placement on system (16). To attain this 

goal, the following Lemma 3.1 is helpful. 
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Lemma 3.1: 

Consider the system (16). Let Gi  be given and γ i > 0 be a 

fixed scalar. If there exists a positive definite matrix 
~
Xi

 satis-

fying 

0
~

)()(
~

)(

~~~
)(

~~
)(

2211

2

=−+++

++++++

−−

−

iiii

T

iiiiiiii

T

iiiiii

T

iiiiiiii

XqqGBAXGBAq

DDXRXGBAXXGBA

ρ

γ
 (25) 

where 
~
R F Fi i

T

i= . Then all the closed-loop poles of 

)( iii GBA +  are located within ( , )
i i
q ρ−  and H si i( )

∞
≤ γ . 

Furthermore, in this case, we have X Xi i≤
~

. 

Proof: 

Let λi  and iv ∈  (complex), respectively, be the eigenvalue 

and the right eigenvector of ( )iii GBA + , then 

( )A B G v vi i i i i i+ = λ  and ( )A B G v vi i i

T

i i i+ = λ  in which 

λi i ix jy= +   and λi i ix jy= −  . Substituting this expression 

into (25), we have 

[ ]v X X q X q q X v v X R X D D v
i i i i i i i i i i i i i i i i i i i i i

T

i

∗ − − ∗ −+ + + − = − +λ λ λ λ ρ γ
~ ~ ~

( )
~

(
~ ~ ~

)1 1 2 2 2

[ ] + + + − = − +− − −
2

1 2 2 1 2 2 2 (   ) ( )
~

(
~ ~ ~

)
* *

x q x y q q v X v v X R X D D vi i i i i i i i i i i i i i i i i

T

iρ γ

[ ] + + + − = − +− ∗ ∗ −
q x x q q y v X v v X R X D D v
i i i i i i i i i i i i i i i i i

T

i

1 2 2 2 2 22(    )
~

(
~ ~ ~

)ρ γ . (26) 

Since qi > 0 , 
~
Xi > 0  and γ i i i i i i

TX R X D D− + ≥2 0
~ ~ ~

, from (26) 

we obtain 

1 2 2 2 2ˆ ˆ ˆ( 2 ) 0i i i i i i i i i iq x x q q y v X vρ− ∗ + + + − < 
              (27) 

( )
2 2 2ˆ ˆ 0i i i ix q y ρ + + − <                           (28) 

which means that all eigenvalues of ( )iii GBA +  should locate 

in a specified disk ( , )
i i
q ρ− . Consider (25) and by the in-

ducement of the Fact 1.2 of [29] we obtain H si i( )
∞
≤ γ , since 

q A BG X A BG q q Xi i i i i i i i

T

i i i i

− −+ + + − ≥1 1 2 2 0( )
~

( ) ( )
~

ρ . Subtracting 

(24) from (25) and using 

γ ρi i i i i i i i i i i i

T

i i i iX R X q A BG X A BG q q X− − −+ + + + − ≥2 1 1 2 2 0
~ ~ ~

( )
~

( ) ( )
~

, the 

inequality X Xi i≤
~

 will be gotten from Theorem 4.2 of [21] due 

to the fact that ( )iii GBA +  is stable. 

The proof is completed. 

Lemma 3.2 

Consider the system (16). If there exist positive definite ma-

trix iX
  and matrix i

L  satisfying 

0i i i i i i i i

T T T

i i i i i i i i

X AX BL q X

q X X A L B X

ρ

ρ

 − + +
< 

+ + − 

  
             (29) 

where i i iL G X=  . Then the closed-loop poles of i i i
A B G+  are 

located within disk LMI region ( , )
i i
q ρ− . 

Proof: 

Given a prescribed disk LMI region ( , )
i i
q ρ−  in the 

left-hand side of complex planeiz − , and the matrix 

( )iii GBA + of the system (16) is -stable (i.e., 

( ) ( , )i i i i i iA B G qλ ρ+ ∈ − ). Then, from Lemma 3.1, there 

exists a positive definite matrix i
X  satisfying 

( )1 2 2
( ) ( ) ( ) ( ) ( ) 0.

T T

i i i i i i i i i i i i i i i i i i iA BG X X A BG q A BG X A BG q Xρ−+ + + + + + + − <     (30) 

Equation (30) has the form of (27) with 

( ) ( , )
i i i i i i
A B G qλ ρ+ ∈ −  and can deduce to (28) which is in 

fact the same as (6). Therefore, the matrix inequality for 

-stability  (30) is equivalent to the pole placement condition 

(7). 

The feasibility of pole region (7) is equal to the matrix ine-

quality condition 

ˆ ˆ ˆ( , ) ( ) ( ) 0T T

D i i i i i i iM A X U X N AX N AX= ⊗ + ⊗ + ⊗ <         (31) 

where ⊗ denotes the Kronecker product of matrices. Equation 

(31) was proven in [11] and as a counterpart of Gutman’s 

theorem for LMI regions. Since the expressions of ˆ( , )
D i i

M A X

in (31) and ( )if z  in (7) are related by the substitution 

( ) ( )ˆ ˆ, , 1, ,T

i i i i i i iX A X X A z z↔   , the matrix inequality 

condition for the disk region ( , )
i i
q ρ−  as shown in (7) can be 

written as 

ˆ
0.

ˆ

i i i i i i

T

i i i i i i

X q X AX

q X X A X

ρ

ρ

 − +
< 

+ −  

  

                    (32) 

By the substitution of  ˆ
i i i i
A A BG= +  and i i iL G X=  , we have 

the following LMI condition in terms of the matrix variables i
X

and iL  for addressing the disk LMI region ( , )i iq ρ−  con-

straints of the closed-loop poles: 

0.i i i i i i i i

T T T

i i i i i i i i

X AX BL q X

q X X A L B X

ρ

ρ

 − + +
< 

+ + − 

  
          (33) 

The proof is completed. 

2. Constraints on ∞H  Norm 

In considering the performance related to both the amplitude 

attenuation level in the output channel and the presence of 

stochastic external input are based on the result of the 

Lyapunov equation in (24). 

Lemma 3.3 

In the system (16), let 0
i
γ >  be a fixed scalar. If there exist 

positive definite matrix 
~
Xi  and matrix iL  such that the fol-

lowing LMI condition holds 
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2
0

T T T T T

i i i i i i i i i i i i

i i i i

AX BL X A L B DD X F

FX Iγ −

 + + + +
< 

− 

  
        (34) 

where i i iL G X=  . Then, the ∞H  norm constraint (10) is satis-

fied. Furthermore, in this case, we have 

i iX X≤                                       (35) 

Proof: 

First, we define the Lyapunov function for the system dy-

namics (16) as following: 

)()())((
1~

txXtxtxV ii
T

ii

−

=                     (36) 

where 0T

i i
X X= >   is the upper bound of i

X . According to 

ˆIto's  differential rule [26], the time derivative of the quadratic 

Lyapunov function is 

( )

1

1 1

( ( )) ( ) ( ) ( )

( )( ) ( ) .  

T

i i i i i i i

T T T

i i i i i i i i i

d
V x t x t X A BG x t

dt

x t A BG X x t trace D X D

−

− −

= +

+ + +



 
   (37) 

The asymptotic stability of system (16) can be established if 

( ( )) 0i

d
V x t

dt
<  can be satisfied. Now, we can rewrite (10) to 

obtain 

2

0 0
lim [ ( ) ( ) ] lim [ ( ) ( ) ] 0

t t
T T

i i i i i
t t

E y y d E w w dγ τ τ τ τ τ τ−

→∞ →∞
− <  . (38) 

Then, we define 

( )
( )

( ) ( )

2

0

2

0

( ) ( ) ( ) ( ) ( )

( )
( ) ( ) ( ) ( ) [ ( ) ] [ (0) ].

t
T T

i i i i i i

t
iT T

i i i i i i i

J t E y y w w d

dV x
E y y w w d E V x E V x

d

γ τ τ τ τ τ

τ
γ τ τ τ τ τ τ

τ

−

−

 = − 

            = − + − +    
   





Also we have 

( )

( )
( )

2

0

2

0

( )
( ) ( ) ( ) ( ) ( )

( )
( ) ( ) ( ) ( ) .

t
iT T

i i i i i i

t
iT T T

i i i i i i i

dV x
J t E y y w w d

d

dV x
E x F F x w w d

d

τ
γ τ τ τ τ τ

τ

τ
γ τ τ τ τ τ

τ

−

−

    ≤ − +    
   
           = − +       




 (39) 

Substituting (37) into (39), then we can obtain 

1 1 2 1

10

( )

( ) ( )( ) ( )

( ) ( )

i

T T T
t i ii i i i i i i i i i i i i

T
i ii i i

J t

x xA BG X X A BG F F X D
E d

w wD X I

τ τγ
τ

τ τ

− − − −

−

≤

  + + + +   
      −     


  


.(40) 

By letting t → ∞ and combining the condition in (38), the fol-

lowing inequality can be derived. 

1 1 2 1

10

( ) ( )( ) ( )

( ) ( )

0

T T T
i ii i i i i i i i i i i i i

T
i ii i i

x xA BG X X A BG F F X D
E d

w wD X I

τ τγ
τ

τ τ

− − − −
∞

−

  + + + +   
      −     

<


  

 (41) 

By Schur’s complement, the inequality condition (41) is 

equivalent to 

1 1 2 1 1( ) ( ) 0.T T T

i i i i i i i i i i i i i i iA BG X X A BG F F X DD Xγ− − − − −+ + + + + <     (42) 

Pre- and post-multiplying both sides of (42) by iX
 , we then 

have 

2( ) ( ) 0.T T T

i i i i i i i i i i i i i i iA BG X X A BG X F FX DDγ −+ + + + + <        (43) 

Substituting i i iL G X=   into (43) and using Schur’s complement 

again, the inequality of (34) can be achieved. Moreover, sub-

tracting (24) from (43), the inequality i iX X≤   can also be 

obtained due to the positive item 
2 0T

i i i i iX F FXγ − >  . The proof is 

completed. 

Remark 3: The equation (43) also can be derived from (25). 

3. Constraints on Upper Bound of Local State Covariance 

In this subsection, the upper bound of local state covariance 

constraint is deduced to the following Lemma 3.4. 

Lemma 3.4 

Consider the desired upper bound of local state covariance 

constraint on the system as described in (11). Let ( ) 0
k i

σ >  is 

given. If there exists positive definite matrix i
X  such that the 

following LMI condition holds 

,0
)(

~~

~
2

≥














i

T

kii

ikiik

XIX

XIσ
ink ,,2,1 =             (44) 

where [ ] 1
0 1 0 in

kiI R
×= ∈   denotes a row vector 

with the thk −  element is 1 and others are 0. Then, the upper 

bound of local state covariance constraint can be achieved. 

Proof: 

Rewriting (11), one has 

2 ( )  ,    1,  2, ,  T

ki i ki k i iI X I k nσ≤ =              (45) 

or equivalently, 

2 1( ) 0,    1,  2, ,   .T

k i ki i i i ki iI X X X I k nσ −− ≥ =         (46) 

Using the property of Schur’s complement [4], (45) can be 

reformulated as following inequality 

2( )
0,   1,  2,   ,   ,k i ki i

iT

i ki i

I X
k n

X I X

σ 
≥ = 

 


             (47) 

which is the same as (46). Therefore the proof is completed. 

Now, the individual LMI conditions as described in Lemma 

3.2~3.4 for addressing various interesting performance con-

straints are summarized in the following main theorem. 

Main theorem 

In the system (16), given 0
i

γ > , ( ) 0
k i

σ > , i
ρ  and 0

i
q > . 

The multi-objective performance constraints (i)~(iii) as de-

scribed in (5), (10) and (11) are satisfied if there exist positive 
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definite matrix iX
  and matrix i

L  such that the following LMIs 

holds, 

2
0

T T T T T

i i i i i i i i i i i i

i i i i

AX BL X A L B DD X F

FX Iγ −
 + + + +

< 
− 

  
        (48) 

0i i i i i i i i

T T T

i i i i i i i i

X AX BL q X

q X X A L B X

ρ

ρ

 − + +
< 

+ + − 

  
            (49) 

2( )
0,   1,  2,   ,   .k i ki i

iT

i ki i

I X
k n

X I X

σ 
≥ = 

 


               (50) 

Proof: 

Following the proofs of Lemma 3.2~3.4, one knows that the 

multi-objective performance (i)~(iii) can be achieved by the 

suitable convex optimization problem as shown in LMIs (48), 

(49) and (50). In other word, if matrices 
iX

  and iL  exist and 

satisfy these LMIs, then the control feedback gain iG  achiev-

ing the multi-objective performance constraints (i)~(iii) can be 

synthesized by 

1

i i iG L X
−=  .                                  (51) 

The proof is completed. 

Remark 4: By using the main theorem, one can minimize 

the ∞H  performance level i
γ  for noise attenuation. 

Then, the resulting solution of the control feedback 

gain i
G  can also achieve the pole placement con-

straint as well as upper bound on local state co-

variance constraint. 

Main theorem shows that the multi-objective (i)~(iii) can be 

achieved by a convex optimization problem with LMI con-

straints. If the above LMIs are feasible, then we can obtain the 

control feedback gain iG . In next section, a numerical example 

is provided to verify the proposed method. Now, one should 

check whether ( )i iH s γ
∞
≤  holds or not, the following lemma 

will be helpful. 

Lemma 3.5 [3] 

Consider the system (16). There exists a positive scalar iγ  to 

satisfy ( )i iH s γ
∞
≤  if and only if 

i
Mγ  has no eigenvalues on 

the imaginary axis, 

where 








+−−

+
∆

−

−

T

iiii

T

ii

T

iiiiii

GBAFF

DDGBA
M

i )(
1

1

γ

γ
γ . 

The design procedures presented in this paper is outlined 

as following 

Initial status: The system (1) is given with certain assumptions 

in section 2. 

Objective: Find the controller ( )iu t  such that the goals (i), (ii) 

and (iii) are achieved. 

Step 1: Choose i
C  to satisfy 0

i i
C D =  and 0

i i
C B ≠ . 

Step 2: From  the  main  theorem,  get  the  feasible  solution of 

control feedback gain i
G  as (51). 

Step 3: Set the switching function ( )
i
S t  as (13). 

Step 4: The controller ( )
i
u t  is obtained from (19). 

IV. A NUMERICAL EXAMPLE 

A linear time-invariant stochastic large-scale system is writ-

ten in the form of two subsystems 

)()()))(()(()()( 112121111111 twDtxAtxftuBtxAtx ++++=
•

  (52a) 

)()( 111 txFty =                                                                  (52b) 

)()()))(()(()()( 221212222222 twDtxAtxftuBtxAtx ++++=
•

 (53a) 

)()( 222 txFty =                                                                 (53b) 

where [ ]x t x t x t
T

1 11 12
( ) ( ) ( )= , A1

0 1

2 3
=
−









 , B1

0

1
=







 , 

12

0 0

1 1
A δ

 
=  

 
, 1

1

0
D

 
=  
 

, 1 1 1( ( )) 0.6 ( )f x t x t≤ , [ ]1 1 1F = ; 

[ ]x t x t x t
T

2 21 22
( ) ( ) ( )= , A2

0 1

4 5
=
−









 , B2

0

1
=







 , 

21

0 0

3 3
A δ

 
=  

 
, 2

1

2
D

 
=  
 

, 2 2 2( ( )) 0.4 ( )f x t x t≤ and 

[ ]2
1 1F = , in which [ 1,1]δ ∈ −  is an uncertainty. The goal is to 

seek the control such that the steady state of the system satisfies 

the following requirements. 

,161 =q 151 =ρ                             (54) 

,182 =q 172 =ρ                             (55) 

1)(1 ≤
∞

sH                                  (56) 

8.0)(2 ≤
∞

sH                               (57) 

,5.2))(( 11 <txVar 3))(( 12 <txVar               (58) 

21 22( ( )) 1,   ( ( )) 2.Var x t Var x t< <               (59) 

Suppose [ ] [ ]x x x
T T

1 11 120 0 0 4 7( ) ( ) ( )= = , [ ]Txxx )0()0()0( 22212 =

[ ]T85= and the white noises w t1( )  and w t2 ( )  satisfy (3).  Then, 

the proposed design procedure can be carried out as follows. 

Step 1: Choosing [ ]C1 0 1=  and [ ]C2 2 1= −  such that 

C D1 1 0= , C D2 2 0= , and C B1 1 0≠ , C B2 2 0≠ . 

Then the corresponding two sliding modes are 

 ( ) ( ) ( ) ( )x t A B G x t D w t1 1 1 1 1 1 1= + +             (60a) 
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y t F x t1 1 1( ) ( )=                                              (60b) 

and 

 ( ) ( ) ( ) ( )x t A B G x t D w t2 2 2 2 2 2 2= + +           (61a) 

y t F x t2 2 2( ) ( )=                                            (61b) 

respectively. 

Step 2: Following the LMI algorithms in main theorem, we can 

construct a feasible solution of the local state upper 

bound covariance matrices 1

1.1836 1.5122

1.5122 2.7282
X

− 
=  − 



and 2

0.6671 0.7542

0.7542 1.7888
X

− 
=  − 

 in which their diagonal 

elements satisfy the performance constraints (58) and 

(59). And the related matrices 

are [ ]1 9.0473 31.3765L = − and [ ]2 6.8812 38.1604L = − , 

respectively. Therefore, the control feedback gain ma-

trices for each subsystem are as follows 

]8901.241562.24[1 −−=G                  (62) 

and 

2 [ 26.3698 32.4508].G = − −                   (63) 

Step 3: From (13), the switching functions of two subsystems 

are 

ττ dxtxtS
t

)(]8901.211562.26[)(]10[)( 1
0

11  −−−=  (64) 

and 

2 2 2
0

( ) [ 2    1] ( )  [ 30.3698  29.4508] ( ) .
t

S t x t x dτ τ= − − − −  (65) 

Step 4: From (19), the desired controllers of two subsystems 

are 

1 1

2 1 1

( ) [ 24.1562   24.8901] ( )

1.42 ( ) 0.6 ( ) 2 sgn( ( ))

u t x t

x t x t S t

= − −

 − + + 
         (66) 

2 2

1 2 2

( ) [ 26.3698   32.4508] ( )

9.5034 ( ) 0.8944 ( ) 2 sgn( ( ))

u t x t

x t x t S t

= − −

 − + + 
      (67) 

where k1 142= . , k2 4 25= . , 1 0.6β = , 2 0.4β =  and 

α α1 2 2= =  are chosen. 

From the above design procedure, we can conclude that the 

local state upper bound covariance 
~
Xi  will be achieved if the 

system is driven by the controller (66)~(67). 

Fig. 2.  Time response of state )(11 tx . 

Fig. 3.  Time response of state )(12 tx . 

Fig. 4.  Time response of state )(21 tx . 

Fig. 5.  Time response of state )(22 tx . 
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The simulation result for the controlled state responses 

x t11( ) , x t12 ( ) , x t21( ) , and x t22 ( )  are shown in Figs. 2~5, 

respectively. The time response of 1
( )u t  and 2

( )u t  are shown in 

Figs. 6~7, respectively. The phase plane of ( )x t x t11 12( ) , ( )   and 

( )x t x t21 22( ) , ( )   are shown in Figs. 8 and 9, respectively. It is 

easy to check that the matrices Mγ1
 and Mγ 2

, which were 

defined in Lemma 3.5, have no eigenvalues on the imaginary 

axis; hence the H∞  norm constraints (56) and (57) are satisfied. 

Moreover, the variances of x t11( ) , x t12 ( ) , x t21( ) , and x t22 ( )

are 0.2347, 0.3796, 0.4254 and 0.4886, respectively. Therefore, 

the individual variance constraints (58) and (59) are also satis-

fied. We also check the poles of subsystem (52) and subsystem 

(53) locating in 1.2684− , 20.6217− , 1.1549−  and 26.2959− , 

respectively those satisfy the pole location constraint of (54) 

and (55), respectively. 

V. CONCLUSIONS 

This paper has applied the invariance property of SMC to the 

LSUBCC such that the both uncertain interconnection terms 

and an unknown nonlinear function can be ignored for the 

large-scale systems. Since the utilization of SMC and UBCC, 

the control feedback gain matrix Gi  constructed by LMI ap-

proach not only achieves the multi-objective performance con-

straints for the closed-loop system but also determines the 

sliding surface of the system. Finally, a numerical example is 

adopted to illustrate the proposed method. The results of 

simulation show that the presented approach is effective in 

designing a multi-objective controller for the large-scale sys-

tems. In this paper, a new scheme of combination of SMC and 

LMI methods has been successfully demonstrated and the ap-

plication of this scheme to some high performance complex 

systems will be developed in the future. 

ACKNOWLEDGEMENT 

This research was supported in part by the National Science 

Council of Taiwan, ROC, under the Grant NSC 

93-2218-E270-003. 

REFERENCES 

1. Ball, J. A. and Cohen, N., "Sensitivity minimization in an H ∞  norm: 

parametrization of all suboptimal solutions," International Journal of 

Control, Vol. 46, pp. 785-816 (1987). 

2. Bernstein, D. S. and Haddad, W. M., "LQG control with an H ∞  per-

Fig. 6.  Time response of state )(1 tu . 

Fig. 7.  Time response of state )(2 tu . 

Fig. 8.  The phase plane of ))(),(( 1211 txtx . 

Fig. 9.  The phase plane of ))(),(( 2221 txtx . 



Journal of Marine Science and Technology, Vol. 16, No. 3  (2008) 206

formance bound: a Riccati equation approach," IEEE Transaction on 

Automatic Control, Vol. 34, pp. 293-305 (1989). 

3. Boyd, S. P. and Barratt, C. H., Linear Controller Design, Limits of Per-

formance, Prentice-Hall, Inc., New Jersey (1991). 

4. Boyd, S. P., Ghaoui, L. El., Feron, E. and Balakrishnan, V., Linear Matrix 

Inequalities in Systems and Control Theory, SIAM, Philadelphia (1994). 

5. Chang, K. Y. and Wang, W. J., "Local state covariance assignment for 

stochastic large-scale systems," ASME Journal of Dynamic Systems, 

Measurement, and Control, Vol. 121, No. 1, pp.139-142 (1999). 

6. Chang, K. Y. and Wang, W. J., " H∞  norm constraint and variance control 

for stochastic uncertain large-scale systems via sliding mode concept," 

IEEE Transactions on Circuits and Systems -I Fundamental Theory and 

Applications, Vol. 46, No. 18, pp. 1275-1280 (1999). 

7. Chang, K. Y. and Chang, W. J., "Variable structure controller design with 

H∞  norm and variance constraints for stochastic model reference sys-

tems," IEE Proceedings, Part D, Control Theory and Applications, Vol. 

146, No.6, pp.511-516 (1999). 

8. Chang W. J. and Chang, K. Y., " ∞H  norm and variance constrained 

controller design for perturbed stochastic systems via variable structure 

control," Journal of Marine Science and Technology, Vol. 7, No. 1, pp. 

26-34 (1999). 

9. Chang, W. J. and Chang, K. Y., "Multivariable performance constrained 

sliding mode control for ship yaw-motion systems with perturbations," 

International Journal of Adaptive Control and Signal Processing, Vol. 14, 

No. 4, pp.393-405 (2000). 

10. Chang, W. J. and Chung, H. Y., "Upper bound covariance control of dis-

crete perturbed systems," Systems & Control Letters, Vol. 19, No.14, pp. 

493-498 (1992). 

11. Chilali, M. and Gahinet, P., " ∞H  design with pole placement constraints: 

an LMI approach," IEEE Transaction on Automatic Control, Vol. 41, No. 

3, pp. 358-367 (1996). 

12. Chilali, M., Gahinet, P. and Apkarian, P., "Robust pole placement in LMI 

regions," IEEE Transaction on Automatic Control, Vol. 44, No. 20, pp. 

2257-2270 (1999). 

13. Chung, H. Y. and Chang, W. J., "Covariance control with variance con-

straints for continuous perturbed stochastic systems," System  Control 

Letters, Vol. 19, No.13, pp. 413-417 (1992). 

14. Chung, H. Y. and Chang, W. J., "Constrained variance design for bilinear 

stochastic continuous systems," IEE Proceedings, Part D, Control Theory 

and Applications, Vol. 138, No. 2, pp. 145-150 (1991). 

15. Drazenovic, B., "The invariance conditions in variable structure systems," 

Automatica, Vol. 5, pp. 287-295 (1969). 

16. Francis, B. A. and Doyle, J. C., "Linear control theory with an H ∞  op-

timality criterion," SIAM Journal on Control Optimization, Vol. 25, pp. 

815-844 (1987). 

17. Francis, B. A., A Course in H ∞  Control Theory, Springer-Verlag, New 

York (1987). 

18. Furuta, K. and Kim, S. B., "Pole assignment in a specified disk," IEEE 

Transaction on Automatic Control, Vol. 32, No. 13, pp. 423-427 (1987). 

19. Hotz, A. and Skeleton, R. E., "Covariance control theory," Int. J. Control, 

Vol. 46, No. 1, pp. 13-32 (1987). 

20. Hung, J. Y., Gao, W. B. and Hung, J. C., "Variable structure control: a 

survey," IEEE Trans. Industrial Electronics, Vol. 40, pp. 2-22 (1993). 

21. Haddad, W. M. and Bernstein, D. S., "Controller design with regional pole 

constraints," IEEE Transaction on Automatic Control, Vol. 37, No. 1, pp. 

54-69 (1992). 

22. Khurana, H. S., Ahson, I. and Lamba, S. S., "On stabilization of 

large-scale control systems using variable structure systems theory," IEEE 

Trans. Automatic Control, Vol. 31, pp. 176-178 (1986). 

23. Kawasaki, N. and Shimemura, E., "Determining quadratic weighting 

matrices to locate poles in a specified region," Automatica, Vol. 19, No. 

13, pp. 557-560 (1983). 

24. Lee, J. L. and Wang, W. J., "Robust decentralized stabilization via sliding 

mode control," Control-Theory and Advanced Technology, Vol. 9, No. 3, 

pp. 721-732 (1993). 

25. Niu, Y., Ho, D. W C, Lam, J., "Robust integral sliding mode control for 

uncertain stochastic systems with time-varying delay," Automatica, Vol. 

41, pp. 873-880 (2005). 

26. Oksendal, B., Stochastic Differential Equations: An introduction with 

applications, Springer, New York (1985). 

27. Sundareshan, M. K. and Elbanna, R. M., "A constructive procedure for 

stabilization of large-scale system by informationally decentralized con-

trollers," IEEE Transactions on Automatic Control, Vol. 36, No. 15, pp. 

848-852 (1991). 

28. Utkin, V. I., "Variable structure control systems with sliding modes," IEEE 

Trans. Automatic Control, Vol. 22, pp. 212-222 (1997). 

29. Veillette, R. J. and Medanic, J. V., " H ∞ -norm bounds for ARE-based 

designs," Systems & Control Letters, Vol. 13, pp. 193-204 (1989). 

30. Wang, W. J. and Chang, K. Y., "Variable structure based covariance as-

signment for stochastic multivariable model reference systems," Auto-

matica, Vol. 36, pp. 141-146 (2000). 

31. Xu, X., Wu, Y. and Huang, W., "Variable structure control approach of 

decentralized model-reference adaptive systems," IEE Proc. Part D. 

Control Theory and Applications, Vol. 137, pp. 302-306 (1990). 

32. Xu, J. H., Skelton, R. E. and Zhu, G., "Upper and lower covariance bounds 

for perturbed linear systems," IEEE Transactions on Automatic Control, 

Vol. 35, No. 16, pp. 944-948 (1990). 

33. Yaz, E. and Skelton, R. E., "Robust regional pole assignment with output 

feedback," Proceeding of the 32nd Conference on Decision and Control

(1993). 

34. Yeh, H. H., Banda, S. S., Heise, S. A. and Bartlett, A. C., "Robust control 

design with real-parameter uncertainty and unmodeled dynamics," 

Journal of Guidance, Control, and Dynamics, Vol. 13, No. 14, pp. 

1117-1125 (1990). 

35. Yeung, K. S. and Chen, Y. P., "A new controller design for manipulators 

using the theory of variable structure systems," IEEE Transaction on 

Automatic Control, Vol. 33, No. 2, pp. 200-206 (1988). 

36. Zames, G., "Feedback and optimal sensitivity: model reference transfor-

mations, multiplicative seminorm and approximate inverse," IEEE 

Transaction on Automatic Control, Vol. 26, pp. 301-320 (1981). 


	MULTI-OBJECTIVE CONTROL DESIGN FOR STOCHASTIC LARGE-SCALE SYSTEMS BASED ON LMI APPROACH AND SLIDING MODE CONTROL CONCEPT
	Recommended Citation

	MULTI-OBJECTIVE CONTROL DESIGN FOR STOCHASTIC LARGE-SCALE SYSTEMS BASED ON LMI APPROACH AND SLIDING MODE CONTROL CONCEPT
	Acknowledgements

	tmp.1628620563.pdf.WW0EU

