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ABSTRACT 

Internal solitary wave propagation over a submarine ridge 

causes energy dispersion. Under this condition, the hydrody-

namic interaction between the wave and ridge affects the 

oceanographic and marine environment. This study investi-

gates how ridge height and potential energy affect wave-ridge 

interaction using a cumulative regression model. Three prob-

ability functions 1p̂ , 2p̂  and 3p̂ , are utilized to investigate 

weighted influence of elements on wave reflection. Deviance 

and Pearson tests are employed to assess the goodness-of-fit of 

the proposed model and to improve the overdispersion prob-

lem. The cumulative logistic regression model demonstrates 

that bathymetry induced internal wave reflection in a 

two-layer fluid system is closely associated with ridge height 

and potential energy. 

 

I. INTRODUCTION 

Internal waves are motions of an interface of various den-

sities in the ocean interior.  These waves exist in a stratified 

water body, in which differences in water density are princi-

pally caused by differences in water temperature or salinity. 

The simplest density structure in the ocean is the approxima-

tion of a two-layer model. Internal waves in the ocean gener-

ally have wavelengths ranging from hundreds of meters to tens 

of kilometers with periods from tens of minutes to tens of 
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hours. Their amplitudes (peak to trough distance) can exceed 

50 m in the Andaman Sea and Sulu Sea and 110m in the South 

China Sea. Internal tides and waves are widespread phenom-

ena in oceans. The mixing between stratified layers and energy 

dissipation generated by internal waves has marked effects on 

cross slope exchange processes, enhancement of bottom stress 

and generation of nepheloid layers [3]. Ocean internal mixing, 

hence, profoundly affects climatic change. Cacchione et al. [2] 

investigated how shoaling internal waves affect sediment 

movement on continental shelves and slopes. A parametric 

approach was applied to examine wave-induced soil response 

resulting from an internal wave action in a stratified two-layer 

water system [3]. Basic laboratory experiments were con-

ducted for simulating internal solitary wave propagation on 

continental shelves [6, 7] and submarine ridges [4]. The data 

collection and analyses were detailed methodically in Chen et 

al. [8, 9]. Based on a two-layer fluid system with a small den-

sity difference between the layers, the numerical algorithm 

was validated by comparing numerical results with existing 

analytical solutions and experimental data [5]. The papers 

cited performed laboratory experiments with the goal of simu-

lating and exploring the generation mechanisms, propagation, 

and evolution of internal solitary waves (ISW) in the north-

eastern South China Sea. A preliminary study investigated the 

effect of weighted parameters on amplitude and energy-based 

reflection of ISW from uniform slopes in two-layer fluid sys-

tem [10]. In addition to a brief literature review, the remainder 

of this paper is organized as follows. Section 2 describes the 

experimental set-up and theoretical background for under-

standing hydrodynamic interaction along with analyses using 

the cumulative logistic regression model. Section 3 presents 

analytical results generated by applying the regression model. 

Finally, Section 4 presents conclusions for the model founda-

tion and further predictions for wave transmission during 

wave-ridge interaction. 

 

II. RESEARCH FRAMEWORK 

ESTIMATION ON INTERNAL WAVE  
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Fig. 1. Schematic diagrams showing an internal solitary wave over    

triangular bottom obstacles. 

 

00.20.40.60.8
8 13 18 23 28 33ridge height (cm)ratio of the incident and reflected  wave amplitude

 

Fig. 2. Ridge heights against amplitude-based reflection rate. 

 

Laboratory experiments in this study were performed us-

ing a two-layer fluid system of fresh and brine water in a wave 

flume 12m long with a rectangular cross-section. Experimen-

tal data collected in previous work were analyzed in this study. 

An ISW propagates along the channel in the wave flume and 

produces wave reflection and transmission while interacting 

with the seabed topography. Figure 1 presents this scenario, in 

which ρ1 and ρ2 are the upper and lower fluid density, respec-

tively. During wave-ridge interaction, the amplitude-based 

reflection rate may be related to ridge height, potential energy, 

and ratio of upper to lower fluid density. The reflection rate is 

defined as the ratio of incident wave amplitude to reflected 

wave amplitude. These factors are analyzed in this study using 

the cumulative logistic regression model. 

Figure 2 shows a scatter plot illustrating the relationship 

between ridge height and amplitude-based reflection rate. 

Based on the data distribution (Fig. 2), preliminary results 

indicate that the data measured from lowest ridge height are 

smaller than 0.1 (p.s. small reflection rate), and large reflec-

tion rate based on data measured from the highest ridge height. 

Clearly, the data collected from the 20cm ridge height dis-

persed into two groups. The data distribution, which has a 

correlation coefficient = 0.2219, is similar to a logistic regres-

sion model rather than a linear model. Resembling a hyper-

bolic tangent profile, these measured data were analyzed using 

a logistic regression model (Fig. 3). Three degrees of  

 

Fig. 3. Graph of logistic model for a single explanatory variable. 

 

wave-ridge interaction for weak, moderate and strong ampli-

tude-based reflection rates are classified to examine the 

weighted influence of factors, including ridge height and po-

tential energy. Based on analytical results from the cumulative 

logistic regression model, the goodness-of-fit between ridge 

height and potential energy can further predict and correct 

parameters under the best parsimonious model. 

1. Cumulative logistic regression models 

The logistic model is extensively adopted in the social 

and biological sciences. Binary data are likely the most com-

mon categorical data. Logistic regression in the 1950s was 

applied to biostatistics [12]. The binary logistic regression 

model is applicable to ordinal responses in situations that re-

sult in a response variable with more than two categories and 

where a natural ordering of categories exists [14]. Suppose the 

response variable is ordered, the response variable is then 

measured on an ordinal scale. This ordering is typically a 

measure of degree, such as determination of disease status, 

such as no pain, slight pain, substantial pain, for an item.  

 

Let Pij be the probability that individual i falls into category j 

of the dependent variable, such that   

         
( )

(   i  responds  in category  j)

ij i
P P Y j

P individual

= =

=
 

 

Assume that the categories are ordered in the sequence j =1… 

J. 

The cumulative probability of a response in category j or 

worse, denoted by Fij, is then 

Fij =P (Yi≦j) =P [individual i responds in category j or worse] 
The cumulative probabilities of Fij is given by 
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The model is then considered] as a set of (J-1) equation, 
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where 

1 1 2 2 ....i i i k ikX x x xβ β β β= + + +   

  

2. Overdispersion 

Assessing how close the model-predicted values are to 

the corresponding observed values is advantageous when ap-

plying the regression model. Two traditional goodness-of-fit 

tests for reference are the Pearson chi-square and the likeli-

hood ratio chi-square, also known as deviance. For a correctly 

specified model, the Pearson chi-square statistic and deviance, 

divided by their degrees of freedom, should approximately 

equal 1. When the values are significantly larger than 1 (i.e., a 

situation common in practice), the data causes overdispersion 

[15].  

Overdispersion result in a poor fit of logistic regression 

results [12]. The following are possible reasons for overdis-

persion: 1) an incorrectly specified model in which more in-

teractions and/or nonlinearities than necessary exist in the 

model; and, 2) lack of independence of the observations, 

which can arise from unobserved heterogeneity of the data that 

operates at the groups rather individual level [1]. When fitting 

a model, several problems result in overdispersion [11]: 

(1) A large residual deviance, associated with the number of 

degrees of freedom can result from not including an ade-

quate number of interaction terms in the model. 

(2) Assuming a linear relationship between the logit trans-

form of the response variable and explanatory variables, 

the actual relationship then is quadratic or a relatively 

higher order.  

(3) A logarithm or some transformation of the explanatory 

variable should be used. 

(4) The data contain outliers. 

(5) The model lacks important explanatory variables. 

(6) The number of observations in each subpopulation is 

small. 

The dispersion parameter can be computed to acquire a 

correct estimate of variance. In most cases, however, the dis-

persion parameter is unknown. Two common methods for es-

timating unknown dispersion parameters are avail-
able: the Pearson chi-square statistic χ

2
p, and the 

deviance chi-square statistic χ
2

D. 

1) Pearson chi-square and the deviance 

The Pearson chi-square statistic χ
2
p and the deviance 

chi-square statistic χ
2

D are given by 

 

2
1

2
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where  

m is the number of subpopulation profiles, 

k+1 is the number of response levels, 

rij is the weighted response at the j-th level for the i-th profile, 

ni is the total weight at the i-th profile, and 

pij is the fitted probability for the j-th level at the i-th profile. 

Each of these chi-square statistics has mk-q degrees of free-

dom, where q is the number of parameters estimated. 

The dispersion parameter is estimated by  

 

2
2

2
2

ˆ

ˆ
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σ

σ

=
−

=
−

                (6) 

 

As the Pearson statistic and deviance are a chi-square 

distribution, the replications within subpopulations must be 

sufficient, providing evidence that data are too few to use ei-

ther the statistic or p-values. While these statistics are invalid, 

the Pearson and deviance statistics should be ignored. The 

sample size guidelines for these statistics that should be ap-

proximately chi-square are as follows. 

(1) at least 10 subjects in each group (Nj≧10) 

(2) 80% of the predicted counts are at least 5 

(3) All other expected counts are >2, with no 0 counts [14]. 

 

III. ANALYSIS RESULTS 

Experiment data for an ISW reflection from seabed topog-

raphy collected incident wave amplitude and reflected wave 

amplitude. Using the cumulative logistic regression model, 

dependent variables are classified into three groups using am-

plitude-based reflected rate: weak, moderate, and strong. 

Strong is hypothesized as having a reflection rate >0.55. The  
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Table 1. Show the results for the response profile. 

     

Table 2. Testing the proportional odds assumption. 

  Testing the proportional odds assumption in which X1 for ridge height, X2 

for potential energy, and X1*X2 for interaction of ridge height and potential 

energy. 

 

reflection rate is 0.2–0.55 for the moderate level, and <0.2 for 

the weak level. 

1. Cumulative logistic regression model 

The cumulative logistic regression model was analyzed 

using a single explanatory variable, including ridge height and 

potential energy. The correlation between two single explana-

tory variables was investigated using the regression model. 

1) Response Profile 

For an ordinal response, response levels should sorted 

in either ascending or descending order. In this study, the as-

cending option was used for predicting model proability. Table 

1 shows the results for the response profile. Response variable 

values are listed according to ordered values. Since the weak 

level (Y=1) is associated with low ordered values in the re-

sponse profile table, the probability of the weak reflected rate 

is tabulated. 

2) Score test for the proportional odds assumption 

For ordinal response variables, the model function is a 

cumulative logistic obtained by performing ordered logistic 

regression while using the proportional odds model. The 

evaluation of goodness-of-fit for the proportional odds model 

is similar to that for the dichotomous response logistic regres-

sion model [14]. The score test for the proportional odds as-

sumption is a test of the null hypothesis, in which the corre-

sponding coefficients are located between two binary coeffi-

cients. The arrangement of model combines category 1 and 2 

and leaving 3 alone. The other possible case is that category 2 

and 3 are combined and category 1 is left alone. However, 

Peterson and Harrell [13], who concluded that this test is very  

Table 3. Testing global null hypothesis:ββββ=0. 

 

Likelihood Ratio Score Wald ex-

planat

ory 

Chi-S

quare 

DF Pr > 

Chi-Sq 

Chi- 

Square 

DF Pr > 

Chi-Sq 

Chi-Squ

are 

DF Pr > 

Chi-Sq 

X1 12.5398 1 0.0004 12.096 1 
0.0005 

11.8002 1 0.0006 

X1 

X2 

 

39.6652 

 

2 

 

<.0001 

 

33.4144 

 

2 

 

<.0001 

 

22.5451 

 

2 

 

0.0002 

X1 

X2 

X1*X2 

 

39.7047 

 

3 

 

<.0001 

 

33.4271 

 

3 

 

<.0001 

 

22.2515 

 

3 

 

<.0001 

 

anti-conservative, recommended that the proportional odds 

assumption is valid when using this test (based on a large 

p-value). 

The chi-square scores for testing proportional odds as-

sumptions are 3.7341, 4.7205, and 6.5331, respectively; all 

values are p>0.05 (Table 2).  Analytical results demonstrate 

that the proportional odds model fits the data. That is, the cu-

mulative logistic model agrees with the data when analyzing 

the effects of ridge height and potential energy on wave-ridge 

interaction. 

3) Testing global null hypothesis:β=0  

Table 3 lists the three chi-square statistics when evaluating 

“Testing Global Null Hypothesis: β=0”. When testing the 

same null hypothesis, explanatory variables have coefficients 

of zero. Associated p-values are generally zero by three 

chi-square statistics, suggesting that at least one explanatory 

coefficient is not zero. 

 

4) Goodness of fit 

For individual likelihood-ratio tests, three situations are 

investigated: single explanatory variable for the ridge height 

(X1); the correlation between ridge height (X1) and potential 

energy (X2); and, interaction between ridge height (X1) and 

potential energy (X2). The three conditions are discussed as 

follows. 

 

A. Explanatory variables: X1(ridge height) 

A.1 Parameter estimate 

In Table 4, ridge height (X1) is a significant factor 

(p=0.0006) when considering amplitude-based reflected rate. 

Two fitted (parallel) regression lines are  

 

Ordered                            Total 

Value         Y                Frequency 

1            weak level             35 

2            moderate level          70 

3            strong level            10 

Probabilities modeled are cumulated over the lower Ordered Values. 

Explanatory Chi-Square DF Pr> Chi-Sq 

X1 3.7341                    1 0.0533 

X1, X2 4.7205                2 0.0942 

X1, X2, X1*X2 6.5311                3 0.0884 
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Table 4. Analysis of maximum likelihood estimates. 

Standard    Wald 

Parameter  DF   Estimate    Error    Chi-Square  Pr > Chi-Sq 

Intercept 1  1    1.3616      0.6493     4.3972   0.0360 

Intercept 2  1    4.7985      0.8022     35.7785   <.0001 

ridge  

height X1  1   -0.0973    0.0283   11.8002  0.0006 

 

Fig. 4. Ridge heights against the probabilities of 1p̂ , 2p̂  and 3p̂ . 

 

 

1
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where 1p̂  is the probability of a weak response level, 2p̂  is 

the moderate response level, and 3p̂  is the strong response 

level. The predicted probabilities, ˆ
ip , can be computed by 

For characterizing the effect of x on ˆ
ip , the diagram of ridge 

heights against the probabilities of 1p̂ , 2p̂  and 3p̂  (Fig. 4) is 

useful. The coefficient x in Eq. 7 is negative, indicating that 

probability 1p̂
  decreases as x increases. However, probabili-

ties 2p̂  and 3p̂  increase as x increases. 

A.2 Goodness of fit statistics 

According to Stokes et al. [14], a adequate sample size 

with 80% of observed cell counts must be at least 5. Using the 

counterparts of Pearson chi-square and deviance chi-square, in 

which value is distributed as chi-square with degree of free-

dom = {(r-1) (s-1)-t}, where t is the number of explanatory 

variables, r is the number of response levels, and s is the 

number of subpopulations. Table 5 presents goodness-of-fit 

statistics. The column labeled Value/DF, which contains devi-

ance estimates, lists the dispersion parameter (value/DF) of 

3.8744 and Pearson chi-square dispersion parameter of 3.5744. 

The statistic values for Pearson chi-square and deviance 

chi-square are 25.0208 and 27.1208,respectively, with 7 de-

grees of freedom.  Since the statistic values for Pearson 

chi-square and deviance chi-square are greater than the de-

grees of freedom, and the p-values for deviance and Pearson 

are <0.05 (<.001), both two tests do not illustrate the model 

well. 

 

B. Explanatory variables X1 (ridge height) and X2 (potential 

energy) 

B.1 Parameter estimate 

For model fitting, several problems, such as large residual 

deviance and number of degrees of freedom, can cause 

overdispersion, and can result in insufficient number of inter-

active terms in the model [11]. Allison [1] argues that a possi-

ble cause of overdispersion is “lack of independence of ob-

servations.” To eliminate these possibilities, potential energy 

(X2) is added to the cumulative logistic model.  

Table 6 presents the results of analysis of maximum like-

lihood estimates. Both ridge height (X1) and potential energy 

(X2) are significant factors (p<0.0001 and p<0.0001) for am-

plitude-based reflected rate. The two (parallel) fitted regres-

sion lines are 
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Fig. 5. Ridge heights against the probabilities of 1p̂ , 2p̂ and 3p̂ , with 

individual explanatory X1 and X2. 

 

Table 6. Analysis of maximum likelihood estimates. 

Standard    Wald 

Parameter      DF  Estimate   Error  Chi-Square  Pr > Chi-Sq 

Intercept 1       1    3.1483   0.9737   10.4547      0.0012 

Intercept 2       1    7.0453   1.1659   36.5141      <.0001 

ridge height x1    1   -0.3266   0.0689    22.4894     <.0001 

potential energy x2 1    4.4775   1.0403    18.5262     <.0001 

 

Adding the difference in potential effect on an internal 

solitary wave transmission yields three probability func-

tions, 1p̂ , 2p̂  and 3p̂ . Figure 5 presents the plots of predicted 

probability curves that are similar to mathematical formula-

tions obtained using the cumulative logistic function. The pre-

dicted probabilities, ˆ
ip , are given by  

Figure 5 shows the effect of X1 (ridge height) and X2 (poten- 

Table 7. Goodness-of-fit statistics: explanatory variables X1 and X2. 

Deviance and Pearson Goodness-of-Fit Statistics 

Criterion      DF      Value     Value/DF    Pr > Chi-Sq 

Deviance      10      12.0170       1.2017       0.2839 

Pearson       10      11.1789       1.1179       0.3438 

Number of unique profiles: 7 

 

Table 8. Analysis of maximum likelihood estimates. 

        Standard     Wald 

Parameter  DF  Estimate   Error    Chi-Square    Pr > Chi-Sq 

Intercept 1   1   2.6933    2.4826      1.1769     0.2780 

Intercept 2   1   6.5897    2.5660      6.5951     0.0102 

  X1       1   -0.2923    0.1834      2.5388     0.1111 

X2       1    5.0519    3.0893      2.6742     0.1020 

 X1*X2     1   -0.0388      0.1932        0.0402     0.8410 

 

tial energy) on ˆ
ip . 

B.2 Goodness of fit statistics 

Table 7 lists goodness-of-fit statistics. The column la-

beled Value/DF, which contains deviance estimates, has a dis-

persion parameter (value/DF) of 1.2017 and Pearson 

chi-square dispersion parameter of 1.1179. The statistic values 

for Pearson chi-square and deviance chi-square are 12.0170 

and 11.1789, respectively, with 10 degrees of freedom, calcu-

lated by (3-1) × (7-1)-2=10. The statistic values for Pearson 

chi-square and deviance chi-square are largerthan the degrees 

of freedom; however, the p-values for Pearson chi-square and 

deviance chi-square >0.05 (p=0.2839 and 0.3438). This model 

is an acceptable fit. However, the model causes unapparent 

overdispersion. 

C. Explanatory variables: X1, X2, and the interaction of X1 

and X2  

C.1 Parameter estimate 

Herein, ridge height, potential energy and the interaction 

between two explanatory are considered in the regression 

model. Using a full model decreases risk of contaminating the 

dispersion parameter via a poor fit due to incorrect model 

specifications. Table 8 presents maximum likelihood estimates. 

All explanatory variables X1 (ridge height), X2 (potential en-

ergy), and the interaction between X1 and X2 are not signifi-

cant factors (p=0.1111, p=0.1020, and p=0.8410, respectively) 

for amplitude-based reflected rate. Obviously, the model does 

not illustrate the data. 

2. Overdispersion adjustment  

Overdispersion, common to most real data, causes an 

underestimation of parameter estimate variance. The standard  
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Table 6. Supplement with overdispersion. 

Analysis of Maximum Likelihood Estimates 

Standard     Wald 

Parameter     DF Estimate  Error   Chi-Square  Pr > Chi-Sq 

Intercept 1     1   3.1483   0.9737   10.4547       0.0012 

Intercept 2     1   7.0453   1.1659    36.5141       <.0001 

ridge height x1  1  -0.3266   0.0689    22.4894       <.0001 

Potential       1   4.4775   1.0403   18.5262       <.0001 

energy x2 

 
Table 9. Analysis of maximum likelihood estimates (revision on overdis-

persion). 

                           Standard    Wald 

Parameter     DF  Estimate   Error  Chi-Square   Pr > ChiSq 

Intercept 1      1   3.1483   1.0295     9.3522       0.0022 

Intercept 2      1   7.0453   1.2327    32.6634       <.0001 

ridge height X1  1   -0.3266   0.0728    20.1178       <.0001 

potential       1    4.4775   1.0999    16.5725       <.0001  

energy X2 

 

errors for parameter estimates are underestimated (Table 6); 

however, Wald chi-square probability values are overestimated. 

Parameter estimates, standardized estimates, and odds ratios 

are unaffected by the dispersion parameter. This adjustment of 

overdispersion can be based on the Pearson chi-square or de-

viance. This study revises overdispersion using the Pearson 

chi-square approach. 

Based on the revision for overdispersion (Table 9), both 

coefficient and odds ratios for ridge height (X1) and potential 

energy (X2) are the same to those in Table 6. The standard 

error in Table 9 is slightly larger than that in Table 6, which 

clearly produces a small Wald coefficient. The revision for 

overdispersion does not affect the p-value (p<.0001). The re-

vised cumulative logistic model for ridge height (X1) and po-

tential energy (X2) remains in agreement  with  the mathe-

matical formulation , in which the two factors are p < 0.0001  

and  p < 0.0001,  respectively , against the ampli  

tude-based reflection rate. Therefore, the best parsimonious 

model is the revised cumulative logistic model for ridgheigh 

t (X1) and potential energy (X2). 

 
IV. CONCLUSIONS 

This study investigated ISW propagation over a subma-

rine ridge by using the cumulative regression paradigm. Three 

groups of dependent variables were classified as weak, mod-

erate and strong. This study considered ridge height and po-

tential energy, and the correlation of the two explanatory in the 

regression model. Restated, the full model considered here is 

the model with ridge height, potential energy, and the interac-

tion between ridge height and potential energy. The following 

are this study’s conclusions. 

(1) The chi-square scores for testing proportional odds as-

sumptions are 3.7341, 4.7205, and 6.5331, respectively; all 

values are p>0.05 (Table 2).  Analytical results demon-

strate that the proportional odds model fits the data. That is, 

the cumulative logistic model agrees with the data when 

analyzing the effects of ridge height and potential energy 

on wave-ridge interaction. 

(2) While testing the global null hypothesis β=0, there are 

three chi-square statistics (Likelihood Ratio, Score, and 

Wald test). These statistical p-values are <0.001. At least 

one coefficient is not zero.  

(3) To eliminate the possibility of overdispersion, single ridge 

height (X1), single potential energy (X2), and the interac-

tion between ridge height and potential energy are ana-

lyzed in the regression model. Both ridge height (X1) and 

potential energy (X2) are significant factors (p<0.0001 and 

p<0.0001) affecting amplitude-based reflected rate. Three 

predicted probability functions, 1p̂ , 2p̂  and 3p̂ , are thus 

obtained. The predicted probabilities curves are similar to 

mathematical formulation of cumulative logistic response 

functions (Fig. 5). The goodness-of-fit statistics were ex-

amined. Since overdispersion appeared in the deviance and 

Pearson test, in which p-values are >0.05 (p=0.2839 and 

p=0.3438), 

   these tests illustrated model applicability well.  

(4) Based on the revision for overdispersion (Table 9), both 

coefficient and odds ratios for ridge height (X1) and poten-

tial energy (X2) are the same to those in Table 6. The stan-

dard error in Table 9 is slightly larger than that in Table 6, 

which clearly produces a small Wald coefficient. The revi-

sion for overdispersion does not affect the p-value 

(p<.0001). The revised cumulative logistic model for ridge 

height (X1) and potential energy (X2) remains in agreement 

with the mathematical formulation, in which the two fac-

tors are p<0.0001 and p<0.0001, respectively, against the 

amplitude-based reflection rate. Therefore, the best parsi-

monious model is the revised cumulative logistic model 

for ridge height (X1) and potential energy (X2). 
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