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ABSTRACT 

This paper presents a design of realizing the guaranteed cost 
control problem for uncertain linear systems via discrete-time 
variable structure control (VSC) scheme. The uncertainties in 
the system are assumed to be norm-bounded and time-varying. 
Based on the discrete-time VSC technique, the proposed con-
troller can drive the system into a pre-specified switching sur-
face to obtain the desired dynamic performance and the chat-
tering phenomenon is eliminated. Sufficient conditions for the 
existence of guaranteed cost control are presented, and the 
problem of designing guaranteed cost control is converted to a 
convex optimization problem with linear matrix inequality 
(LMI) constraints. Finally, simulation results demonstrate the 
efficacy of the proposed control methodology. 

 

I. INTRODUCTION 

Variable structure control (VSC) has attractive features such 
as fast response, good transient performance, insensitiveness to 
the matching parameter uncertainties and external disturbances 
[3,5,13,23] so that VSC is an effective robust control approach 
for uncertain systems. In practice, using computers or DSP 
chips to implement the controller becomes more and more 
important nowadays, and discrete-time VSC has gained more 
and more attractive attention recently. Different from continu-
ous-time VSC, the motion of a discrete-time VSC system can 
approach the switching surface but cannot stay on it in practice. 
Therefore, only the quasi-sliding mode is ensured [9,16,21]. 
Several design methods for discrete-time VSC have been pro-
posed in the literature [6,7,9,10,12,16,17,20-22,26].  

On the other hand, guaranteed cost control of uncertain linear 
systems has received much attention over the last few years. 
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Guaranteed cost control is firstly presented by Chang and Peng 
[2]. Its objective is to design a control system which is not only 
stable but also guarantees an adequate level of performance. 
Based on this idea, many significant results have been proposed 
for the continuous-time case [18,24] and for the discrete-time 
case [4,15,19,25]. However, to the best of our knowledge, it 
seems that guaranteed cost control via discrete-time VSC has 
not been studied extensively. This has motivated our research. 

The purpose of this paper is to realize the guaranteed cost 
control problem for uncertain linear systems based on dis-
crete-time VSC scheme. In this proposed scheme, it possesses 
the properties of guaranteed cost control and VSC. Existence 
conditions for guaranteed cost control are derived via Lyapunov 
theory and linear matrix inequality (LMI) approach [1], and a 
convex optimization problem which is utilized to obtain guar-
anteed cost control is presented. The on-line disturbance rejec-
tion rule discussed by Su et al. [22] is applied to replace the 
conventional complex estimation methods and the chattering 
phenomenon is eliminated. Finally, a numerical simulation is 
given to illustrate the effectiveness of the proposed design ap-
proach. The proposed method has the following attractive fea-
tures: 1) the order of the motion equation in the sliding mode is 
equal to the order of the original system, rather than reduced by 
the number of dimension of the control input. 2) the robustness 
of the system can be guaranteed throughout the entire response 
of the system starting from the initial time instance. 3) the con-
trol design is rather straightforward and the guaranteed cost 
control is achieved. 4) the discrete-time VSC needs not be of 
switching type and the chattering phenomenon is eliminated. 

The remainder of this paper is organized as follows. Section 2 
briefly states problem formulation. Section 3 provides the 
proposed discrete-time VSC scheme to realize the guaranteed 
cost control problem for uncertain linear systems. Section 4 
presents results from numerical simulations. Finally, a conclu-
sion is provided in section 5. 

II. PROBLEM FORMULATION 

Consider a class of uncertain linear continuous-time systems 
represented by: 

 )()())(()())(()( tftutBBtxtAAtx +∆++∆+=�  (1) 
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where n
Rtx ∈)(  is the state, m

Rtu ∈)(  is the control input, 

l
Rtf ∈)( is the external disturbance, A  and B  are constant 

matrices of appropriate dimensions. The terms )(tA∆ and 

)(tB∆  represent unknown time-varying parameter uncertain-

ties of the matrices A  and B , respectively. For system (1), the 
following assumptions are assumed to be valid: 
Assumption 1. The pair ),( BA  is completely controllable. 

Assumption 2. There exist unknown time-varying matrix 
functions of appropriate dimension )(tD , )(tL  and )(tH such 

that )()( tBDtA =∆ , )()( tBLtB =∆  and )()( tBHtf = . These 

conditions are so-called matching conditions [5]. 
With assumption 2, the system (1) can be rewritten as 

 )()()()( tBdtButAxtx ++=�  (2) 

where )(td  is constructed as )()()()()()( tHtutLtxtDtd ++=
∆

. 

Note that )(td  includes the parameter uncertainties )(tA∆ , 

)(tB∆  and the external disturbance )(tf . For this reason, we 

will call )(td  as the generalized disturbance and assume )(td  

is bounded and smooth in the remaining of this paper. 
The discrete-time representation of the system (2) with 

sample and hold process is given by  

 )()()()1( kdkukxkx Γ+Γ+Φ=+  (3) 

where the sampling time is T , ATe=Φ  and Bde
T A ττ
∫=Γ

0
. 

This discrete-time model is an )( 2
TO  approximated model 

[26].  
Associated with the system (3) is the cost function 

 ∑
∞

=

=

0

)()(
k

T kQxkxJ  (4) 

where 0>Q  is a given weighting matrix. 

The main objective of this paper is to find a discrete-time 
variable structure controller such that the states of the uncertain 
discrete-time system (3) will asymptotically approach to zero 
even in the presence of parameter uncertainties and external 
disturbances, and the closed-loop value of the cost function (4) 

satisfies ∗≤ JJ , ∗
J  is some specified constant. 

Definition 1 

The magnitude of a variable v is said to be )( rTO  if and only 

if 0lim
0

≠
→ rT T

v
 and 0lim

10
=

−→ rT T

v
 where r  is an integer. 

Definition 2  

For the uncertain system (3) and the cost function (4), if there 

exist a control law )(ku∗  and a positive scalar ∗
J  such that the 

closed-loop system (3) with the control law )(ku
∗  is asymp-

totically stable and the closed-loop value of the cost function (4) 

satisfies ∗
≤ JJ , then ∗

J  is said to be a guaranteed cost and 

)(ku∗  is said to be a guaranteed cost control law of the un-

certain system (3) and the cost function (4). 

III. MAIN RESULTS 

1. Design of Switching Surfaces 

In this paper, the switching function is defined as 

 ∑
−

=

Γ+Φ−=

1

0

)()()()(
k

i

ixKGkGxkσ  , )0()0( Gx=σ  (5) 

where nm
RG

×∈  is chosen such that ΓG  is nonsingular and 
nm

RK
×

∈  is designed later such that the uncertain discrete-time 
system (3) in the quasi-sliding mode is asymptotically stable and 

the closed-loop value of the cost function (4) satisfies ∗
≤ JJ . 

Theorem 1 

Consider the uncertain discrete-time system (3) with the cost 
function (4) and the switching function (5). If there exists a 

symmetric positive-definite matrix nn
RP

×
∈  such that the fol-

lowing inequality is satisfied 

 0<+−ΦΦ QPP c
T
c  (6) 

where KGGc Γ+ΓΓ+Φ=Φ
−1)( , then the uncertain dis-

crete-time system (3) in the quasi-sliding mode is asymptoti-
cally stable. Furthermore, the corresponding value of the cost 
function (4) satisfies the bound 

 )0()0( PxxJ
T

≤  (7) 

where )0(x  is the initial state of the system (3). 

Proof:  

Using the concept of equivalent control, the equivalent con-
trol )(kueq  can be found by assuming [7] 

 0)()1()1( =−+=+∆ kkk σσσ  (8) 

Using (8), (5) and (3), the equivalent control )(kueq  can be 

expressed as 

 )()()()()()( 11 kdGGkGxGkKxkueq ΓΓ−Γ+= −−  (9) 

where ΓG  is assumed to be nonsingular.  
Substituting (9) into (3), the dynamic equation of the system 

(3) in the quasi-sliding mode can be obtained as 

 )()1( kxkx cΦ=+  (10) 

where cΦ  is defined in (6). 

Next, suppose there exists a symmetric positive definite ma-
trix P  such that matrix inequality (6) holds, then the Lyapunov 
function candidate  

 )()()( kPxkxkV
T

=  (11) 

is positive definite. The corresponding Lyapunov difference 
along the trajectory of the quasi-sliding mode dynamics (10) is 
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given by 

 )()1()( kVkVkV −+=∆  

 )()()())(( kPxkxkxPkx
T

c
T
c

T
−ΦΦ=  (12) 

By taking into account of (6), we have 

 0)()()( <−<∆ kQxkxkV
T  (13) 

for any nonzero n
Rkx ∈)( . It follows from Lyapunov stability 

theory that the quasi-sliding mode dynamic of the uncertain 
discrete-time system (3) is asymptotically stable. Furthermore, 
from (13) we have 

 )()()( kVkQxkx
T

∆−<  (14) 

Summing both sides of (14) from 0 to ∞  and using the sys-
tem stability yield 

 )0()0()()(
0

PxxkQxkx T

k

T ≤∑
∞

=

 

Thus, )0()0( PxxJ
T

≤ . The proof is completed. 

From (7), it shows that )0()0( Pxx
T  provides an upper bound 

on the cost function (4). In particular, note that 

)0()0()0()0( TT xPxtrPxxtr =  has the same form as the 2H  

cost in standard LQR theory. Hence, we replace )0()0( Txx by 

TΘΘ  where )0(x=Θ  and the guaranteed cost can be ex-

pressed as 

 T
PtrJ ΘΘ=

∗  (15) 

Next, we will show the sufficient condition (6) in Theorem 1 
is equivalent to the feasibility of LMI. 
Theorem 2 

Consider the uncertain discrete-time system (3) with the cost 
function (4) and the switching function (5). The system (3) in 
the quasi-sliding mode is asymptotically stable if there exist a 

matrix nm
RY

×
∈  and a symmetric positive-definite matrix 
nn

RW
×

∈  such that the following LMI is satisfied 

 0

0

0

1

<

















−

−Γ+Φ

Γ+Φ−

−QW

WWYW

YWW
TTT  (16) 

where GG
1)( −

ΓΓ+Φ=Φ . Furthermore, the gain matrix K is 

given by 

 1−
= YWK  (17) 

, and the corresponding value of the cost function (4) satisfies 
the bound 

 )(ZtrJ <  (18) 

where Z  is such that the LMI variable W  satisfying (16) ad-
ditionally satisfies 

 0<












−Θ

Θ−

W

Z
T

 (19) 

Proof:  

From the Schur complement [1], the inequality (6) is 
equivalent to 

 0
1

<












+−Φ

Φ−
−

QP

P
T
c

c  (20) 

Pre- and post-multiplying both sides of (20) by 

 







−10

0

P

I
 

where I  is the identity matrix of appropriate dimensions and 

letting 1−
= PW  and 1−

= KPY , and applying the Schur com-
plement again yield the matrix inequality (16).  

Next, to show that J  satisfies the bound (18), we consider 
the inequality 

 ZP
T

<ΘΘ  (21) 

which yields (18). Now, using the Schur complement, it follows 
that the existence of Z  and P  satisfying (21) is equivalent to 
the existence of the existence of Z  and W  satisfying (19). 
Thus, to minimize the performance bound (18), we consider the 
LMI minimization problem  

 
ZYW ,,

min  )(Ztr  (22) 

subject to W , Y  and Z  satisfying (16) and (19). This proof is 
completed. 

Since the problem (22) is a convex optimization problem 
with LMI constrains. Therefore, the global minimum of the 
problem can be obtained if it is feasible, and it can be easily 
solved by using the LMI Toolbox of MATLAB [8]. 

2. Design of Guaranteed Cost Controllers 

After designing the switching surface, the next phase is to 
design the control law such that quasi-sliding mode is reached 
and stayed thereafter.  

From the discrete mode in (3), the one step delayed unknown 
disturbance  

 )1()1()()1()1(ˆ −Γ−−Φ−=−Γ=−
∆

kukxkxkdkd  (23) 

can be calculated under condition of small T  and the smooth 
disturbance [22,26], which implies that the unknown distur-

bance )(ˆ kd  can be approximated by its one-step delayed value 

)1(ˆ −kd . 

For the uncertain discrete-time system (3), the control law is 
proposed as follows:  
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 )1(ˆ)()()()()( 11 −Γ−Γ+= −− kdGGkGxGkKxku  (24) 

where the gain matrix K  is given by (17). 
Combining (24) and (3), the augmented system becomes 

 )1(ˆ
)(

)(ˆ
)1(

)1(
−








+







Φ=









+

+
kd

K

I

ku

kx

ku

kx
 (25) 

where  

 








ΓΓ+ΓΦΓ+Φ

ΓΦ
=Φ −−

GGKGGK
11 )()(

ˆ  (26) 

The stability of the augmented system is stated as the fol-
lowing lemma. 
Lemma 1  

The eigenvalues of Φ̂  are })({ 1
KGGeig Γ+ΓΓ+Φ

−  and 

zero.  
Proof: 

Let λ  be an eigenvalue of Φ̂ ; then 

 )ˆdet(0 Φ−= +mnIλ  

 








ΓΓ−Γ−ΦΓ−Φ−

Γ−Φ−
= −− GGKIGGK

I

m

n

11 )()(
det

λ

λ
 

Premultiplying the first n  rows by GG
1)( −

Γ−  and adding 

to the last m  rows yields 

 








Γ−Γ−Φ−

Γ−Φ−
= −

KIGGK

I

m

n

λλ

λ
1)(

det0  

Premultiplying the first n rows by K−  and adding to the last 
m  rows yields 

 








Γ−−

Γ−Φ−
= −

m

n

IGGK

I

λλλ

λ
1)(

det0  

 








Γ−−

Γ−Φ−
= −

m

nm

IGGK

I
1)(

det
λ

λ  

Premultiplying the last m rows by Γ  and adding to the first 
n  rows yields 

 












Γ−−

Γ+ΓΓ+Φ−
=

−

−

m

nm

IGGK

KGGI
1

1

)(

0))((
det0

λ
λ  

)])((det[ 1 KGGI n
m Γ+ΓΓ+Φ−= −λλ  

This proof is completed. 
Remark 1 

Using (5), (3), (23) and (25), we have  

 )]1()([)]1(ˆ)(ˆ[)1( −−Γ=−−=+∆ kdkdGkdkdGkσ  (27) 

If the disturbance )(td  is bounded and smooth, 

)1()( −− kdkd  is of )(TO . From the definition given in (3), the 

norm of Γ  is )(TO . Hence, )1( +∆ kσ  has a magnitude of the 

order )( 2
TO . From Lemma 1 and (27), we concluded that the 

control law (24) will drive the state to travel in the vicinity of the 
switching surface at each sampling instant kTt = . 

From Theorem 2 and Lemma 1, Theorem 3 can be obtained 
as follows. 
Theorem 3 

For the uncertain discrete-time system (3) with the cost 
function (4) and the switching function (5), if the generalized 
disturbance )(td  in (2) is bounded as well as smooth, and the 

following optimization problem 

 
ZYW ,,

min  )(Ztr  

s.t. 

 0

0

0

1

<

















−

−Γ+Φ

Γ+Φ−

−QW

WWYW

YWW
TTT  

 0<












−Θ

Θ−

W

Z
T

 (28) 

has solutions  W , Y  and Z , then the control law (24) is a 
guaranteed cost control law which ensures the minimization of 
the guaranteed cost function (4) of the system (3). 

The procedures of the proposed discrete-time VSC to realize 
the guaranteed cost control problem for uncertain linear systems 
are summarized as follows: 

i) Choose Q  (Eq. 4) and G  (Eq. 5) 

ii) Calculate K  (Eqs. 17 and 28). 

iii) Approximate the disturbance )(ˆ kd  (Eq. 23). 

iv) Calculate )(tu  (Eq. 24). 

IV. ILLUSTRATIVE EXAMPLE 

In this section, we consider a continuous-time water-quality 
dynamic model of the River Nile proposed in [14] without the 
delay terms, and the system parameter matrices are given as 
follows: 

 








−−

−
=

32

11
A , 








=

5.00

01
B ,  

 








−

−
=∆

)3sin(075.0)sin(1.0

)sin(3.0)2sin(1.0
)(

tt

tt
tA , 

 








−

−
=∆

)3sin(05.0)sin(15.0

)2sin(15.0)sin(25.0
)(

tt

tt
tB ,  
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 








+

+
=

)3sin(09.01.0

)sin(6.02.0
)(

t

t
tf  

Associated with this system is the cost function (4) in which 
the weight matrix is given as follows: 

 







=

100

010
Q  

The discrete-time transformed system (3) for each sampling 
time can be easily obtained by using the Matlab program func-
tion c2d [11] with sample time 01.0=T  second and given as 

 








−
=Φ

9703.00196.0

0098.099.0
, 









−
=Γ

0049.00001.0

0000.00099.0
 

Similarly, according to assumption 2 and (3), it is easy to 
check that the perturbations )(tA∆ , )(tB∆  and )(tf  are 

matched and the generalized disturbance )(kd  is given as 

 )()()()()()( kHkukLkxkDkd ++=
∆

 

where 

 








−

−
=

)3sin(15.0)sin(2.0

)sin(3.0)2sin(1.0
)(

kk

kk
kD ,  

 








−

−
=

)3sin(1.0)sin(3.0

)2sin(15.0)sin(25.0
)(

kk

kk
kL ,  










+

+
=

)3sin(18.01.0

)sin(6.02.0
)(

k

k
kH  

Applying the proposed method, the switching surface matrix 

is chosen as 







=

20

01
G  so that 









−
=Γ

0099.00002.0

0000.00099.0
G  is 

nonsingular. Next, we will determine gain matrix K  that 
minimizes )(Ztr  with some constraints (28). Using the soft-

ware LMI toolbox in MATLAB [8], it is found that the corre-

sponding optimization problem (28) with [ ]T15.0=Θ is fea-

sible, and the optimal solutions are given by 

 








−

−
=

0715.00000.0

0000.00987.0
W , 









−

−
=

8617.200

08617.20
Y , 

 1174.24=Z  

Then, the state feedback gain matrix from (17) can be ob-

tained as 








−−

−−
=

6851.2910821.0

0821.02813.211
K . According to 

Theorem 3 and (24), the optimal guaranteed cost controller is  

 )(
6734.889312.1

5855.07821.110
)( kxku 









−

−−
=  

)1(ˆ
0117.2030133.2

5033.04992.100
−







 −
− kd  

where )1(ˆ −kd is given by (23). The associated upper bound of 

the closed-loop cost value is 1174.24=
∗

J . 
With the designed parameter setting and initial condition 

[ ]Tx 15.0)0( = , the closed-loop dynamic responses of simu-
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Fig. 2.  Control inputs. 
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Fig. 3.  Switching functions. 
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Fig. 1.  System states. 
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lation are shown in Figs. 1-3. Fig. 1 shows the trajectories of the 
system. It is clear shown that the states of the system approach to 
zero in finite time. Fig. 2 shows the control input with reason-
able magnitudes. Fig. 3 shows the switching function. It can be 
seen that the chattering phenomenon is eliminated. 

V. CONCLUSION 

In this paper, we have considered the guaranteed cost control 
problem via discrete-time VSC scheme for uncertain linear 
systems. This new discrete-time VSC algorithm possesses the 
properties of guaranteed cost control and VSC. A simple on-line 
disturbance estimator has been applied, and the discrete-time 
VSC needs not be of switching type. The existence condition for 
guaranteed cost control has been derived. Furthermore, the 
guaranteed cost control problem has been converted to a convex 
optimization problem with LMI constraints. The simulation 
results have been verified the theoretical analysis and demon-
strated the effectiveness of the proposed control methodology.  
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