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ABSTRACT 

The Navier-Strokes equations are usually used to solve the 

convective problems, however, to satisfy the conversation of 

mass, the uncertainty of pressure terms will easily trigger off the 

numerical divergence during the iterative process; which results 

in a calculating failure and makes the numerical solutions im-

possible. In this study, a vorticity–transport method that avoids 

the involvement of pressure terms by cross differentiate the 

governing equations and meets the flow conservation with 

stream function was proposed. With the aid of the upwind 

scheme and implicit method, an effective transformation from 

the partial differential equations into the vortex potential alge-

braic equations would be completed. From the numerical solu-

tion showed, not only agreed with the experiment result and the 

simulation of CFD package “NISTIR”, but also the available 

scope of Reynold number and Pelect number could be extended 

up to 2500, 25 which had approached to the turbulent transition. 

I. INTRODUCTION 

The computational code on fluid dynamics has been widely 

used as a popular simulation tools in convective research or 

engineering application. However, due to easy way and effec-

tive performance in running package, the development in nu-

merical scheme becomes less attracted and gradually ignored 

today 

Chorin [3] used vorticity concept to combine flow and tem-

perature fields to form a system of simultaneous equations, 

which were solved with the discrete vortex method and yielded 

a low Reynold theoretical solution. Patanlcar and Spadling [6] 

developed a generalized formulation of auxiliary function for 

various schemes, such as hybrid scheme, exponential scheme 

and power scheme. With it, the degree of satisfactoriness of 

each function in simulating the flow and temperature had been 

further discussed by comparison with the exact solution. A 

variation of Mac Cormack method, upwind method, was first 
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introduced by Warming and Beam [8]. By using it , iterative 

procedure was divided into both predictor , corrector steps and 

the convergent solution with second-order truncation error 

would be achieved, Furthermore, a amplification factor with 

analysis in relative error to predict the stability condition was 

also successfully derived through the backward upwind scheme. 

Ames [1] applied Successive Over-Relaxation (SOR) technol-

ogy to accelerate the iterative procedure, in which 

over-relaxation ( 0.1>α ) was taken to be appropriate for 

Laplace’s equation with Dirichlet boundary conditions while the 

under-relaxation was considered to the elliptic problem or 

nonlinear equations. To maintain diagonal dominance in the 

application of Thomas algorithm, a restricted  variable, 
2)(1 yx ∆∆+≤ω , was specified to ensure the convergent so-

lution. Chilukuri and Pletcher [2] used the central-difference 

method to solve successfully the simultaneous equations. But 

the explicit way with the number of numerical solution solved 

one by one was applied in their calculating process, so the rate 

of convergence was low and the Reynold number had to be 

restricted to a low range. 

In the present study, we transform the flow field equations 

into the vorticity - stream form and remain the temperature field 

unchanged. With the discretization by finite difference, the first 

order derivatives are represented by the upwind scheme and the 

central-difference is required in second order derivatives; so 

that the flow field can be converted to an elliptic problem and 

further discretized as algebra simultaneous equations. In this 

way, a vorticity – stream field becomes a simple boundary value 

problem that can be numerically solved more easily and used for 

a wider range of Reynold number. 

1. Dimensionless Governing Equation 

Mass conservation : 
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Energy balance:  
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Stream function: 
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Vorticity equation: 
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2. Vorticity Transport 

Partially differentiate (2) w.r.t. y, and (3) w.r.t. x, and then by 

subtraction, we get the equation (7) with substituting equation 

(6)  
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From the above basic equations, governing equations (1) ~ (7) 

could be a classified as follow:
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Boundary conditions: 
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Vnd,    Vn: the normal velocity along domain boundary, 

d: domain boundary. 

II. DERIVATION OF FINITE DIFFERENCE 

The first order derivatives with upwind scheme are expressed 

as: 
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The second order derivatives with central- difference scheme 

are as follows: 
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To accelerate the convergent rate, a time derivative  term is 

added into the equations (8) and (9) 
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  After substituting the above expressions into (8), (9) respec-

tively, algebra equations will be derived and rewritten as: 

SdcbaA ijjijijiij ++++= −+−+ 11,,1,1 φφφφφ         (14) 

  Invoking implicit method and relax coefficient α , we can 

further write: 
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where n+1 denotes present iteration,  n is last iteration at this 

time step, α is relax coefficient 0.5~1.2 and t-1 is last time step. 

The coefficients in discretized stream equation (11), referred to 

Poisson equation, can be also expressed as 
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The key steps for solving problem: 

(1) Given the initial values of u, ν , 

(2) Specify the bounding values of 

(3) Calculate vorticity over domain. 

(4) If the relative error 003.0
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n
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n
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ij ωω  and repeat steps (3), (4). 

(5) Estimate stream function over domain and compare the 

relative error 
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, if the ratio >0.003, update 
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(6) Determine the latest iterative values of u, v over all domain. 

(7) Compare the latest u, v values and last u, v values in domain. 

If the relative error 003.0
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domain and repeat steps (3)~(7). 

Solve the energy equation T and compare the relative error. If 

the error >0.003, update 1+= n
ij

n
ij TT  and repeat the iterative 

process (8). 

III. RESULTS AND DISCUSSION 

1. By the vorticity transform method, moment equation (8) 

and energy equation (9) can be transferred into the expres-

sion (14) except the variables  and T in respective equa-

tion. That provides a special advantage in finite difference 

procedure because only one discretized equation (14) with 

the same coefficient a,b,c,d (16) is sufficient to handle the 

above equations. Meanwhile, the discretized equation can 

be also fitted in the stream-vorticity equation by changing 

the value in coefficient a,b,c,d and source term S directly. 

2. In both the implicit and explicit iterations, the value at 

given grid is calculated by averaging those at its four 

neighboring corners. The difference is that in explicit it-

eration, the neighboring values at given point was estimated 

from last iteration; but  in the implicit iteration, the values at 

the top corner and right corner were obtained from the last 

iteration and those at the left and bottom corner are gotten 

from present iteration values as shown in Fig. 1. Therefore 

it is faster to use the implicit iteration to get the value at a 

given grid. 

3. Sufficient condition for convergence proposed by 

Patankar(1970): 

Rule 1: consistency at control-volume force 

Rule 2: positive efficient a, b, c, d >0 

Rule 3: |a ii | 
≠
=

≥
n

ij
j 1

 |a ii | 

A>a+ b+ c+ d 

Rule 4: negative-slope linearization of source term

            S=Sc+ SpTp, the coefficient Sp must always be 

less than or equal to zero.

For present model, we observe that the coefficients A, a, b, 

c and d in the central difference equations, whether in case 

of vorticity transport or energy equation, are all positive 

and A>a+b+c+d. This satisfies the convergent condition of 

the Gauss-Seidel’s algorithm and  Patankar’s rule. There-

fore in the course of computation ,we use both the central 

difference and upward scheme that make the iterated values 

of u, ν  and T approach to a stable without over restricted 

the grid size dx, dy and Re. Hence Re value can be ex-

tended in the allowable range of computation until the 

model begins to show rather large error when Re value 

reaches 5000.

4. Though the first order truncation error (∆X, ∆Y) is derived 

in the upwind scheme method, the smaller step size ∆X, ∆Y 

with increased grids which are necessary to guarantee the 

more accurate solution will be further examined in the grids 

test. Grids 20×30, 30×45, 40×60 were selected to uniformly 

distribute in the calculating domain. After comparison with 

individual result to all corresponding grids in domain, their 

maximum relative error will be not more than 3% and the 

simulating result shows that the  adopt of grids 20×30 has 

been adequate to describe the convective motion without 

losing the overall behavior. 

5. It usually specifies a uniform distribution of inlet or outlet 

flow velocity on the boundary walls as shown in Fig. 2 

which just likes a Dirac function applied on wall. Therefore 

the discontinuous value and derivative observed at X1 and 

X2 will result in a divergent solution in the end or unrea-

sonable solution distributed around the inlet and outlet; 

even the result simulated is just fitted in the low Reynold 

number case. To improve above defect, the adopt of 

streamline function with a integration of flow velocity on 
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Fig. 1. The calculating distribution of grids.
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boundary surface will be demonstrated in Fig. 2 where the 

trouble caused by the discontinuous phenomena can be 

avoided by a continuous streamline function with integra-

tion skills and a more realistic solution that satisfied the first 

convergent rule proposed by Partankar will be predicted. 

6.   Under the dimensionless parameters Re=2500, Pe=25 are 

considered, both present codes with φ  continuous bound-

ary conditions in present code (see Fig. 3) and CFD pack-

age “NISTIR” with the Dirac function of vu,  specified at 

the boundary (see Fig. 4) display a similar flow distribution 

in most space except the data around the inlet where the 

flow velocity gradient behaves a discontinuous change and 

seems to be unreasonable in Fig. 4. To improve above de-

fects, the adoption of stream function in present code is 

available in avoiding the discontinuous phenomena near the 

boundary walls. 

7. To verify the simulation results, an experimental procedure 

consisting of liquid reservoir, inlet (outlet) flow channel, 

MHD unit and marked particles tube were set up as shown 

in Fig. 5. Additional pitot tube used to measure the outlet 

flow velocity and connected to the digital flow meter was 

also equipped. All dimensions of experimental apparatus 

would be listed in Table 1. A MHD (magnethohydrody-

namics) mechanism including magnetism and copper sheets 

was also set up at the inlet flow channel and taken as the 

driving source. When the electric power was supplied to the 

separate copper electrode, the induced current produced in 

the working medium (NaCl solution) would interact with 

the external magnetic flux to generate the Lorentz force 

which was perpendicular to the direction of magnetic field 

and induced current. As the Lorentz force began to work, 

the flow velocity could be measured by digital meter and 

then the flow stream was traced by marked particles. Cor-

responding to the inlet flow velocity 0.025m/s in experi-

mental test, Re would be roughly estimated about 2500 

Fig. 2. The illustration of  and u,v Dirac boundary condition. 

   Fig. 3. Simulation of flow velocity distribution with Re=2500 in 

resent simulation code. 

   Fig. 4. Simulation of flow velocity distribution with  Re=2500 by 

CFD package “NISTIR.” 

Fig. 5. Schematic view of experimental apparatus. 

Table 1.  Parameters for experimental apparatus. 

Parameter Value 

Reservoir dimension (M 3 )                                            

L type copper sheet (M 2 ) 

Inlet, outlet flow channel(M 3 ) 

Magnetic flux density, B (T) 

Input voltage,(V ) 

Working medium: (NaCl solution) 

Density, (kg/m
3
) 

Conductivity, (S/m) 

Viscosity, (Pas) 

0.1×0.1×0.01 

0.01×0.01 

0.1×0.1×0.5 

0.02~0.04 

6~15 

1058 

1.5 

0.001 
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used as the input value of simulating code. 

8. In dealing with the streamline distribution, both                                 

corner vortexes just symmetrical to the strip from inlet to 

outlet in Fig.6 were formed as the isolated region where the 

fluid that could not flow out has to turn around near the 

outlet and circulate inside the space to obey flow conser-

vation. Compared the image captured by continuous ex-

posure in experimental reservoir (Fig. 7), most marked 

particles were concentrated at the circulated region where 

the vortex contour had been successfully traced. Which was 

close agreement with simulation results (Fig. 6) and could 

also identify the correct of numerical scheme used in the 

simulation code  

9. Fig. 8 is the temperature distribution chart, where the wall 

temperature 0.8 and inlet, outlet temperature 0.5 were 

specified. Due to the temperature distribution in the vortex 

regions appearing at the upper and lower region in space is 

nearly unaffected by their neighborhood, the bad convec-

tion region covering isothermal region T=0.7~ 0.8 will be 

predicted there. As to the central strip from inlet to outlet, 

the strong convection induced by fast flow velocity will 

keep  constant temperature about 0.5 along the traveling 

path of inlet jet, which is nearly the same as temperature 

specified at the inlet, outlet of space. A slight away from the 

central strip, the isothermal contour became denser; that 

implies the temperature gradient will significantly vary in 

the normal direction of jet flow. In other words, the tem-

perature there will quickly climb up from 0.5 to 0.7 in a very 

short displacement normal to the central strips.

IV. CONCLUSIONS 

1. By using the vorticity – stream transformation, the unstable 

iteration caused by the pressure term in 2-D Navier Stoke 

equations can be avoided and the mass conservation will be 

automatically satisfied by introducing the stream function. 

2. Applying the vorticity–stream transformation, the moment 

and energy equations can be discretized into the same al-

gebra equations, which gives a special advantage in nu-

merical calculating. 

3. By using the implicit iteration, it is possible to make the 

numerical solution more stable and the faster computation 

during iteration process is less restricted. 

4. The mixed use of central difference and upwind scheme 

guarantees the difference coefficients in the vorticity 

transport, stream function and energy equations positive; 

that satisfied Gauss Seidel’s convergent condition.

5. On the boundary wall, the distribution of Dirac function in 

u, will cause the flow vector to become discontinuous 

around there. To overcome the unreasonable phenomena, a 

modification by using stream function with the integral of 

u, on the wall makes flow distribution more realistic and 

approach to the experimental result.  

6. Introducing boundary layer thickness to simplify the 

ϕω − equation on the boundary walls has no significant 

bad influence on the result. 

  Fig. 6. Simulation of streamline distribution with Re=2500 in present 

simulation code. 

  Fig. 7. Marked particles distribution of experimental photography 

with continuous exposure in test reservoir.. 

     Fig. 8. Simulation of temperature distribution with Re=2500          

Pe=25 in ϕ  continuous boundary value.
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7. In this study, the distributions of flow velocities, stream 

lines and temperature simulated can be reasonably inter-

preted and conform to the experimental results. 

NOMENCLATURE 

u:  nodimensional flow velocity in x direction 

:  nodimensional flow velocity in y direction 

:  nodimensional vorticity

: nodimensional stream function 

T: nodimensional temperature 

Re: Renold number  

Nu: Nussult number 

Pe: Pelect number 

x: nodimensional x step side 

y: nodimensional y step side 
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